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Abstract: A 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) acrylate, (6-oxidodibenzo
[c,e][1,2] oxaphosphinin-6-yl) methyl acrylate (DOPOAA), has been prepared. Copolymers of styrene
(St) and DOPOAA were prepared by emulsion polymerization. The chemical structures of copolymers
containing levels of DOPOAA were verified using Fourier transform infrared (FT-IR) spectroscopy and
1H nuclear magnetic resonance (1H-NMR) spectroscopy. The thermal properties and flame-retardant
behaviors of DOPO-containing monomers and copolymers were observed using thermogravimetric
analysis and micro calorimetry tests. From thermogravimetric analysis (TGA), it was found out that
the T5% for decomposition of the copolymer was lower than that of polystyrene (PS), but the residue
at 700 ◦C was higher than that of PS. The results from micro calorimetry (MCC) tests indicated that the
rate for the heat release of the copolymer combustion was lower than that for PS. The limiting oxygen
index (LOI) for combustion of the copolymer rose with increasing levels of DOPOAA. These data
indicate that copolymerization of the phosphorus-containing flame-retardant monomer, DOPOAA,
into a PS segment can effectively improve the thermal stability and flame retardancy of the copolymer.
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1. Introduction

Polystyrene (PS) is a very crucial thermoplastic and is widely used in many applications [1,2], such
as automotive, housing, computer, packaging, and injection molding [3–5] due to its great mechanical
properties and chemical stability. However, PS is flammable and it burns with the evolution of a large
amount of smoke. Therefore, there has been a lot of effort to alter its unsatisfactory fire performance
and promote its fire retardancy [6].

In the past, halogenated compounds were added into polymers as flame retardants. Although
halogenated compounds are effective and commonly inexpensive, their use is coming under increasing
regulatory pressure. At high temperatures, these materials were converted to volatile toxic dioxins [7].
Moreover, and more importantly, when items containing organic halogen flame retardants are discorded
in a landfill the additives leach into the environment. As a result, human exposure to these additives
and the resulting risk of disease are greatly increased [8,9]. Compounds containing nitrogen [10,11],
phosphorus [12–14], and boron [15], which are more environmentally friendly as flame retardants, are
being used. Phosphorus-containing flame retardants have received the most attention [16,17].

In 1972, DOPO was synthesized in a series of reactions. Since then, DOPO has been widely used
in the field of polymer flame retardants. It may be easily modified, due to the P-H bond, to generate a
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series of derivatives that may be used to improve polymer thermal stability and fire behavior [18,19].
In addition, DOPO derivatives have been modified to contain different flame retardancy elements,
such as P-N [20–22], P-Si [23–25], and P-N-S [26,27].

For PS, the frequently used means to ameliorate the flame retardancy is to add flame retardants.
However, because of the poor compatibility with the polymer matrix and other disadvantages of DOPO
and its small molecule derivatives, the application as a flame retardant for PS has been limited [28–30].
Compared with small molecule phosphorus-containing additive flame retardants, flame retardants that
form an internal part structure show better stability and flame retardancy. Some phosphorus-containing
flame-retardant monomers containing a C=C bond have been copolymerized with styrene to generate
polymers with improved flame retardancy [31–33].

A DOPO acrylate, DOPOAA, has been synthesized as a flame-retardant monomer and
copolymerized with styrene to generate a copolymer with reduced flammability compared that
for PS. The thermal stability and flammability of the copolymer were improved by polymerization of
DOPOAA into the structure of PS. A flame-retardant effect of DOPOAA in both the condensed phase
and gas phase is suggested by results from TGA and micro-calorimetry.

