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Abstract: The intergranular corrosion (IGC) behavior of a new metastable austenitic Cr–Mn–Ni–N–Cu
high-strength stainless steel under various heat treatments was studied. The samples were solution
treated at 1050 ◦C for 30 min and then aged at 600 to 900 ◦C for 10 to 300 min, respectively. The IGC
susceptibility of aged samples was investigated using a double-loop electrochemical potentiokinetic
reactivation (DL-EPR) test in a solution of 0.1 M H2SO4 and 0.002 M KSCN and the 10% oxalic acid etch.
The surface morphologies of samples were characterized using optical microscopy and the scanning
electron microscopy after electrochemical tests. Two time-temperature-sensitization diagrams were
plotted based on the DL-EPR test and oxalic acid etching. No IGC and precipitate were observed for
samples aged at 600 ◦C and 900 ◦C. For samples aged at 650 ◦C to 750 ◦C, the IGC susceptibility and
the amount of precipitate both increased with the extended aging time. For samples aged at 800 ◦C
and 850 ◦C, the amount of precipitate increased as the aging time was prolonged. However, only the
sample aged at 800 ◦C for 60 min showed slight intergranular corrosion in the DL-EPR test. The IGC
of the Cr–Mn–Ni–N–Cu austenitic stainless steel originated from the precipitation of Cr23C6 and
Cr2N at the grain boundaries. The chromium-depleted zones near grain boundaries stood as the
corrosion nucleation sites, but the dissolution of the weak area followed a consistent crystallographic
orientation along each grain boundary.

Keywords: Cr–Mn–Ni–N–Cu austenitic high-strength stainless steel; intergranular corrosion;
double-loop electrochemical potentiokinetic reactivation; oxalic acid etch; crystallographic orientation

1. Introduction

With the rapid development of the automotive industry, the usage of materials for automotive
structures is increasing year by year. Recently, the designed service life of the electric vehicles
has been significantly extended due to the introduction of replaceable batteries [1], leading to
new demands for crash safety and fuel economy of the automobiles. The automotive structural
materials require a combination of properties including high strength, high ductility, high corrosion
resistance and lightweight to ensure the fuel economy and the extended service life [2]. Numerous
studies have been concentrated on the development of promising automotive materials, including
high-strength carbon steels [3], high-strength stainless steels [4–6], light-weight aluminum and
magnesium alloys [7–9], and the fiber-reinforced polymers [10]. However, high-strength carbon
steels and the light-weight aluminum and magnesium alloys require protective coatings to ensure
corrosion resistance. The use of fiber-reinforced polymers as automotive structures is uneconomic at
present [11]. New-generation high-strength stainless steel, which possesses a high product of strength
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and elongation (Rm × A, over 30 GPa%) [12], good corrosion resistance and low cost, is very promising
for future automotive structures.

Austenitic stainless steels have been widely used in many areas, including the petrochemical
industry, architecture, aerospace and automobile manufacturing because of their excellent properties
such as high strength, good ductility, excellent formability and good corrosion resistance [13–16].
Austenitic stainless steels such as 304 and 310 are attractive for use as frame materials in automobiles [17].
However, the high cost results from the high Ni content which has limited the automotive application
of these austenitic stainless steels. New attempts have been focused on developing a metastable
austenitic stainless steel with mechanical properties equivalent to the traditional austenitic stainless
steels at a much lower cost [18]. The expensive Ni has been replaced with low-cost Mn. Furthermore,
N and Cu are simultaneously added to stabilize the austenitic phase. Nitrogen alloying can also
promote the strength of stainless steel by nitrogen solution hardening [19,20]. Copper additions can
reduce the needed nitrogen content and improve plasticity [21].

