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Abstract: Due to its biocompatibility and advantageous electrochemical properties, platinum
is commonly used in the design of biomedical devices, e.g., surgical instruments, as well as
electro-medical or orthopedic implants. This article verifies the hypothesis that a thin layer of
sputter-coated platinum may possess antibacterial effects. The purpose of this research was to
investigate the adhesion and growth ability of a model strain of Gram-negative bacteria, Escherichia
coli, on a surface of a platinum-coated glass slide. Although some previous literature reports suggests
that a thin layer of platinum would inhibit the formation of bacterial biofilm, the results of this study
suggest otherwise. The decrease in the number of bacterial cells attached to the platinum-coated
glass, which was observed within first three hours of culturing, was found to be a short-time effect,
vanishing after 24 h. Consequently, it was shown that a thin layer of sputter-coated platinum did
not exhibit any antibacterial effect. For this reason, this study indicates an urgent need for the
development of new methods of surface modification that could reduce bacterial surface colonization
of platinum-based biomedical devices.

Keywords: antimicrobial properties; bacterial attachment; bacterial growth; Escherichia coli; glass;
platinum; sputter-coating

1. Introduction

The antimicrobial properties of metals have been known for centuries [1]. Noble metal ions,
particularly, have been indicated as potential antibacterial agents. For instance, Vaidya et al. [2] tested
various solutions of metal ions (silver, copper, platinum, gold and palladium) for their antimicrobial
properties against Enterococcus faecium, Acinetobacter baumannii and Klebsiella pneumoniae, confirming
the superiority of platinum, gold and palladium over non-noble metal ions. Apart from antibacterial
activity, noble metals, especially platinum, offer high strength and stability in different conditions, as
well as biocompatibility. Furthermore, high electrical conductivity of platinum is an excellent property
qualifying this metal for the design of pacemakers, hearing aids and neurological implants [3–5].

Antimicrobial effects may be also achieved by the use of metal nanoparticles. Consequently,
nanoparticles of gold, silver, zinc, silica or platinum have been successfully used in the design of
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biomedical devices [6,7], as bactericidal [8–11] or antibiofouling agents [12,13]. For instance, Gopal
et al. [14] studied the behavior of bacteria exposed to platinum nanoparticles with various sizes,
showing the toxicity of small nanoparticles (1–3 nm) and bacterial tolerance of larger nanoparticles
(4–21 nm). Small nanoparticles with a spherical morphology were supposed to pass through the
pores of the bacterial membrane. In contrast, larger ones, possessing cuboid or flower shapes,
were not able to penetrate the membrane. In other studies, Huang et al. [15] indicated a different
mechanism of antibacterial action of silver nanoparticles coated with catechol-conjugated chitosan
against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. In the case
of Staphylococcus aureus, nanoparticles induced damage to the cell wall and leakage of cytoplasmic
proteins. In the case of Escherichia coli, nanoparticles were found to adsorb onto the surface of bacterial
cells, leading to the change in permeability of a cell membrane, allowing the passage of silver ions into
the cytoplasm and thus causing the damage to the bacterial cell. In the work of Kummala et al. [16],
silver and titanium dioxide nanoparticles were deposited onto a glass surface by a liquid flame spray
technique. This method allowed to distribute nanoparticles uniformly over the entire surface, with a
layer thickness controlled through sputtering time. As-formed coatings exhibited antibacterial activity
against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, and were
able to effectively reduce their growth.

