Supplementary Materials
Stimuli-Responsive Rifampicin-Based
Macromolecules

B2

B3

Figure S1. ${ }^{1} \mathrm{H}$ NMR of (a) rifampicin $\left(\mathrm{CDCl}_{3}\right)$; (b) ${ }^{1} \mathrm{H}$ NMR and (c) ${ }^{13} \mathrm{C}$ NMR of Rif- Br_{3} supramolecular initiator $\left(M_{n}=1269.94, ~ Đ=1.19\right)$ after purification $\left(\mathrm{CDCl}_{3}\right)$.

Figure S2. GPC trace of Rif-Br3 macroinitiator.

Figure S3. FT-IR characterization of (a) rifampicin and (b) Rif-Br3 macroinitiator.

Figure S4. UV-vis spectrum of rifampicin and Rif-Brı macroinitiator in THF.

Figure S5. Cyclic voltammogram of $0.8 \mathrm{mM} \mathrm{Cu}{ }^{\mathrm{II}} \mathrm{Br} / \mathrm{L}$ in DMF containing 0.2 M TBAP in the absence (black line) and in the presence of 9.8 mM Rif- Br_{3} (red line) recorded at $\mathrm{v}=0.1 \mathrm{~V} \cdot \mathrm{~s}^{-1}$, where L (ligand) is (a) PMDETA, (b) TPMA and (c) TPMA ${ }^{*}$.

Figure S6. Cyclic voltammograms of $0.8 \mathrm{mM} \mathrm{Cu}{ }^{\mathrm{II}} \mathrm{Br}_{2} / \mathrm{L}$ in DMF recorded at a different scan rates (given next to the curves) in the presence of 9.8 mM Rif- Br_{3} (3 Br molecules) and 39.9 mM TEMPO; the current was normalized with respect to the peak current $\left(i_{p}{ }^{0}\right)$ recorded in the absence of Rif- Br_{3}, where L (ligand) is (a) PMDETA, (c) TPMA and (e) TPMA ${ }^{*}$; Foot-of-the-wave analysis of the catalytic peak to determine k_{a}, the slope a of the plots of $i / i_{\mathrm{p}}{ }^{\circ}$ vs. $\exp \left[-F\left(E-E \operatorname{Cu(II)/Cu(I)}{ }^{0}\right) / R T\right]: a=$ $2.24 \sqrt{\frac{k_{a} a_{A}^{0} R T}{F v}}$, where i-catalytic current, $i_{p}{ }^{0}$-reversible one-electron reduction of the copper catalyst complex in the absence of Rif- $\mathrm{Br}_{3}, \mathrm{CA}^{0}$ - initial Rif- $(\mathrm{P} n \mathrm{BA}-\mathrm{Br})_{3}$ concentration, F-Faraday constant, R-gas constant, $T=298 \mathrm{~K}, E_{\mathrm{Cu}^{\mathrm{II}} / \mathrm{Cu}^{1}}^{0}$ is the half wave potential of the $\mathrm{Cu}^{\mathrm{II} B r} / \mathrm{L}$, using (b) PMDETA, (d) TPMA and (e) TPMA ${ }^{* 2}$ as a ligand.

Figure S7. Synthetic route for the preparation of rifampicin-based macromolecules with acrylates (PnBA and PtBA) and poly(acrylic acid) (PAA) side chains.

Figure S8. (a) Cyclic voltammogram of $0.44 \mathrm{mM} \mathrm{Cu}^{\text {II } \mathrm{Br}_{2} / \mathrm{TPMA}^{* 2} \text { in } 15 \%(v / v) n \mathrm{BA} / \mathrm{DMF} \text { (}[n \mathrm{BA}]_{0}=}$ 1.10 M) containing 0.2 M TBAP in the absence (black line) and in the presence of 1.35 mM Rif- Br_{3} (red line) recorded at $v=0.1 \mathrm{~V} \cdot \mathrm{~s}^{-1},(\mathbf{b})$ current profile vs. time for the polymerization of $n \mathrm{BA}$ from Rif-Br3, (c) First-order kinetic plot of monomer conversion vs. time, (d) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ vs. monomer conversion, (e) GPC traces of nBA polymerization and their evolution over reaction time, (f) DLS hydrodynamic size distributions by volume of Rif-(PnBA-Br)3. Table 1, entry 1.