Recently, Baosteel Co., Ltd. in China has developed a new grade of high-strength stainless steel
(13.6Cr–10.1Mn–1.19Ni–0.15N–0.85Cu) with a tensile strength greater than 1000 MPa. The martensite
transformation behavior and mechanical properties of this stainless steel after cold rolling have been
discussed [12]. The increase of the martensite volume fraction leads to the increase of tensile strength,
and a higher volume fraction of austenite results in a larger elongation. However, the corrosion
performance is the key factor to determine whether the high-strength stainless steel can meet the long-life
demand of automotive applications. Austenitic stainless steels are prone to intergranular corrosion
(IGC) since sensitization can easily occur after welding and heat treatments [22–24]. The formation of
chromium-rich precipitates at grain boundaries can result in chromium-depleted zones adjacent to grain
boundaries which are prone to IGC in a corrosive medium [25–27]. Figure 1 gives the equilibrium phase
diagram obtained by thermodynamic calculation for the as-mentioned Cr–Mn–Ni–N–Cu austenitic
stainless steel. At temperatures between 950 ◦C to 1300 ◦C, a pure austenite phase can be obtained.
Whereas below 950 ◦C, chromium carbides and nitrides (e.g., M23C6, M2N) will precipitate and may
deteriorate the corrosion resistance of steel. However, the precipitation of chromium carbides and
nitrides is also controlled by the diffusion kinetics of Cr, C, and N atoms in the austenite phase [28].
The chromium depleted zone near the chromium-rich precipitates can also be repaired by the chromium
atoms diffused from the inner grain at higher temperatures or for longer aging times [29,30]. The IGC
susceptibility of the as-mentioned Cr–Mn–Ni–N–Cu austenitic stainless steel needs to be clarified to
guide the thermomechanical and welding processes.
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Element C N S Si Mn P Cr Ni Cu Fe 
wt % 0.08 0.15 0.002 0.30 10.12 0.04 13.62 1.19 0.85 Bal. 

The as-received plate was cut into small samples with sizes of 12 mm × 12 mm × 2.5 mm. Then, 
the samples were solution-treated at 1050 °C for 30 min and water quenched to obtain a uniform 
dispersion of the elements. After the solution treatment, the samples were aged at 600 °C to 900 °C 
for 10 to 300 min, respectively. All the heat treatments were performed in a pure nitrogen 
atmosphere, and the detailed procedures are shown in Figure 2. Then, the samples were sealed in a 
mixture of epoxy and polyamide resins, grounded with SiC papers from 180 to 2000 grit, polished 
with the diamond paste of 2.5 μm, cleaned with ethanol, and dried in compressed air, successively. 
Before the electrochemical tests, the polished samples were covered by 3M tape (3MTM 1600 Vinyl 
Electrical Tape, 3M, Saint Paul, MN, USA), leaving an exposed surface of 1 cm2. 
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In this paper, the solution-treated Cr–Mn–Ni–N–Cu austenitic stainless steel samples were aged
at various temperatures (600 ◦C to 900 ◦C) for different times. The microstructure evolution and
IGC susceptibility were studied by morphology characterization, a double-loop electrochemical
potentiokinetic reactivation (DL-EPR) test and oxalic acid etching. The IGC behavior and mechanism
of the Cr–Mn–Ni–N–Cu austenitic stainless steel after various heat treatments are clarified.

2. Materials and Methods

2.1. Materials and Heat Treatments

The Cr–Mn–Ni–N–Cu metastable austenitic stainless steel studied in the present paper were
provided by Baosteel Co., Ltd. (Shanghai, China) with a chemical composition shown in Table 1.

Table 1. The chemical composition (wt %) of Cr–Mn–Ni–N–Cu austenitic stainless steel.

Element C N S Si Mn P Cr Ni Cu Fe

wt % 0.08 0.15 0.002 0.30 10.12 0.04 13.62 1.19 0.85 Bal.