Demonstration of antibacterial properties of noble metal ions, as well as their nanoparticles,
suggested the desirability of investigating whether noble metals as coatings in a form of ultrathin
layers would also exhibit antibacterial activity. Such a thin layer of metal (for example platinum) could
be obtained by the use of sputtering techniques. Metal sputtering methods have been increasingly
investigated as processes allowing to form a variety of unique materials. For instance, thin layers
of copper and silver were sputtered alternately on glass and plastic surfaces, and their antibacterial
activity was confirmed against Staphylococcus epidermidis and Staphylococcus aureus strains [17]. Similarly,
Wang et al. [18] used radio frequency magnetron sputtering to deposit nanostructured silver films on the
surface of polypropylene nonwovens. The antibacterial properties of as-formed layers were assessed
against Staphylococcus aureus and Escherichia coli, demonstrating the enhancement of antibacterial effects
with the thickness of silver layer. Furthermore, Musil [19] described flexible antibacterial coatings
fabricated through a reactive magnetron sputtering method. Cr–Cu–O, Al–Cu–N and Zr–Cu–N
coatings were given as examples, and their antibacterial properties were analyzed against Escherichia
coli. It was shown that sputter-coating allowed to produce thick, durable and flexible coatings effective
against model bacterial strain after just three hours of contact. Due to the fact that sputter-coating
can be used to modify any type of surface, coatings obtained in this way have numerous potential
industrial applications in a variety of fields, particularly in biomedical engineering.

In the light of previous research studies showing the antibacterial activity of surfaces modified
through sputter-coating, it could be expected that also sputter-coated platinum films should possess
similar biocidal characteristics. To verify whether a thin layer of platinum can serve as an efficient factor
inhibiting the adhesion and multiplication of bacteria, we compared the behavior of Escherichia coli
cultured on the surface of platinum-coated and noncoated (bare) glass slides. According to Gaynes et
al. [20], Escherichia coli was the most commonly reported Gram-negative pathogen in 2013. In addition,
Escherichia coli has been identified by Vihta et al. [21] as a major cause of bloodstream infection with a
critical antimicrobial resistance. As bacterial culture was conducted in a closed system, Escherichia
coli was expected to grow in a predictable way, giving a growth curve consisting of four different
phases: the initial phase (lag phase) referring to metabolically active bacteria that may increase in
cell mass, but not in the cell number; the logarithmic phase (log phase), in which a rapid exponential
growth of bacteria population is observed; the stationary phase, in which the population of bacteria
begins to decline as nutrients are consumed and inhibitory products are accumulated; and, finally,
a death phase, in which bacterial cells die due to the lack of nutrients, the excess of toxic substances
and also some harmful conditions [22–24]. Therefore, to extensively analyze the effect of surface
modification on the attachment and growth of Escherichia coli, the bacterial cells were characterized
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in terms of their dimensions and vitality after 3 h, 24 h and 48 h, corresponding to the initial phase,
logarithmic phase and death phase during the growth of bacteria. The biologic features were discussed
together with the physicochemical characteristics of platinum and glass (roughness and hydrophilicity),
revealing the relationship between the surface morphology of the materials and their interactions
with microorganisms.

2. Materials and Methods

2.1. Preparation and Surface Characterization of Bare and Pt-Coated Glass Slides

A glass support substrate (microscopic slide, Labglass, 75 mm × 25 mm × 1 mm) was used as the
reference material. To fabricate Pt-coated films, glass slides were sputter-coated with a thin layer of Pt
(4.8 nm) using a sputter-coater (automatic, rotary-pump coating system, Q150R Quorum Technologies,
Lewes, UK) working at 30 mA for 120 s. According to the specifications of the manufacturer,
the conditions of the sputter-coating process allowed to produce a continuous platinum film with
the grain size in the order of 2 nm. To compare both materials, their roughness was examined using
scanning electron microscopy (Phenom ProX, Thermo Fisher Scientific, Waltham, MA, USA) and the
3D Roughness Reconstruction software (Phenom ProSuits, Thermo Fisher Scientific, Waltham, MA,
USA). The wettability of materials was determined by contact angle measurements, by means of a
DataPhysics OCA15 goniometer (DataPhysics Instruments, Filderstadt, Germany) using deionized
water. In all measurements, three sample sites were analyzed on three different sample surfaces, giving
n = 9.