Figure S9. (a) Cyclic voltammogram of $0.88 \mathrm{mM} \mathrm{Cu}{ }^{\text {Br }} 2 /$ TPMA in $30 \% ~(v / v) ~ n \mathrm{BA} / \mathrm{DMF}$ ($[n \mathrm{BA}]_{0}=2.19$ M) containing 0.2 M TBAP in the absence (black line) and in the presence of 2.71 mM Rif- Br_{3} (red line) recorded at $v=0.1 \mathrm{~V} \cdot \mathrm{~s}^{-1},(\mathbf{b})$ current profile vs. time for the polymerization of $n \mathrm{BA}$ from Rif- Br_{3}, (c) DLS hydrodynamic size distributions by volume of Rif-($\mathrm{P} n \mathrm{BA}-\mathrm{Br})_{3}$. Table 1, entry 2.

Figure S10. (a) Current profile vs. time for the polymerization of $n \mathrm{BA}$ from Rif- Br_{3} under constant potential conditions and the determined current steps for constant current electrolysis (b) DLS hydrodynamic size distributions by volume of Rif-($\mathrm{P} n \mathrm{BA}-\mathrm{Br})_{3}$. Table 1, entry 3.

Figure S11. (a) Cyclic voltammogram of $0.82 \mathrm{mM} \mathrm{Cu}{ }^{\mathrm{II}} \mathrm{Br}_{2} / \mathrm{TPMA}$ in 30% (v/v) $t \mathrm{BA} / \mathrm{DMF}$ ($[t \mathrm{BA}]_{0}=$ 2.05 M) containing 0.2 M TBAP in the absence (black line) and in the presence of 6.74 mM Rif- Br_{3} (red line) recorded at $v=0.1 \mathrm{~V} \cdot \mathrm{~s}^{-1}$, (b) current profile vs. time for the polymerization of $t \mathrm{BA}$ from RifBr_{3} (c) DLS hydrodynamic size distributions by volume of Rif-(PtBA-Br)3. Table 1, entry 4.

Figure S12. (a) Cyclic voltammogram of $0.43 \mathrm{mM} \mathrm{Cu}{ }^{\mathrm{II}} \mathrm{Br}_{2} / \mathrm{TPMA}$ in 16% (v/v) $t \mathrm{BA} / \mathrm{DMF}$ ($[t \mathrm{BA}]_{0}=$ 1.07 M) containing 0.2 M TBAP in the absence (black line) and in the presence of 1.95 mM Rif-(PtBA$\mathrm{Br})_{3}$ (red line) recorded at $v=0.1 \mathrm{~V} \cdot \mathrm{~s}^{-1},(\mathbf{b})$ current profile vs. time for the polymerization of $t \mathrm{BA}$ from Rif-(PtBA-Br) ${ }^{(c)}$ (c) DLS hydrodynamic size distributions by volume of Rif-(PtBA-b-PtBA-Br)3. Table 1, entry 5 .

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of Rif- $(\mathrm{P} n \mathrm{BA}-\mathrm{Br})_{3}$ polymers $\left(M_{n}=56100, \pm=1.59\right)$ after purification (in CDCl_{3}). Table 1, entry 3.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of Rif-(PtBA-Br) $)_{3}$ polymers $\left(M_{n}=30100, ~ Đ=1.71\right)$ after purification (in CDCl_{3}). Table 1, entry 4.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of Rif-(PtBA- $\left.b-\mathrm{PtBA}-\mathrm{Br}\right)_{3}$ polymers $\left(M_{\mathrm{n}}=72100, \pm=1.58\right)$ after purification (in CDCl_{3}). Table 1, entry 5.