The as-received plate was cut into small samples with sizes of 12 mm × 12 mm × 2.5 mm. Then,
the samples were solution-treated at 1050 ◦C for 30 min and water quenched to obtain a uniform
dispersion of the elements. After the solution treatment, the samples were aged at 600 ◦C to 900 ◦C for
10 to 300 min, respectively. All the heat treatments were performed in a pure nitrogen atmosphere,
and the detailed procedures are shown in Figure 2. Then, the samples were sealed in a mixture of
epoxy and polyamide resins, grounded with SiC papers from 180 to 2000 grit, polished with the
diamond paste of 2.5 µm, cleaned with ethanol, and dried in compressed air, successively. Before the
electrochemical tests, the polished samples were covered by 3M tape (3MTM 1600 Vinyl Electrical Tape,
3M, Saint Paul, MN, USA), leaving an exposed surface of 1 cm2.
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2.2. Electrochemical Tests

The double-loop electrochemical potentiokinetic reactivation (DL-EPR) test, which comprises the
cathodic polarization, monitoring of open circuit potential and the cyclic potentiodynamic polarization
processes, is a fast electrochemical method for evaluating the intergranular corrosion susceptibility
of stainless steels. The peak activation current density during the anodic scan (ia) stands for the
dissolution of the whole sample surface, and the peak activation current density during the reverse scan
(ir) represents the dissolution of weak areas like the chromium-depleted areas at the grain boundaries.
Ra = ir/ia × 100% was defined to evaluate the degree of IGC susceptibility of stainless steel, and a higher
Ra value suggests the higher IGC susceptibility [31–34].
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In the present work, the DL-EPR test is conducted in a solution of 0.1 M H2SO4 and 0.002 M KSCN
at 30 ◦C using a potentiostat of CHI660e with a three-electrode cell. The treated Cr–Mn–Ni–N–Cu
stainless steel sample was used as the working electrode, and a saturated calomel electrode and
a platinum electrode were used as the reference electrode and the counter electrode, respectively. First,
the working electrode was cathodically polarized at −0.7 VSCE for 120 s to improve the reproducibility
of the tests. Then, the open circuit potential was monitored for 600 s, after that the working electrode
was polarized from −0.6 VSCE to 0.3 VSCE and back to −0.6 VSCE at a scan rate of 0.1 V/min. The DL-EPR
tests were repeated at least two times for each sample to ensure the data accuracy. In addition,
the heat-treated samples were also etched in the 10% oxalic acid solution at 1 A/cm2 for 90 s [35–37],
and the sample surfaces after etching were classified as step, dual and ditch structures according to
ASTM A262-15 practice A [38].

2.3. Characterizations

After the DL-EPR test and the oxalic acid etching, the sample surface was cleaned with ethanol and
dried in compressed air. In order to observe the precipitates, the sample aged at 700 ◦C for 300 min was
etched in the mixture of concentrated HCl/HNO3 (3:1 volume fraction) for 30 s at room temperature.
The surface morphologies of the samples were observed by the optical microscope (CAIKON 4XCE,
CAIKON, Shanghai, China) and the scanning electron microscope (Philips, XL-30FEG, Eindhoven,
The Netherlands).

3. Results and Discussion

3.1. IGC Susceptibility of Cr–Mn–Ni–N–Cu Metastable Austenitic Stainless Steel in the DL-EPR Test

Figure 3 shows the cyclic potentiodynamic polarization curves of the Cr–Mn–Ni–N–Cu austenitic
stainless steel after different heat treatments in a solution of 0.1 M H2SO4 and 0.002 M KSCN. It is
worth noting that Figure 3 only displays the current densities for potentials ranged from −0.6 VSCE