2.2. Culturing Bacteria and Examining Their Growth on Bare and Pt-Coated Glass Slides

The bacterial strain of Gram-negative Escherichia coli (DSM 30083, U5/41) was cultured in 23 g/L
agar broth (BTL, Warsaw, Poland) at 35 ◦C for 48 h in an incubator. After this time, the agar slants were
washed with physiological salt (0.85% water solution of NaCl; Acros Organics, Geel, Belgium). At such
prepared suspension of bacteria, the turbidity was established between 3 and 4 according to McFarland
scale, which corresponds to estimated bacteria number of 10.5·108 cells/mL. This suspension was used
for the inoculation of bare and Pt-coated glass slides.

The sterilization of bare and Pt-coated glass slides—necessary before starting biologic
examinations—was achieved through placing the substrates in 12-well plates and immersing them for
1 h in 70% ethanol (obtained by dilution of 99.8% ethanol, Acros Organics, Geel, Belgium). This method
of sterilization did not change the surface properties of the materials. After this, ethanol was removed,
and the samples were rinsed three times with distilled water. Next, they were left to dry.

Consecutively, 0.1 mL of bacterial saline suspension was applied on bare and Pt-coated glass
slides. Then, 2 mL of culture nutrient-poor growth medium, containing 10-g/L tryptone (BTL, Warsaw,
Poland), 5 g/L yeast extract (BTL, Warsaw, Poland) and 10 g/L physiological saline (Acros Organics,
Geel, Belgium) at pH = 7, was added. Culturing of bacteria was carried out for 2 days in an incubator
at 35 ◦C. Samples for analysis were taken after 3 h, 24 h and 48 h.

In order to obtain reliable results, the experiments were performed in triplicate for all materials
under the same conditions. The results were presented as mean values± standard deviation. A Student’s
t-test was performed to determine the statistical significance (p < 0.05).

2.3. Staining and Imaging Bacterial Cells Adhered to Glass Slides

The two-color fluorescence assay LIVE/DEAD®BacLight Bacterial Viability Kit (Life Technologies,
Thermo Fisher Scientific, Waltham, MA, USA) was used to stain bacteria; live bacterial cells were
labeled in green with SYTO9 stain, whereas dead bacterial cells were labeled in red with D-propidium
iodide. Confocal fluorescent microscope (Olympus FluoView FV1000, Tokyo, Japan) was used to
visualize bacteria on bare (noncoated) and Pt-coated glass slides, and then to analyze the number of live
and dead cells. Image analysis was accomplished using ImageJ software (NIH, Bethesda, MD, USA).
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Scanning electron microscopy was used to visualize and analyze the morphology of bacteria
grown on bare and Pt-coated glass surfaces. Before the samples could be visualized, the materials
underwent several stages of conditioning (dehydration). Consequently, the materials were fixed using
3% glutaraldehyde (Fisher BioReagents, Waltham, MA, USA) for 24 h and dehydrated by immersing
the samples in the solutions of ethanol (Acros Organics) with increasing concentrations (30%, 50%,
70%, 80%, 90%, 95%, 99.8%), and then dried in the dryer (24 h, 50 ◦C). Dehydrated samples were
sputter-coated with a gold layer for better image quality (20 min, 20 mA; Q150R Quorum Technologies,
Lewes, UK), and then their surface was examined by scanning electron microscopy (Phenom ProX,
Thermo Fisher Scientific, Waltham, MA, USA). Images were taken with an accelerating voltage of 15 kV
at the magnifications of 1000×, 5000× and higher. The average length and width of bacteria, as well
as their density (number of bacteria per 200 µm2) were calculated using the ImageJ software (NIH,
Bethesda, MD, USA).