Figure S16. GPC traces of (a) Rif-(PtBA-Br) ${ }_{3}$ (Table 1, entry 4) and the corresponding cleaved PtBA arms, and (b) Rif-(PtBA-b-PtBA-Br) $)^{(T a b l e ~ 1, ~ e n t r y ~ 5) ~ a n d ~ t h e ~ c o r r e s p o n d i n g ~ c l e a v e d ~ P t B A-b-P t B A ~}$ arms.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of Rif-(PAA-Br) ${ }_{3}$ polymers after purification (in DMSO-d d_{6}. Table 1, entry 4.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of Rif-(PAA-b-PAA-Br) ${ }_{3}$ polymers after purification (in DMSO- d_{6}).
Table 1, entry 5.

Figure S19. FT-IR characterization of (a)Rif-(PtBA-Br) 3 (Table 1, entry 4) and (b) Rif-(PAA-Br) 3 .

Figure S20. FT-IR characterization of (a) Rif-(PtBA-b-PtBA-Br) 3 (Table 1, entry 5) and (b) Rif-(PAA- $b-$ PAA-Br)3.

Figure S21. Water contact angle images of (a) Rif-(PtBA-Br)3 (Table 1, entry 4) and (b) corresponding Rif-(PAA-Br)3, and diiodomethane contact angle images of (c) Rif-(PtBA-Br) ${ }_{3}$ (Table 1, entry 4) and (d) corresponding Rif-(PAA-Br)3.

Figure S22. DLS hydrodynamic size distributions by volume of $\operatorname{Rif}-(\mathrm{P} t \mathrm{BA}-b-\mathrm{P} t \mathrm{BA}-\mathrm{Br})_{3}$ in different pH .

Table S1. Calculation of $\mathrm{Cu}^{1} / \mathrm{Cu}^{\text {II }}$ ratio for the preparation of rifampicin-based macromolecules.

Entry (according to Table 1)	$\begin{aligned} & k_{\mathrm{p}^{\mathrm{app}}} \\ & \left(\mathbf{h}^{-1}\right)^{\mathrm{a}} \end{aligned}$	$\begin{gathered} {\left[\mathrm{P}_{\mathrm{n}}{ }^{\bullet}\right]} \\ \left(\mathrm{M} \times \mathbf{1 0}^{10}\right)^{\mathrm{a}} \\ \hline \end{gathered}$	$\begin{gathered} \text { KATRP }^{\left(\times 10^{8}\right) \mathrm{b}} \\ \hline \end{gathered}$	$\begin{gathered} {\left[\mathrm{P}_{\mathrm{n}}-\mathrm{Br}\right]} \\ (\mathrm{mM}) \end{gathered}$	$\left[\mathrm{Cu}^{1}\right] /\left[\mathrm{Cu}^{\text {II }}\right]^{\text {c }}$	$\left[\mathrm{Cu}^{1 L^{+}}\right]$ (\%)	$\begin{gathered} {\left[\mathrm{Br}-\mathrm{Cu}^{\left.\mathrm{II} \mathrm{~L}^{+}\right]}\right.} \\ (\%) \end{gathered}$
1	0.133	13.3	0.0047	1.35	0.02	2.1	97.9
2	0.109	10.9	1.30	2.71	31.06	96.9	3.1
3	0.095	9.53	1.30	2.71	27.07	96.4	3.6
4	0.137	13.3	1.30	6.74	15.18	93.8	6.2
5	0.097	9.42	1.30	1.95	37.17	97.4	2.6