to 0.2 VSCE to better distinguish the current density peaks; although the DL-EPR test was conducted
from −0.6 VSCE to 0.3 VSCE and back to −0.6 VSCE. The polarization curves of samples aged at
temperatures from 600 ◦C to 900 ◦C were displayed in Figure 3a–g, respectively. For all the aging
temperatures, the anodic polarization curves present similar shapes. First, the current density increased
gradually with the scanning potential, and a peak current density (ia) of around 15 mA/cm2 was
present near −0.2 VSCE during the anodic scan, indicating the active dissolution of the whole alloy
surface [39]. The current density decreased sharply to around 0 A/cm2 with the further increased
potential, representing the growth of passive film on the sample surface. The anodic scan continued
to 0.3 VSCE to let the passive film grow. Then, the potential was scanned back from 0.3 VSCE in the
cathodic direction. The current density peak in the reverse scan was only present for samples treated at
650 ◦C, 700 ◦C, 750 ◦C and 800 ◦C, and the current density peak expanded as the aging time increased
from 10 min to 300 min for samples treated at the same temperature (except 800 ◦C). The current
density peak in the reverse scan can be associated with the dissolution of weak areas on the sensitized
sample surface like the chromium-depleted zones at grain boundaries [31,40]. The absence of a current
density peak in the reverse scan suggests that the samples treated at 600 ◦C, 850 ◦C and 900 ◦C are
immune to intergranular corrosion.
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Figure 3. Double-loop electrochemical potentiokinetic reactivation (DL-EPR) test curves in a solution
of 0.1 M H2SO4 and 0.002 M KSCN for the Cr–Mn–Ni–N–Cu austenitic stainless steel samples aged
at different temperatures for various times: (a) 600 ◦C; (b) 650 ◦C; (c) 700 ◦C; (d) 750 ◦C; (e) 800 ◦C;
(f) 850 ◦C; (g) 900 ◦C.
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In order to quantitatively evaluate the IGC sensibility of the Cr–Mn–Ni–N–Cu austenitic stainless
steel samples, the Ra values were calculated by ir/ia × 100% based on the polarization curves. The Ra

values were summarized in Table 2 as average values ± standard deviations derived from repeated
tests. Although a higher Ra value suggests higher IGC sensibility, it is known that the inner-grain
dissolution can also contribute to the current density peak in the reverse scan, leading to higher Ra

values in the DL-EPR test [35,39]. It is necessary to evaluate the surface morphology of samples
after the DL-EPR test to verify the reliability of Ra values and clarify the Ra value range that can
represent different degrees of intergranular corrosion. Figure 4 shows the optical micrographs of
the aged Cr–Mn–Ni–N–Cu stainless steel samples after the DL-EPR test. Despite the polishing lines,
no corrosion could be observed inside the grains, suggesting that all the current density peaks in the
reverse scan originated from the dissolution of grain boundaries. The derived Ra values can represent
the IGC susceptibility of the aged Cr–Mn–Ni–N–Cu stainless steel samples. The change of corroded
grain boundaries effectively matches with the trend of the derived Ra values.

Table 2. Ra values (%) of the Cr–Mn–Ni–N–Cu austenitic stainless steel samples under different heat
treatment conditions after the DL-EPR test.

Temperature
(◦C)

Ra value (%)

10 min 30 min 60 min 120 min 300 min

900 0.70 ± 0.11 0.61 ± 0.14 0.80 ± 0.24 0.85 ± 0.17 0.75 ± 0.14
850 0.70 ± 0.01 0.76 ± 0.07 0.56 ± 0.10 0.33 ± 0.14 0.61 ± 0.12
800 0.47 ± 0.05 0.75 ± 0.17 3.55 ± 0.63 0.39 ± 0.08 1.90 ± 0.82
750 6.48 ± 0.05 19.87 ± 0.94 19.36 ± 0.11 31.30 ± 2.14 34.89 ± 1.64
700 5.97 ± 0.32 14.98 ± 0.95 20.00 ± 1.10 33.12 ± 2.37 39.97 ± 0.10
650 0.39 ± 0.13 1.68 ± 0.05 8.74 ± 0.27 19.48 ± 0.02 25.40 ± 0.47
600 0.42 ± 0.11 0.22 ± 0.05 0.22 ± 0.05 0.13 ± 0.04 1.73 ± 0.19Materials 2019, 12, x FOR PEER REVIEW  7 of 15 
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Figure 4. Optical micrographs of the Cr–Mn–Ni–N–Cu austenitic stainless steel samples aged under
different heat treatment conditions after the DL-EPR test.

From Table 2 and Figure 4, it could be found that the Ra values were all less than 2% and no IGC
was observed in the optical images for samples aged at 600 ◦C, 850 ◦C and 900 ◦C, suggesting good
IGC resistance of these samples. For samples aged at 650 ◦C, 700 ◦C and 750 ◦C, the Ra values of
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samples aged at the same temperature all increased with the prolonged aging time, accompanied by
the gradually expanded ditches of corroded grain boundaries. When Ra reached the biggest value of
39.97% for the sample aged at 700 ◦C for 300 min, the most serious IGC morphology was observed on
the sample surface, representing the highest susceptibility of IGC.