3. Results and Discussion

3.1. Materials Characterization

This article concerns the investigations of antibacterial properties of a thin layer of platinum
sputter-coated on the surface of a glass slide in relation to a noncoated slide (bare glass). Sputter
coating allows for a full surface coverage, resulting in the formation of a thin coating with a distinct
metallic gloss. Imaging of the sputter-coated sample using SEM confirmed that platinum is present
on the surface of a glass slide and forms a homogeneous layer (Figure 1). Surface properties, such
as surface roughness, charge, wettability or surface energy, are among many material features that
can influence the phenomenon of bacterial adherence [25,26]. Literature data indicate that higher
roughness [27,28] and more hydrophobic nature of a surface [29–31] result in facilitated adhesion of
bacteria. However, these effects are observed particularly in the first stages of surface colonization by
bacterial cells, and they vanish as the biofilm becomes mature [28,32].
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Figure 1. Homogeneity of a sputter-coated layer of platinum. Optical image of a Pt-coated glass slide
and a SEM image as the inset.

The surface area roughness of bare and Pt-coated glass slides, expressed by the arithmetical mean
height (Sa), varied slightly, retaining values of 0.26 ± 0.01 µm for a bare glass slide and 0.21 ± 0.01 µm
for a Pt-coated glass slide, respectively. Even though the difference in Sa was slight, it was supposed to
affect the adhesion of bacteria. The greater roughness promotes the adhesion, as shown by Han et al. [27],
who analyzed the development of Streptococcus mutans, Streptococcus sanguinis and polymicrobial
(Microcosm) biofilms on modified surfaces of titanium. A significantly higher number of bacteria
of each strain was observed on the surface of titanium that was sandblasted with large grits and
acid-etched (Sa of 1.4 µm), than on the surface of pickled titanium disk (Sa of 0.3 µm). However,
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during biofilm maturation, the effect of surface roughness decreased. Therefore, based on the surface
roughness analysis, it was supposed that the attachment of bacteria to the surface of bare glass should
be slightly enhanced as compared with Pt-coated glass.

Another important surface feature that can significantly affect the process of bacterial adhesion
is surface hydrophilicity. It is accepted that bacteria with hydrophilic properties prefer hydrophilic
material surfaces, whereas the ones with hydrophobic characteristics prefer hydrophobic surfaces.
Consequently, a difference in the wettability between bare glass slides and Pt-coated slides was
investigated by determining the contact angle (θ) at room temperature (T ≈ 20 ◦C) using deionized
water. The results (Figure 2) showed that the surface of Pt-coated glass was evidently more hydrophilic
(θ = 35.2◦ ± 10.5◦) than a surface of bare glass (θ = 60.4◦ ± 7.5◦). According to the literature data [32–35],
the adhesion effect of various hydrophilic bacteria, including Escherichia coli, is usually enhanced on
hydrophilic surfaces, but at a different extent. Bacterial cells show a higher affinity to surfaces with
moderate wettability as compared with extremely hydrophobic or hydrophilic surfaces [34]. Thus,
it was expected that Escherichia coli should exhibit a higher affinity towards Pt-coated glass than to
bare one.

As the potential effects of surfaces roughness and hydrophilicity on the attachment of bacteria
were ambiguous—and a layer of platinum could lead to the decrease (basing on surface roughness
data) or to the increase (basing on its hydrophilic character) in bacterial adhesion—there was a need to
carry out biologic investigations on the behavior of a selected bacterial strain colonizing both types
of surfaces.
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3.2. Bacterial Colonization of Materials Surface

To assess the ability of bacteria to attach and grow on bare and Pt-coated glass slides, Escherichia
coli, as a common pathogen, was cultured on the surface of materials for 48 h. After specified time,
samples were investigated using SEM, and the micrographs were used to visualize the interactions
between bacteria and investigated surfaces (Figure 3A). Consecutive stages of bacterial growth were
monitored by assessing the bacterial cell density after 3 h, 24 h and 48 h of incubation. Accordingly,
the results obtained after 3 h of culturing were related to the initial phase of bacteria growth, in which
the bacteria tendency to attach to the surface could be investigated. As observed in Figure 3B,
the density of bacteria on bare glass (15.3 ± 1.6 cells/200 µm2) was slightly higher than on a Pt-coated
glass slide (12.9 ± 2.1 cells/200 µm2), what was consistent with the literature data [27,32], indicating
a better adhesion of bacteria to more rough surface, although obtained data don’t show statistically
significant differences. These results may also suggest that the effect of roughness dominates over the
effect of hydrophilicity, making the surface of a Pt-coated glass slide less prone to bacterial attachment.