${ }^{\text {a }}$ The radical concentration [$\mathrm{P}_{\mathrm{n}}^{*}$] was calculated according to the equation defined as $\left[\mathrm{P}_{\mathrm{n}}^{*}\right]=$ $\left(\frac{d \ln [\mathrm{M}]}{d t}\right)\left(k_{p}\right)^{-1}[1]$, where $\frac{d \ln [\mathrm{M}]}{d t}$ values were calculated from the first order kinetics plots (S8c in SI, 1a, 2a, 3a and 4a) [2], $k_{\mathrm{p}}=2.77 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for $n \mathrm{BA}$ polymerization [3], $k_{\mathrm{p}}=2.86 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for t BA polymerization [4], ${ }^{\mathrm{b}}$ entry 1 : K KATRP $=4.7 \times 10^{-5}$ was determined theoretically for the $\mathrm{CuI} / \mathrm{TPMA}^{+}$catalyst acetonitrile at $25^{\circ} \mathrm{C}$ [5]; entry 2-5: KATRP $=1.3 \times 10^{-8}$ was determined for the $\mathrm{Cu}^{1 / T P M A+}{ }^{+}$catalyst in methyl acrylate/acetonitrile $50 / 50(\mathrm{v} / \mathrm{v})$ at $50^{\circ} \mathrm{C}[6]$ c $\mathrm{The}^{\mathrm{Cu}} \mathrm{Cu}^{\mathrm{I}} / \mathrm{Cu}^{\mathrm{II}}$ ratio was calculated according to the equation defined as $\frac{\left[\mathrm{Cu}^{\mathrm{l}} \mathrm{TPMA}^{+}\right]}{\left[\mathrm{Br}-\mathrm{Cu}^{\mathrm{II}} \mathrm{TPMA}^{+}\right]}=\frac{\left[\mathrm{P}_{\mathrm{n}}\right]}{\left[\mathrm{P}_{\mathrm{n}}-\mathrm{Br}\right] K_{\text {ATRP }}}[6]$.

Table S2. Theoretical Al ${ }^{3+}$ concentration in solution and polymer by monomer conversion.

Entry (according to Table 1 and S1)	Q^{a} (C)	$\begin{gathered} \mathbf{n}_{\mathrm{Al}^{3+}} \mathrm{b} \\ \left(\mathrm{~mol} \times 10^{5}\right) \end{gathered}$	$\left[\mathrm{Al}^{3+}\right]_{\text {solution }}{ }^{\mathrm{c}}$ (ppm by wt)	$\begin{aligned} & {\left[\mathrm{Al}^{3+}\right]_{\text {polymer }}{ }^{\mathrm{d}}} \\ & (\text { ppm by wt }) \end{aligned}$
1	12.93	4.47	48.9	11.7
2	16.53	5.71	98.6	25.1
3	16.53	5.71	98.6	26.3
4	21.06	7.28	128.0	48.9
5	12.85	4.44	87.8	25.8

${ }^{\text {a }}$ The total passed charge was calculated by integration of the chronoamperometry (CA) area ($Q=$ $I \cdot t)$; ${ }^{\mathrm{b}}$ theoretical amount of Al^{3+} in the reaction mixture was calculated from $\mathrm{CA}: \mathrm{n}_{\mathrm{Al}^{3+}}=Q / F / 3$ where $F=96485 \mathrm{C} / \mathrm{mol}$; ${ }^{\mathrm{c}}$ the Al concentration in the reaction mixture was calculated according to the equation defined as: $\left[\mathrm{Al}^{13+}\right]_{\text {solution }}=\left[\mathrm{Al}^{13+}\right] \mathrm{MW}_{\mathrm{Al}} / \mathrm{wt} t_{\text {total }} \times 1000000$ where solution density was assumed as $(d)=d_{D M F} \cdot \%(v / v)_{D M F}+d_{\text {monomer }} \cdot \%(v / v)_{\text {monomer }}{ }^{d}$ the Al concentration in pure polymer sample was determined as follows: $\left[\mathrm{Al}^{1+}\right]_{\text {polymer }}=\left[\mathrm{Al}^{3+}\right]_{\text {solution }} / d f \cdot$ conversion, where $d f$ is dilute factor, $d f=2[7]$.

Table S3. Calculation of theoretical Dead Chain Fraction (DCFtheo) for polymerization of acrylates at low copper catalyst loading.

Entry (according to Table $\mathbf{1})$	$\left[\mathbf{P}_{\mathbf{n}}\right]^{\mathbf{a}}$ $\left(\mathbf{M} \times \mathbf{1 0}^{\mathbf{0 1 0}}\right)$	$[\mathrm{D}]^{\mathbf{b}}$ $\left(\mathbf{M} \times \mathbf{1 0}^{\mathbf{6}}\right)$	$\left[\mathbf{P}_{\mathbf{n}}-\mathbf{B r}\right]$ $(\mathbf{m M})$	$\mathbf{D C F}_{\text {theo }}{ }^{\boldsymbol{c}}$ $\mathbf{(\%)}$
1	13.3	3.52	1.35	0.26
2	10.9	3.30	2.71	0.12
3	9.53	2.51	2.71	0.09
4	13.3	6.37	6.74	0.09
5	9.42	3.52	1.95	0.18

