



Supplementary Materials Stimuli-Responsive Rifampicin-Based Macromolecules





**Figure S1.** <sup>1</sup>H NMR of (**a**) rifampicin (CDCl<sub>3</sub>); (**b**) <sup>1</sup>H NMR and (**c**) <sup>13</sup>C NMR of Rif-Br<sub>3</sub> supramolecular initiator ( $M_n = 1269.94$ , D = 1.19) after purification (CDCl<sub>3</sub>).



Figure S2. GPC trace of Rif-Br3 macroinitiator.



Figure S3. FT-IR characterization of (a) rifampicin and (b) Rif-Br3 macroinitiator.



Figure S4. UV-vis spectrum of rifampicin and Rif-Br3 macroinitiator in THF.



**Figure S5.** Cyclic voltammogram of 0.8 mM Cu<sup>II</sup>Br<sub>2</sub>/L in DMF containing 0.2 M TBAP in the absence (black line) and in the presence of 9.8 mM Rif-Br<sub>3</sub> (red line) recorded at  $v = 0.1 \text{ V}\cdot\text{s}^{-1}$ , where L (ligand) is (a) PMDETA, (b) TPMA and (c) TPMA<sup>\*2</sup>.



**Figure S6.** Cyclic voltammograms of 0.8 mM Cu<sup>II</sup>Br<sub>2</sub>/L in DMF recorded at a different scan rates (given next to the curves) in the presence of 9.8 mM Rif-Br<sub>3</sub> (3 Br molecules) and 39.9 mM TEMPO; the current was normalized with respect to the peak current ( $i_{p}^{0}$ ) recorded in the absence of Rif-Br<sub>3</sub>, where L (ligand) is (**a**) PMDETA, (**c**) TPMA and (**e**) TPMA\*<sup>2</sup>; Foot-of-the-wave analysis of the catalytic peak to determine  $k_{a}$ , the slope *a* of the plots of  $i/i_{p}^{\circ}$  vs. exp[-*F*(*E*-*E*<sub>Cu(II)/Cu(I)</sub><sup>0</sup>)/*RT*]: *a* =  $2.24\sqrt{\frac{k_{a}C_{A}^{0}RT}{Fv}}$ , where *i*-catalytic current,  $i_{p}^{0}$ -reversible one-electron reduction of the copper catalyst complex in the absence of Rif-Br<sub>3</sub>, *C*<sub>A</sub><sup>0</sup>-initial Rif-(P*n*BA-Br)<sub>3</sub> concentration, *F*-Faraday constant, *R*-gas constant, *T* = 298 K,  $E_{Cu^{II}/Cu^{I}}^{0}$  is the half wave potential of the Cu<sup>II</sup>Br<sub>2</sub>/L, using (**b**) PMDETA, (**d**) TPMA and (**e**) TPMA\*<sup>2</sup> as a ligand.





**Figure S7.** Synthetic route for the preparation of rifampicin-based macromolecules with acrylates (*Pn*BA and *Pt*BA) and poly(acrylic acid) (PAA) side chains.



**Figure S8.** (a) Cyclic voltammogram of 0.44 mM Cu<sup>II</sup>Br<sub>2</sub>/TPMA<sup>\*2</sup> in 15% (v/v) nBA/DMF ([nBA]<sub>0</sub> = 1.10 M) containing 0.2 M TBAP in the absence (black line) and in the presence of 1.35 mM Rif-Br<sub>3</sub> (red line) recorded at v = 0.1 V·s<sup>-1</sup>, (b) current profile vs. time for the polymerization of nBA from Rif-Br<sub>3</sub>, (c) First-order kinetic plot of monomer conversion vs. time, (d)  $M_n$  and  $M_w/M_n$  vs. monomer conversion, (e) GPC traces of nBA polymerization and their evolution over reaction time, (f) DLS hydrodynamic size distributions by volume of Rif-(PnBA-Br)<sub>3</sub>. Table 1, entry 1.



**Figure S9.** (a) Cyclic voltammogram of 0.88 mM Cu<sup>II</sup>Br<sub>2</sub>/TPMA in 30% (v/v) nBA/DMF ([nBA] $_0$  = 2.19 M) containing 0.2 M TBAP in the absence (black line) and in the presence of 2.71 mM Rif-Br<sub>3</sub> (red line) recorded at v = 0.1 V·s<sup>-1</sup>, (b) current profile vs. time for the polymerization of nBA from Rif-Br<sub>3</sub>, (c) DLS hydrodynamic size distributions by volume of Rif-(PnBA-Br)<sub>3</sub>. Table 1, entry 2.