Comparing to the first stage of bacterial growth (3 h of culture), where bacteria were irreversibly
bound to the surface, the next phase (24 h) represented the multiplication stage of bacteria that occurred
after their attachment to the surface. At this time, the bacterial cells multiplied and started spreading
over the surface of specimens. In this phase, significantly increased number of bacteria was observed
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on both types of surfaces, namely 28.9 ± 2.5 cells/200 µm2 and 29.5 ± 3.0 cells/200 µm2 for bare and
Pt-coated glass slides, respectively (Figure 3B). Since the bacteria density on both types of surfaces
was almost identical, it could be concluded that the initial inconsiderable decrease in the rate of
adhesion observed on the surface of Pt was only a short-term effect, overcame by the ability of bacteria
to proliferate.

After 48 h, a significant decrease in bacterial density on both surfaces was evident. This time point
indicated a death phase of bacterial growth since the bacteria did not receive a new portion of fresh
culture medium during this experiment. Therefore, many bacterial cells observed in the micrographs
possessed deformed shapes (Figure 3A—insets). From the distorted surface of bacterial cells, it could
be concluded that the growth and reproduction of bacteria were disrupted. Due to this, dead bacteria
underwent lysis, released cells debris, and were easily detached from the surface. For this reason, only
few healthy cells were observed on the surface of samples, and the bacterial density reached the values
even lower than in the initial phase, i.e., 11.3 ± 1.6 cells/200 µm2 and 11.4 ± 2.3 cells/200 µm2 for a bare
glass and a Pt-coated glass slide, respectively. These identical results pointed to the high similarity of
both surfaces in terms of material characteristics influencing the adhesion of bacteria.
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micrographs presenting bacterial populations grown for 3 h, 24 h and 48 h on the surface of samples;
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3.3. Dimensions of Bacterial Cells

Escherichia coli has already been extensively analyzed, becoming one of the best-known models of
Gram-negative and relatively anaerobic bacteria. Escherichia coli is a rod-shaped bacterium with the
average cell length of 1–2 µm and width of 0.5–1.0 µm. These dimensions depend on the bacterial
metabolism and intensity of growth, since Escherichia coli can easily modulate its size to maintain
vitality and reproductive capacity depending on the availability of nutrient-rich medium [36,37].

Therefore, to analyze the growth of bacteria on the surfaces of both materials (Figure 4A), their
dimensions (length and width) were assessed (Table 1). To numerically describe the shape of the
bacteria independently of their sizes, the dimensionless aspect ratio was introduced and calculated as
a function of width and length. The values of the aspect ratio approached zero for very elongated
bacteria and were close to unity for circular cells. In general, the investigated bacteria possessed
average dimensions of rod-shaped Escherichia coli cells, namely the average length between 1.79 µm
and 2.04 µm, and the average width between 0.66 µm and 0.77 µm. Although having similar shape,
the bacteria cells cultured on the surface of bare glass were longer and wider (length of 1.95–2.04 µm,
width of 0.70–0.77 µm) than the cells grown on the surface of Pt-coated glass (length of 1.79–1.95 µm,
width of 0.66–0.75 µm).
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Table 1. Average dimensions of bacterial cells. Comparison of average values of length, width and
aspect ratio of bacteria cultured on bare and Pt-coated glass slides for 3 h, 24 h and 48 h; * = p < 0.05,
n = 150.