For the samples aged at 800 ◦C, the average Ra value increased to 3.55% as the aging time increased to
60 min and decreased with the extended aging time. This may suggest the repair of the chromium-depleted
area near the grain boundary after 60 min. It is worth noting that the Ra values of samples aged for 10
and 30 min both increased with the increase of aging temperature from 600 ◦C to 750 ◦C, and then
decreased with the further increase of aging temperature to 900 ◦C, resulting in the highest Ra values
present at 750 ◦C. For samples aged for 60, 120 and 300 min, the highest Ra values were present at
700 ◦C rather than 750 ◦C. This agrees well with the thermodynamic calculation shown in Figure 1
that more chromium-rich phases can precipitate at 700 ◦C compared to 750 ◦C. However, it requires
a longer time for the Cr, C, and N atoms to reach the grain boundary at a lower temperature [29,41].

In order to clarify the evolution of intergranular corrosion with various heat treatments for the
Cr–Mn–Ni–N–Cu austenitic stainless steel, the amplified morphologies of grain boundaries were
characterized. Figure 5 shows the corroded grain boundaries after the DL-EPR test of samples aged
at 750 ◦C for various times. As can be seen from Figure 5, discrete etch pits were observed at grain
boundaries for samples aged at 750 ◦C for 10 and 30 min. It is worth noting that the etch pits display
consistent crystallographic orientations along each grain boundary. As the aging time increased,
the crystallographic etch pits grew up to continuous ditches.Materials 2019, 12, x FOR PEER REVIEW  8 of 15 
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Figure 5. The SEM figures of Cr–Mn–Ni–N–Cu austenitic stainless steel samples treated at 750 ◦C for
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Figure 6 presents the surface morphology of samples aged for 300 min at various temperatures
after the DL-EPR test. The most serious IGC was observed for the sample aged at 700 ◦C for 300 min.
No IGC occurred for the sample aged at 800 ◦C for 300 min. For the sample aged at 600 ◦C for 300 min,
discrete corrosion sites with specific crystallographic orientations were also present. In order to clarify
whether the crystallographic corrosion is determined by the shape of precipitates or alloy matrix,
the sample aged at 700 ◦C for 300 min was immersed in the mixture of concentrated HCl/HNO3 (3:1
in volume fraction) for 30 s to etch the austenite phase matrix and expose the precipitates. From
Figure 7, it can be seen that precipitates without a specific shape were nucleated and grew at the grain
boundary. The crystallographic corrosion sites should be associated with the austenitic matrix near the
grain boundary. A schematic diagram for the initiation and growth of precipitates and intergranular
corrosion by heat treatment is shown in Figure 8 for the aged Cr–Mn–Ni–N–Cu austenitic stainless steel
sample. The chromium-deficient zones near the grain boundary made the corrosion attack nucleate
at the grain boundary for a shorter aging time, while the growth of these corrosion sites with the
extended aging time was controlled by the crystallographic orientation. This crystallographic corrosion
behavior is also common in the anodic polarization of metals and alloys, such as aluminum foil [42]
and β-tin [43].
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Figure 8. A schematic diagram for the initiation and growth of precipitates and intergranular corrosion
with the extended aging time for the aged Cr–Mn–Ni–N–Cu austenitic stainless steel sample: (a) The
growth of precipitates; (b) the growth of crystallographic intergranular corrosion.