**Figure S10.** (**a**) Current profile vs. time for the polymerization of *n*BA from Rif-Br<sub>3</sub> under constant potential conditions and the determined current steps for constant current electrolysis (**b**) DLS hydrodynamic size distributions by volume of Rif-(*Pn*BA-Br)<sub>3</sub>. Table 1, entry 3.



**Figure S11.** (a) Cyclic voltammogram of 0.82 mM Cu<sup>II</sup>Br<sub>2</sub>/TPMA in 30% (v/v) *t*BA/DMF ([*t*BA]<sub>0</sub> = 2.05 M) containing 0.2 M TBAP in the absence (black line) and in the presence of 6.74 mM Rif-Br<sub>3</sub> (red line) recorded at v = 0.1 V·s<sup>-1</sup>, (b) current profile vs. time for the polymerization of *t*BA from Rif-Br<sub>3</sub> (c) DLS hydrodynamic size distributions by volume of Rif-(P*t*BA-Br)<sub>3</sub>. Table 1, entry 4.



**Figure S12.** (a) Cyclic voltammogram of 0.43 mM Cu<sup>II</sup>Br<sub>2</sub>/TPMA in 16% (v/v) *t*BA/DMF ([*t*BA]<sub>0</sub> = 1.07 M) containing 0.2 M TBAP in the absence (black line) and in the presence of 1.95 mM Rif-(P*t*BA-Br)<sub>3</sub> (red line) recorded at v = 0.1 V·s<sup>-1</sup>, (b) current profile vs. time for the polymerization of *t*BA from Rif-(P*t*BA-Br)<sub>3</sub>, (c) DLS hydrodynamic size distributions by volume of Rif-(P*t*BA-Br)<sub>3</sub>. Table 1, entry 5.



**Figure S13.** <sup>1</sup>H NMR spectrum of Rif-(P*n*BA-Br)<sub>3</sub> polymers ( $M_n = 56100$ , D = 1.59) after purification (in CDCl<sub>3</sub>). Table 1, entry 3.



**Figure S14.** <sup>1</sup>H NMR spectrum of Rif-(P*t*BA-Br)<sub>3</sub> polymers ( $M_n = 30100$ , D = 1.71) after purification (in CDCl<sub>3</sub>). Table 1, entry 4.



**Figure S15.** <sup>1</sup>H NMR spectrum of Rif-(PtBA-b-PtBA-Br)<sub>3</sub> polymers ( $M_n = 72100$ , D = 1.58) after purification (in CDCl<sub>3</sub>). Table 1, entry 5.

12 of 18



**Figure S16.** GPC traces of (**a**) Rif-(PtBA-Br)<sub>3</sub> (Table 1, entry 4) and the corresponding cleaved PtBA arms, and (**b**) Rif-(PtBA-b-PtBA-Br)<sub>3</sub> (Table 1, entry 5) and the corresponding cleaved PtBA-b-PtBA arms.



**Figure S17.** <sup>1</sup>H NMR spectrum of Rif-(PAA-Br)<sub>3</sub> polymers after purification (in DMSO-*d*<sub>6</sub>). Table 1, entry 4.



**Figure S18.** <sup>1</sup>H NMR spectrum of Rif-(PAA-*b*-PAA-Br)<sup>3</sup> polymers after purification (in DMSO-*d*<sub>6</sub>). Table 1, entry 5.



Figure S19. FT-IR characterization of (a) Rif-(PtBA-Br)3 (Table 1, entry 4) and (b) Rif-(PAA-Br)3.



**Figure S20.** FT-IR characterization of (**a**) Rif-(PtBA-b-PtBA-Br)<sub>3</sub> (Table 1, entry 5) and (**b**) Rif-(PAA-b-PAA-Br)<sub>3</sub>.



**Figure S21.** Water contact angle images of (a) Rif-(PtBA-Br)<sub>3</sub> (Table 1, entry 4) and (b) corresponding Rif-(PAA-Br)<sub>3</sub>, and diiodomethane contact angle images of (c) Rif-(PtBA-Br)<sub>3</sub> (Table 1, entry 4) and (d) corresponding Rif-(PAA-Br)<sub>3</sub>.