Surface Glass Platinum

Time, h 3 24 48 3 24 48

Length, µm 2.00 ± 0.04 * 1.94 ± 0.03 2.04 ± 0.04 * 1.79 ± 0.03 * 1.95 ± 0.03 1.90 ± 0.03 *
Width, µm 0.77 ± 0.01 0.70 ± 0.01 * 0.71 ± 0.01 0.75 ± 0.01 0.66 ± 0.01 * 0.71 ± 0.01

Aspect ratio 0.40 ± 0.01 * 0.37 ± 0.01 0.37 ± 0.01 0.43 ± 0.01 * 0.35 ± 0.01 0.39 ± 0.01

The analysis of histograms showing the variations in length, width and aspect ratio (Figure 4B–D)
was performed to provide more information and to assess the cycle of bacterial proliferation. Changes
in the average length of bacterial cells, observed in Figure 4B after 3 h of incubation on both bare glass
and Pt-coated glass, suggested that the cells remained still in the lag phase. After 24 h, bacteria cultured
on glass were longer than in case of bacteria cultured on Pt, suggesting that their metabolic activity
was enhanced. In addition, the bacteria cultured on glass were thicker than bacteria cultured on Pt
(Figure 4C), confirming preferential growth of bacteria on glass. Furthermore, the bacteria were the
widest after the first 3 h of incubation, while in subsequent time points (24 h and 48 h) they were longer
in order to divide into daughter cells. After 24 h, all bacteria were found to grow actively (an increase
in length was noted), which allowed them to enter the division phase and to significantly increase
their population. A significant increase in length of bacterial cells was observed on the Pt-coated glass,
for which the average value exceeded the result observed on bare glass.

However, after 48 h the length of cells was found to decrease. This effect, together with a significant
decrease in cell density (Figure 3), suggested that bacteria entered the death phase. At this stage,
the higher number of shorter cells was observed on bare glass as compared with the Pt-coated glass.
However, the opposite effect was observed for cells being 1.4–2.0 mm long. In addition, the distribution
of cells with lengths in the range of 1.4–2.2 mm (comprising lengths characteristic for Escherichia coli)
was similar to that noted in the first phase. Some bacterial cells occupying the surface of bare glass were
considerably longer than bacteria on Pt-coated glass. Comparing the aspect ratio of cells (Figure 4D),
more frequently lower values were observed for bacteria growing for 24 h on both bare and Pt-coated
glass, indicating intensive cell proliferation at that time.

3.4. LIVE/DEAD Analysis

To assess bacterial viability, a LIVE/DEAD analysis based on confocal fluorescent microscopic
images was carried out at each time point (Figure 5A). The set of data (Figure 5B) indicated that, despite
the higher density of bacteria on the surface of bare glass after first 3 h of culture, a significant part of
them (79.5% ± 1.7%) was dead. The percentage of dead bacteria was significantly lower (61.1% ± 2.0%)
during bacteria growth on Pt-coated glass. This result showed that a thin film of Pt deposited on a
surface did not exhibit any antibacterial effects but seemed to be more compatible towards bacteria
than a glass control surface. The percentage of live bacteria was twice as high on the surface of a
Pt-coated glass than a glass control (38.9% ± 2.0% and 20.5% ± 1.7%, respectively).

This tendency partially vanished at the subsequent time point (after 24 h of incubation) representing
the growth phase of bacterial culture. Now, live bacteria that adhered to the surface during the initial
phase started to multiply, leading to a significant increase in cell density. After 24 h of incubation, the
increased percentage of live bacteria on both types of surfaces was also observed. This effect was more
pronounced in the case of Pt-coated glass than bare glass (61.8% ± 1.3% and 56.8% ± 0.6%, respectively).