a The radical concentration $\left[\mathrm{P}^{\bullet}\right]$ was calculated according to the equation defined as $\left[\mathrm{P}_{n}^{*}\right]=$ $\left(\frac{d \ln [\mathrm{M}]}{d t}\right)\left(k_{p}\right)^{-1}[1]$, where $\frac{d \ln [\mathrm{M}]}{d t}$ values were calculated from the first order kinetics plots (Figure 2a) [8], entry 1: $k_{\mathrm{p}}=2.86 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ [4], entry 2-5: $k_{\mathrm{p}}=2.77 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ [9]. ${ }^{\mathrm{b}}$ The concentration of terminated chains [D] was calculated according to the equation defined as $[\mathrm{D}]=k_{\mathrm{t}}[\mathrm{P}]^{2} t$ where t (denote reaction time) $=19800 \mathrm{~s}$ (entry 1), $t=27601 \mathrm{~s}$ (entry 2 and 3), $t=36000 \mathrm{~s}$ (entry 4) and $t=$ $39600 \mathrm{~s}\left(\right.$ entry 5), $k_{\mathrm{t}}=1.0 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}[10] .{ }^{\mathrm{c}} \mathrm{DCF}=\left(\frac{[\mathrm{D}]}{[\mathrm{P}-\mathrm{X}]_{0}}\right) \times 100 \%[1]$.

Table S4. Results of the detaching of polymer arms from rifampicin-based macromolecules.

Entry (according to Table 1)	$\begin{aligned} & M_{n, \text { theo }} \\ & \left(\times 10^{-3}\right)^{\text {a }} \\ & \text { (chain) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { DP }_{\mathrm{n}, \text { theo }}{ }^{\text {(chain) }} \end{gathered}$	$\begin{aligned} & M_{\mathrm{n}, \mathrm{app}} \\ & \left(\times 10^{-3}\right)^{\text {c }} \\ & \text { (chain) } \end{aligned}$	$\begin{gathered} \text { DP }_{\text {n,app }}{ }^{\text {b }} \\ \text { (chain) } \end{gathered}$	$M_{w} / M_{n}{ }^{\text {c }}$	$\begin{aligned} & f_{\mathrm{i}}^{\mathrm{d}} \\ & (\%) \end{aligned}$
4	9.9	77	23.4	182	1.20	42
5	23.6	184	44.6	348	1.42	53

${ }^{\text {a }} M_{\mathrm{n}, \mathrm{th}}=\left([t \mathrm{BA}]_{0} /\left[\mathrm{Rif}^{2}-\mathrm{Br}_{3}\right]_{0}\right) \times$ conversion $\times M_{t \mathrm{BA}},[t \mathrm{BA}]_{0}-$ initial monomer concentration, $\left[\mathrm{Rif}^{2}-\mathrm{Br}_{3}\right]_{0}-$ initiator concentration; ${ }^{\text {b }}$ established according to Table 1 ; ${ }^{\mathrm{c}}$ apparent M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ of the arms cleaved from the rifampicin-based macromolecules determined by THF GPC (PS standards); d efficiency of initiation: $f_{\mathrm{i}}=\left(\mathrm{DP}_{\mathrm{n}, \text { theo }}(\right.$ per chain $) / \mathrm{DP}_{\mathrm{n}, \text { app }}($ per chain $\left.)\right) \times 100 \%$.

Table S5. Experimental values of contact angles, parameters of free surface energy (FSE) as calculated by Owens-Wendt method for rifampicin-based polymer coatings.