**Figure S22.** DLS hydrodynamic size distributions by volume of Rif-(P*t*BA-*b*-P*t*BA-Br)<sub>3</sub> in different pH.

Table S1. Calculation of Cu<sup>1</sup>/Cu<sup>II</sup> ratio for the preparation of rifampicin-based macromolecules.

| Entry (according to Table 1) | $k_{ m p}{}^{ m app}$ | [Pn•]                                | KATRP     | [Pn-Br] | [Cu <sup>I</sup> ]/[Cu <sup>II</sup> ] <sup>c</sup> | [Cu <sup>I</sup> L+] | [Br-Cu <sup>II</sup> L+] |
|------------------------------|-----------------------|--------------------------------------|-----------|---------|-----------------------------------------------------|----------------------|--------------------------|
| Entry (according to Table 1) | (h-1) a               | (M × 10 <sup>10</sup> ) <sup>a</sup> | (× 108) b | (mM)    |                                                     | (%)                  | (%)                      |
| 1                            | 0.133                 | 13.3                                 | 0.0047    | 1.35    | 0.02                                                | 2.1                  | 97.9                     |
| 2                            | 0.109                 | 10.9                                 | 1.30      | 2.71    | 31.06                                               | 96.9                 | 3.1                      |
| 3                            | 0.095                 | 9.53                                 | 1.30      | 2.71    | 27.07                                               | 96.4                 | 3.6                      |
| 4                            | 0.137                 | 13.3                                 | 1.30      | 6.74    | 15.18                                               | 93.8                 | 6.2                      |
| 5                            | 0.097                 | 9.42                                 | 1.30      | 1.95    | 37.17                                               | 97.4                 | 2.6                      |

<sup>a</sup> The radical concentration  $[P_n^{\bullet}]$  was calculated according to the equation defined as  $[P_n^{\bullet}] = \left(\frac{d\ln[M]}{dt}\right) \left(k_p\right)^{-1}$  [1], where  $\frac{d\ln[M]}{dt}$  values were calculated from the first order kinetics plots (S8c in SI, 1a, 2a, 3a and 4a) [2],  $k_p = 2.77 \times 10^4 \text{ M}^{-1} \text{s}^{-1}$  for *n*BA polymerization [3],  $k_p = 2.86 \times 10^4 \text{ M}^{-1} \text{s}^{-1}$  for *t*BA polymerization [4], <sup>b</sup> entry 1:  $K_{\text{ATRP}} = 4.7 \times 10^{-5}$  was determined theoretically for the CuI/TPMA<sup>+</sup> catalyst acetonitrile at 25°C [5]; entry 2–5:  $K_{\text{ATRP}} = 1.3 \times 10^{-8}$  was determined for the Cu<sup>I</sup>/TPMA<sup>+</sup> catalyst in methyl acrylate/acetonitrile 50/50 (v/v) at 50°C [6] <sup>c</sup> The Cu<sup>I</sup>/Cu<sup>II</sup> ratio was calculated according to the equation defined as  $\frac{[Cu^{IT}PMA^+]}{[Br-Cu^{II}TPMA^+]} = \frac{[P_n^*]}{[P_n - Br]K_{\text{ATRP}}}$  [6].

Table S2. Theoretical Al<sup>3+</sup> concentration in solution and polymer by monomer conversion.

| Entry<br>(according to Table<br>1 and S1) | Q a<br>(C) | n <sub>Al<sup>3+ b</sup><br/>(mol × 10<sup>5</sup>)</sub> | [Al <sup>3+</sup> ] <sub>solution</sub> c<br>(ppm by wt) | [Al <sup>3+</sup> ] <sub>polymer</sub> <sup>d</sup><br>(ppm by wt) |
|-------------------------------------------|------------|-----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|
| 1                                         | 12.93      | 4.47                                                      | 48.9                                                     | 11.7                                                               |
| 2                                         | 16.53      | 5.71                                                      | 98.6                                                     | 25.1                                                               |
| 3                                         | 16.53      | 5.71                                                      | 98.6                                                     | 26.3                                                               |
| 4                                         | 21.06      | 7.28                                                      | 128.0                                                    | 48.9                                                               |
| 5                                         | 12.85      | 4.44                                                      | 87.8                                                     | 25.8                                                               |

<sup>a</sup> The total passed charge was calculated by integration of the chronoamperometry (CA) area ( $Q = I \cdot t$ ); <sup>b</sup> theoretical amount of Al<sup>3+</sup> in the reaction mixture was calculated from CA:  $n_{Al^{3+}} = Q/F/3$  where F = 96485 C/mol; <sup>c</sup> the Al concentration in the reaction mixture was calculated according to the equation defined as:  $[Al^{3+}]_{solution} = [Al^{3+}]$  MWAI / wttotal × 1000000 where solution density was assumed as  $(d) = d_{DMF} \cdot \% (v/v)_{DMF} + d_{monomer} \cdot \% (v/v)_{monomer}$ ; <sup>d</sup> the Al concentration in pure polymer sample was determined as follows:  $[Al^{3+}]_{polymer} = [Al^{3+}]_{solution} / df \cdot conversion$ , where df is dilute factor, df = 2 [7].