2. Materials and Methods

The structure and properties of monomers and copolymers were established using
1H nuclear magnetic resonance (1H-NMR), Fourier transform infrared (FT-IR) spectroscopy,
thermogravimetric analysis (TGA, New Castle, DE, USA), micro calorimetry (MCC, East
Grinstead, West Sussex, UK) analysis, and the limiting oxygen index (LOI) test. 1H-NMR
spectra were recording using a Bruker AV600 NMR spectrometer (Madison, WI, USA).
6-(hydroxymethyl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide (ODOPM) was dissolved in dimethyl
sulfoxide-d6, (6-oxidodibenzo [c,e][1,2] oxaphosphinin-6-yl) methyl acrylate (DOPOAA) was dissolved
in deuterated chloroform, and the internal reference for 1H-NMR spectra was tetramethylsilane. FT-IR
spectra were obtained using a Perkin Elmer Spectrum Two FT-IR spectrometer (Waltham, MA, USA)
over the wavenumber range of 500 to 4000 cm−1. The sample and potassium bromide were mixed
around and pressed to sheets for testing. Molecular weight Mn and Mw were measured using a Wyatt
GPC/SEC-MALS gel permeation chromatography (Santa Barbara, CA, USA). The glass transition
temperature (Tg) was tested using a NETZSCH DSC (Selb, Germany) 204 F1 differential scanning
calorimetry at a heating rate of 10 ◦C·min−1. Heat flow versus temperature scans from the second
heating runs was plotted, and the glass transition temperatures (Tg) were read at the mid-point of the
inflexion curve resulting from the typical second heating. Thermal stability was determined using
a TA Instruments Q5000 SA thermogravimetric analyzer, scans from room temperature to 700 ◦C at
a heating rate of 10 ◦C/min under a nitrogen atmosphere. MCC was conducted using a FAA-PCFC
micro calorimeter (East Grinstead, West Sussex, UK). Samples (5 mg) were heated up to 700 ◦C from
the room temperature at the heating rate of 1 ◦C/s. The combustion furnace temperature averaged up
to 900 ◦C and oxygen flow rate was 20 mL/min. LOI test values were obtained using a JF-3 oxygen
index meter (Chengde, China) following the standard GB/T2406.2-2009. The size of the sample was
70 × 6.5 × 3.2 mm3.

The synthesis of ODOPM is shown in Scheme 1 [34,35]. 9,10-dihydro-9-oxa-10-phosphaphenanthrene
10-oxide (DOPO) (63.85 g, 0.3 mol) and 200 mL of toluene were added into the three-necked 500-mL
glass flask equipped with a funnel, a condenser, a thermometer, and a magnetic stirrer, then heated
to 80 ◦C under stirring. After that, 26.7 g of paraformaldehyde was fed in the flask in three batches
over half an hour. The mixture was stirred for six hours at 95 ◦C [36]. The precipitate that formed was
collected by filtration, washed several times with toluene, and dried to reduce pressure to constant
weight. The yield of ODOPM was 91%.
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Scheme 1. Synthesis route of 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO)
acrylate-styrene copolymer.

The synthesis of DOPOAA is shown in Scheme 1 [37]. ODOPM (49.24 g, 0.2 mol), triethylamine
(22.26 g, 0.22 mol), and 200 mL of methylene chloride were added into a three-necked 500-mL glass
flask equipped with a thermometer, a magnetic stirrer, a condenser, and a funnel. The mixture was
cooled and kept at 20 ◦C under stirring, then acrylyl chloride (19.91 g, 0.22 mol) dissolved in 50 mL
of methylene chloride was added into the flask over 3.5 h. The mixture was first carried out for
2 h under 10 ◦C and then for another 6 h under room temperature. The precipitate was washed
several times till the organic phase became neutral, and the crude product was obtained after the
evaporation of dichloromethane. In the end, DOPOAA was purified from crude product by SiO2

column chromatography with ethyl acetate and petroleum ether as eluent, and the yield was 84%.
DOPOAA copolymer was synthesized as is shown in Scheme 1. Sodium dodecylbenzene sulfonate

(0.75 g) and deionized water (80 mL) were added into a three-necked glass flask equipped with a
thermometer, a magnetic stirrer, and a condenser, then stirred 30 min for emulsification at 70 ◦C.
Thereafter, potassium persulfate (0.8 g), DOPOAA, and styrene were added to the nitrogen-protected
flask. The reaction was carried out for 7 h and then kept in the air for 1 h before it was cooled to the
ambient temperature. The saturated sodium chloride aqueous solution was eventually dropped into
emulsion to adjust the pH so it became neutral and frozen for 24 h to obtain the flocculated precipitate.
The flocculated precipitate was centrifuged and dried in the vacuum to obtain white powder.