Entry (according to Table 1)	Polymer	Experimental values of $\theta\left({ }^{\circ}\right)$				Parameters of FSE $\left(\mathrm{mJ} / \mathrm{m}^{2}\right)$ water- diiodomethane		
		Diiodomethane	Standard deviation	Water	Standard deviation	γs	$\gamma \mathrm{s}^{\text {d }}$	$\gamma^{\text {sp }}$
4	PtBA	58.36	2.63	90.06	1.93	29.82	26.94	2.88
	PAA	45.12	0.76	69.50	2.17	41.09	30.32	10.77
5	PtBA	70.64	1.30	92.34	0.96	23.54	19.55	3.99
	PAA	50.49	0.91	81.96	1.75	35.01	30.06	4.95

Table S6. Volume mean diameter of rifampicin-based macromolecules at varying $\mathrm{pH} .{ }^{\mathrm{a}}$

Sample	$\mathbf{p H}$	Hydrodynamic diameter $(\mathbf{n m})$
1	12.90	14.59 ± 0.60
2	10.03	11.96 ± 0.80
3	7.92	11.48 ± 1.16
4	6.06	9.21 ± 1.35
5	4.00	6.96 ± 0.50
6	2.99	5.48 ± 0.84
7	2.00	5.70 ± 0.29

${ }^{\text {a }}$ The experiment was conducted for the polymer sample received according to Table 1, entry 5 after acidic hydrolysis.

References

1. Zhong, M.; Matyjaszewski, K. How fast can a CRP be conducted with preserved chain end functionality? Macromolecules 2011, 44, 2668-2677, doi:10.1021/ma102834s.
2. Chmielarz, P.; Krys, P.; Wang, Z.; Wang, Y.; Matyjaszewski, K. Synthesis of well-defined polymer brushes from silicon wafers via surface-initiated seATRP. Macromol. Chem. Phys. 2017, 218, 1700106, doi:10.1002/macp. 201700106.
3. Buback, M.; Kurz, C.H.; Schmaltz, C. Pressure dependence of propagation rate coefficients in free-radical homopolymerizations of methyl acrylate and dodecyl acrylate. Macromol. Chem. Phys. 1998, 199, 17211727, doi:10.1002/(SICI)1521-3935(19980801)199:8<1721::AID-MACP1721>3.0.CO;2-5.
4. Dervaux, B.; Junkers, T.; Schneider-Baumann, M.; Du Prez, F.E.; Barner-Kowollik, C. Propagation rate coefficients of isobornyl acrylate, tert-butyl acrylate and 1-ethoxyethyl acrylate: A high frequency PLPSEC study. J. Polym. Sci. A Polym. Chem. 2009, 47, 6641-6654, doi:10.1002/pola.23706.
5. Bortolamei, N.; Isse, A.A.; Di Marco, V.B.; Gennaro, A.; Matyjaszewski, K. Thermodynamic properties of copper complexes used as catalysts in atom transfer radical polymerization. Macromolecules 2010, 43, 9257-9267, doi:10.1021/ma101979p.
6. Wang, Y.; Kwak, Y.; Buback, J.; Buback, M.; Matyjaszewski, K. Determination of ATRP equilibrium constants under polymerization conditions. ACS Macro Lett. 2012, 1, 1367-1370, doi:10.1021/mz3005378.
7. Chmielarz, P. Synthesis of α-D-glucose-based star polymers through simplified electrochemically mediated ATRP. Polymer 2016, 102, 192-198, doi: 10.1016/j.polymer.2016.09.007.
8. Chmielarz, P.; Fantin, M.; Park, S.; Isse, A.A.; Gennaro, A.; Magenau, A.J.D.; Sobkowiak, A.; Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization (eATRP). Prog. Polym. Sci. 2017, 69, 47-78, doi:10.1016/j.progpolymsci.2017.02.005.
9. Buback, M.; Kurz, C.H.; Schmaltz, C. Pressure dependence of propagation rate coefficients in free-radical homopolymerizations of methyl acrylate and dodecyl acrylate. Macromolecular Chemistry and Physics 1998, 199, 1721-1727, doi:10.1002/(SICI)1521-3935(19980801)199:8<1721::AID-MACP1721>3.0.CO;2-5.
10. Barth, J.; Buback, M.; Hesse, P.; Sergeeva, T. Termination and transfer kinetics of butyl acrylate radical polymerization studied via SP-PLP-EPR. Macromolecules 2010, 43, 4023-4031, doi:10.1021/ma1006039.
© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