3.2. IGC Susceptibility of Cr–Mn–Ni–N–Cu Metastable Austenitic Stainless Steel in Oxalic Acid Etching

The optical micrographs of Cr–Mn–Ni–N–Cu stainless steel samples aged under different
heat-treatment conditions after 10% oxalic acid etch are given in Figure 9. Coincident with the
DL-EPR results, only step structures were observed for samples aged at 600 ◦C and 900 ◦C, indicating
that these samples are immune to the precipitation of chromium-rich compounds and intergranular
corrosion. For samples aged at 650 ◦C to 850 ◦C, only step or dual structures were present for short
aging times, while ditch structures were observed for extended aging times. The IGC degree increased
with the extension of aging time for samples treated at the same temperature. The most sensitive
aging temperature was around 700 ◦C and 750 ◦C, which induced the most serious corrosion of grain
boundaries for samples treated for the same length of time. However, it is worth noting that the
observed intergranular corrosion was much more severe after oxalic acid etching compared to after
the DL-EPR test for samples aged at 800 ◦C and 850 ◦C. This may be associated with the fact that the
chromium-rich carbides and nitrides were dissolved with the chromium-depleted zone in the 10%
oxalic acid etch, while only the chromium-depleted zone was etched in the reverse polarization of
DL-EPR test [44]. At a higher aging temperature such as 800 ◦C and 850 ◦C. Although the chromium
carbides or Cr2N can precipitate at the grain boundary and consume the nearby Cr atoms, the deficient



Materials 2019, 12, 1385 10 of 14

Cr atoms could be easily replenished by the Cr atoms diffused from the inner-grain to the grain
boundary [44].
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Figure 9. Optical micrographs of the Cr–Mn–Ni–N–Cu austenitic stainless steel samples aged under
different heat treatment conditions after the 10% oxalic acid etch.

3.3. The Time-Temperature-Sensitization (TTS) Diagram for Cr–Mn–Ni–N–Cu Metastable Austenitic
Stainless Steel

Considering both the Ra values in Table 2 and the corroded surface morphologies in Figure 4, it is
obvious that Ra values less than 2% suggest no IGC sensibility, and only steps between grains (step
structure) are present on the sample surface after the DL-EPR test. For the aged samples with a Ra

value ranged between 2% and 15%, some ditches are observed at grain boundaries, but no single grain
is completely surrounded by ditches (dual structure). For the aged samples with an Ra value larger
than 19%, more than one grain was completely surrounded by ditches (ditch structure). In Figure 10,
the results of the DL-EPR test and oxalic acid etch are marked as red inverted triangles and black
circles, respectively. The hollow, half empty and solid markers are corresponding to the step, dual and
ditch structures, respectively. Two time-temperature-sensitization (TTS) diagrams were drawn based
on the results of the DL-EPR test and oxalic acid etch. An evident small C curve was derived from the
DL-EPR test. The samples aged at 650◦C to 750 ◦C have a high tendency to intergranular corrosion,
and the nose temperatures of the two C curves were about 700 ◦C to 750 ◦C.
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Figure 10. Time-temperature-sensitization (TTS) curves of the Cr–Mn–Ni–N–Cu austenitic stainless
steel based on the 10% oxalic acid etch and the DL-EPR test. The red inverted triangles and black circles
represent the results of DL-EPR test and oxalic acid etch, respectively.

4. Conclusions

In this paper, the IGC of the Cr–Mn–Ni–N–Cu austenitic stainless steel aged at 600 ◦C to 900 ◦C
for 10 to 300 min was investigated using DL-EPR test and oxalic acid etch. The main conclusions are
listed as follows:

(1) The results of DL-EPR test and oxalic acid etch for the aged Cr–Mn–Ni–N–Cu austenitic stainless
steel indicated that IGC would occur for samples aged at about 650 ◦C to 750 ◦C, and the IGC
susceptibility became more severe as the aging time increased. For samples aged at 800 ◦C,
the IGC susceptibility increased first and then decreased with the increased aging time, suggesting
the quick repair of chromium-depleted zones after longer aging at 800 ◦C.

(2) The nose sensitization-temperature of the Cr–Mn–Ni–N–Cu austenitic stainless steel was about
700◦C to 750 ◦C, suggesting that the IGC could occur in a short time at about 700 ◦C to 750 ◦C.

(3) The precipitates stood as nucleation sites for the intergranular corrosion attack of the
Cr–Mn–Ni–N–Cu austenitic stainless steel. However, the growth of these corrosion sites with the
extended aging time obeyed consistent crystallographic orientation along the grain boundary.
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