3. Results and Discussion

3.1. Characterization of DOPOAA and DOPOAA-Styrene Copolymer

The structures of ODOPM, DOPOAA, and DOPO acrylate-styrene copolymer were confirmed
by the help of FT-IR and 1H-NMR spectra. Figure 1 shows the FT-IR spectra of DOPO, ODOPM,
and DOPOAA; the peaks at 1211 cm−1, 970 cm−1, 2894 cm−1, and 763 cm−1 belonged to P=O, P-Ph,
C-H, and C=C-H respectively. Compared to the FT-IR spectra of DOPO, the intermediate, ODOPM,
exhibited a brand new peak of -OH at 3218 cm−1. Additionally, the other groups’ peak positions
coincided with the DOPO characteristic peaks. Thus, ODOPM was synthesized by the reaction through
the change of functional group structure at the first step of the reaction.
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Figure 1. Fourier transform infrared (FT-IR) spectrum of DOPO, ODOPM and (6-oxidodibenzo [c,e][1,2]
oxaphosphinin-6-yl) methyl acrylate (DOPOAA).

In the spectrum of DOPOAA, the -OH peak at 3218 cm−1 appeared in ODOPM spectrum and
disappeared due to the reaction occurred. Besides, the peaks belonging to C=C and C=O were shown
at 1961 cm−1 and 1742 cm−1. It is indicated the hydroxyl group of ODOPM reacted with acryloyl
chloride to form a new ester group.

Styrene and DOPOAA were copolymerized at different ratios to obtain a copolymer containing
DOPO group, as shown in Table 1. In Figure 2, peak 3026 cm−1 belongs to the benzene ring, and
2924 cm−1 is the peak of -CH2. In Figure 2, compared PS-10 and PS-20 with PS, wherein the copolymer
of C=O peak appears at 1734 cm−1, the peaks located in 1311 cm−1, 1181 cm−1 and 1028 cm−1 are
attributed to P=O, C-O-C and P-O-C respectively. The peak of the flame-retardant group becomes
more pronounced as the DOPOAA content increases.
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Table 1. The formulation of copolymers.

Sample St (g) DOPOAA
(g)

DOPO
Content

(%)

DOPOAA in
Copolymer (%) Yield (%) Mn (×104) Mw (×104)

PS 5 0 0 0 87.6 3.23 5.69
PS-10 3.79 1.21 10 3.34 69 6.16 16.26
PS-20 2.91 2.01 20 5.97 66.3 6.81 20.97

Figure 3 is the 1H-NMR spectra of DOPOAA. In Figure 3, the peak at 7.30 belongs to CDCl3; the
peaks at 7.22–8.09 are assigned to hydrogen atom in the special structure of the phenanthrene ring (Ha);
the peaks at 4.72–4.82 are assigned to the -CH2 of DOPOAA (Hb); the peaks at 5.80–5.75 are assigned to
the -CH (Hc); and the peaks at 6.01, 6.03, and 5.65–5.69 are assigned to the -CH2 of the propylene, due
to the chemical environmental asymmetry of the double bond. The above results confirmed DOPOAA
has been successfully prepared by two-step organic modification of DOPO.
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Figure 4 is the 1H-NMR spectra of the copolymer. In the copolymer, the peaks at 3.70 correspond
to the -O-CH2-P- unit. Between 7.10 and 6.37, the aromatic protons appear. Signals of the main chain
protons appear at 2.21–1.22 ppm. The compositions of the copolymers were calculated from the
relative areas of the methylene and main chain protons resonance, using the following formula, where
B-CH2- and B0 were the relative resonance areas attributed to methylene and main chain protons. The
DOPOAA content in the copolymer is shown in Table 1. It can be seen that as the DOPOAA content
increases in the feed, the DOPOAA content in the copolymer also increases. At the same time, the
content of DOPOAA in the copolymer is lower than that of the feed, which may be due to the large
steric hindrance of the side chain. Data from gel chromatography showed that with the introduction of
DOPOAA, the molecular weight of the copolymer increased.

The DSC curves of copolymer are shown in Figure 5. The results showed that when the
content of DOPOAA in the copolymer increased, the Tg value of the copolymer decreased to 103 and
97 ◦C. This was because the introduction of DOPOAA made the copolymer obtain higher molecular
flexibility [31,32], and DOPOAA had a significant effect on plasticizing the PS matrix.
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3.2. Thermal Properties

TGA was used to investigate the degradation process and the thermal stability of DOPOAA and
DOPO acrylate-styrene copolymer. The TGA curves of DOPOAA and its copolymers are displayed
in Figure 6, and the test data, such as the temperature at 5% (T5%), the maximum degradation rate
(Rmax), the temperature at the maximum degradation rate (Tmax), and the residue at 700 ◦C, are listed
in Table 2.