Despite the fact that there were only a few bacteria remaining on the slides after 48 h, most of
them were alive. The number of live bacteria was almost identical for both bare and Pt-coated glass
slides (62.5% ± 1.1% and 62.1% ± 0.7%, respectively). On platinum, the percentage of live bacteria
remained similar as in the previous time point. The 3D reconstruction of bacteria cultured on the
surface of a Pt-coated glass slide for 48 h (Supplementary file) indicated that some cells were attached
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perpendicularly to the investigated surface, which should be associated with hydrophilicity of the
substrate [38].Materials 2020, 13, x FOR PEER REVIEW 9 of 12 
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Since previous studies reported the antibacterial effect of sputter-coated layers of copper and
silver [17,18], it was expected that also sputter-coated layer of platinum should possess similar biocidal
character. This hypothesis was supported by the fact that both Pt ions and Pt nanoparticles are known
for their antibacterial activity. Pt ions, due to their electronegativity, are supposed to be highly attracted
to the negatively charged bacteria [2]. As a consequence, the increase in the bacterial-metal ion
interactions is observed, leading to cell death. Small Pt nanoparticles, on the other way, are supposed
to easily pass through the pores of the bacterial membrane, affecting cell growth and viability [14].
We expected similar results for a sputtered layer of Pt since the sputter-coating process should produce
a platinum film with the grain size of about 2 nm. However, our results revealed opposite observations
to those expected, as a thin layer of sputtered Pt was not shown to exhibit any antibacterial effect.

The lack of antibacterial properties of sputter-coated Pt layer should be correlated with the
physicochemical stability of deposited film, preventing Pt ions and nanoparticles from release.
In contrast, the mechanism of antimicrobial activity of sputter-coated silver and copper films was based
on the release of Ag or Cu, respectively [17]. In the case of a mixed layer of Ag–Cu, the antibacterial
effect could also arise from the galvanic action and small electrical field generated by the Ag–Cu
electrochemical couple, as suggested by Blenkinsopp et al. [39]. For a thin film made purely of Pt,
electric field could not be generated without external stimulation.

Thus, high physicochemical stability of platinum being its great advantage is also responsible for
the lack of biocidal character of a sputter-coated layer against a model Gram-negative bacterial strain,
Escherichia coli. Therefore, the surface of thin Pt film may be easily colonized by bacterial population,
leading to an increased risk of infections, including nosocomial infections. For this reason, there is an
urgent need for the development of new methods of surface modification that will reduce the risk of
its colonization by bacteria and subsequent infections.

4. Conclusions

In this study, bare glass and Pt-coated glass slides were used to investigate the antibacterial
activity of sputter-coated Pt films against a model bacterial strain, Escherichia coli. It was shown that the
interactions between bacteria and both materials were similar. Although the examined materials were
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found to differ in hydrophilic character, roughness had a stronger effect on the adhesion of bacteria
than wettability. Therefore, the surface of a Pt-coated glass slide was less prone to bacterial attachment
than a bare glass slide. Unfortunately, the lower number of bacterial cells adhering to the Pt-coated
glass observed initially was only a short-term effect. The density of bacteria on both types of surfaces
increased considerably after 24 h of culture. Consequently, it was shown that a thin layer of sputtered
Pt was not sufficient to cause any antibacterial effects.

The lack of expected biocidal character of sputter-coated Pt layer against Escherichia coli seems
to be correlated with the high physicochemical stability of such thin film, preventing Pt ions and Pt
nanoparticles from release. Therefore, even though platinum is a metal exhibiting high biocompatibility
and superior electrochemical properties and has a great importance and potential in biomedical
applications, this study shows its serious limitation in the context of colonization by bacterial
population, particularly Escherichia coli. For this reason, there is an urgent need for the development of
new methods of surface modification that will reduce the risk of surface colonization by bacteria and
subsequent infections, but will maintain high physicochemical stability and electroactivity of Pt.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/12/2674/s1,
Video S1: E.coli-on-sputter-coated-Pt-film_48h.
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