Figure 6a,b are the TGA curves of DOPOAA and copolymers in nitrogen atmosphere from ambient
temperature to 700 ◦C. Two decomposition stages of DOPOAA can been seen from the curves: the first
stage is between 269 and 340 ◦C, and the second stage being between 347 ◦C and 451 ◦C. However, in
the process of neat PS degradation, the sample began to lose weight at 365 ◦C and stopped decomposing
at 450 ◦C, the Rmax was −2.75%/◦C when the temperature was 414 ◦C, and there was nearly no residue
(0.21%).
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Table 2. Thermogravimetric analysis (TGA) data of DOPO and copolymer in nitrogen atmosphere.

Sample T5% (◦C) Tmax1
(◦C)

Tmax2
(◦C)

Rmax1
(%/◦C)

Rmax2
(%/◦C)

Residue at
700 ◦C (%)

PS 365 414 - −2.75 - 0.21
DOPOAA 269 307 414 −1.37 −0.52 5.62

PS-10 138 412 - −1.87 - 0.89
PS-20 162 413 - −1.49 - 0.91

At the same time, when the loading amount of DOPOAA increased, the residue at 700 ◦C of PS-10
and PS-20 raise to 0.89% and 0.91%. Compared with PS, the Tmax of the copolymer hardly changed, but
the Rmax was reduced to −1.87 and −1.49%/◦C, reducing 32% and 45.82%, respectively. The decrease of
Rmax indicates that a more compact char layer formed during the thermal degradation, and it could
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provide good insulation to the unburning part from the heat [21]. The change of residue at 700 ◦C and
Rmax indicated that the introduction of DOPOAA improved the thermal stability of the copolymer.
In Figure 4, it can be found that the T5% of PS-10 and PS-20 are lower than that of PS. This may be
because the DOPO groups in copolymer catalyzed the polymer to dehydrate, and leads to more weight
loss [38,39]. However, the residue at 700 ◦C of copolymer is higher, which indicated that copolymer
has better thermal stability. Therefore, it can be considered that DOPOAA can effectively improve the
thermal stability of copolymer.

3.3. Flame-Retardant Behaviors

MCC measurement and LOI test were used to evaluate flammability. The heat release rate (HRR)
curves of PS and DOPO acrylate-styrene copolymer are shown in Figure 7, and the detailed data of
MCC and LOI are listed in Table 3.
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Table 3. Micro calorimetry (MCC) and limiting oxygen index (LOI) test data of PS and DOPO
acrylate-styrene copolymer.

Sample PHRR (W·g−1) Temperature (◦C) LOI (%)

PS 972 432.1 18.1
PS-10 558 427.2 21.9
PS-20 354 435.1 26.3

Figure 6 shows the HRR curves of PS and DOPO acrylate-styrene copolymer. As is shown in
Table 3, the PHRR value of DOPO acrylate-styrene copolymer was much lower than that of the pure
PS. Meanwhile, the higher DOPOAA content was, the lower PHRR value was. The PHRR value of the
neat PS was 972 W·g−1, and the PHRR value of PS-20 was 354 W·g−1, which indicates that the addition
of DOPOAA was conducive to improve the fire behavior of the copolymer samples. In LOI tests, the
LOI value of the neat PS was only 18.1%, but the value of PS-20 rose to 24.3% at last, and DOPOAA
content increased.

The phosphorus-containing groups in copolymer were thermally decomposed to form PO,
phosphorus-containing radical [34,40]. The PO radical entering the gas phase can eliminate the radicals
generated in combustion, thus inhibiting the further decomposition of the copolymer. These MCC and



Materials 2020, 13, 127 9 of 11

LOI data clearly demonstrate that the copolymerization of DOPOAA and styrene could improve the
flame resistance of the PS.

4. Conclusions

1. A phosphorous-containing flame-retardant monomer, DOPOAA, was synthesized successfully.
Then, its structure was characterized by FT-IR and 1H-NMR, and a series of the copolymers of St
and DOPOAA were prepared at different ratios;

2. TGA data showed that the residues at 700 ◦C rose with the increase of DOPOAA content,
compared with the pure PS. In the MCC test, with the increase of DOPOAA, the PHRR value
of copolymers was evidently reduced compared to pure PS, and the LOI value of copolymers
increased. Judging, from the results of TG, MCC, and LOI tests, it is possible that the addition
of DOPOAA could ameliorate the thermal stability and flame-retardant properties of PS. In
conclusion, it is a tangible method to incorporate the flame retardancy monomer into the PS chain
to prepare flame-retardant PS.
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