**Table S3.** Calculation of theoretical Dead Chain Fraction (DCF<sub>theo</sub>) for polymerization of acrylates at low copper catalyst loading.

| Entry<br>(according to<br>Table 1) | [Pn•] a<br>(M × 10 <sup>10</sup> ) | [D] <sup>b</sup><br>(M × 10 <sup>6</sup> ) | [P <sub>n</sub> -Br]<br>(mM) | DCF <sub>theo</sub> c<br>(%) |
|------------------------------------|------------------------------------|--------------------------------------------|------------------------------|------------------------------|
| 1                                  | 13.3                               | 3.52                                       | 1.35                         | 0.26                         |
| 2                                  | 10.9                               | 3.30                                       | 2.71                         | 0.12                         |
| 3                                  | 9.53                               | 2.51                                       | 2.71                         | 0.09                         |
| 4                                  | 13.3                               | 6.37                                       | 6.74                         | 0.09                         |
| 5                                  | 9.42                               | 3.52                                       | 1.95                         | 0.18                         |

<sup>a</sup> The radial concentration [P<sup>•</sup>] was calculated according to the equation defined as  $[P_n^*] = \left(\frac{d\ln[M]}{dt}\right) \left(k_p\right)^{-1}$  [1], where  $\frac{d\ln[M]}{dt}$  values were calculated from the first order kinetics plots (Figure 2a) [8], entry 1:  $k_p = 2.86 \times 10^4 \text{ M}^{-1}\text{s}^{-1}$  [4], entry 2-5:  $k_p = 2.77 \times 10^4 \text{ M}^{-1}\text{s}^{-1}$  [9]. <sup>b</sup> The concentration of terminated chains [D] was calculated according to the equation defined as  $[D] = k_t[P]^2 t$  where *t* (denote reaction time) = 19800 s (entry 1), *t* = 27601 s (entry 2 and 3), *t* = 36000 s (entry 4) and *t* = 39600 s (entry 5),  $k_t = 1.0 \times 10^8 \text{ M}^{-1}\text{s}^{-1}$  [10]. <sup>c</sup> DCF =  $\left(\frac{[D]}{[P-X]_0}\right) \times 100\%$  [1].

| Entry<br>(according<br>to Table 1) | <i>M</i> n,theo<br>(×10 <sup>−3</sup> ) ª<br>(chain) | DP <sub>n,theo</sub> <sup>b</sup><br>(chain) | M <sub>n,app</sub><br>(×10 <sup>-3</sup> ) <sup>c</sup><br>(chain) | DP <sub>n,app</sub> <sup>b</sup><br>(chain) | $M_{ m w}/M_{ m n}$ c | f <sup>i d</sup><br>(%) |
|------------------------------------|------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|-----------------------|-------------------------|
| 4                                  | 9.9                                                  | 77                                           | 23.4                                                               | 182                                         | 1.20                  | 42                      |
| 5                                  | 23.6                                                 | 184                                          | 44.6                                                               | 348                                         | 1.42                  | 53                      |

Table S4. Results of the detaching of polymer arms from rifampicin-based macromolecules.

<sup>a</sup>  $M_{n,th} = ([tBA]_0/[Rif-Br_3]_0) \times \text{conversion} \times M_{tBA}, [tBA]_0 - \text{initial monomer concentration, [Rif-Br_3]_0 - initiator concentration; <sup>b</sup> established according to Table 1; <sup>c</sup> apparent <math>M_n$  and  $M_w/M_n$  of the arms cleaved from the rifampicin-based macromolecules determined by THF GPC (PS standards); <sup>d</sup> efficiency of initiation:  $f_i = (DP_{n,theo} (\text{per chain})/DP_{n,app} (\text{per chain})) \times 100\%$ .

**Table S5.** Experimental values of contact angles, parameters of free surface energy (FSE) as calculated by Owens-Wendt method for rifampicin-based polymer coatings.

| Entry<br>(according to<br>Table 1) | Polymer | Experimental values of $\theta$ (°) |                       |       |                       | Parameters of FSE<br>(mJ/m²)<br>water-<br>diiodomethane |                |                 |
|------------------------------------|---------|-------------------------------------|-----------------------|-------|-----------------------|---------------------------------------------------------|----------------|-----------------|
| Table 1)                           |         | Diiodomethane                       | Standard<br>deviation | Water | Standard<br>deviation | γs                                                      | $\gamma s^{d}$ | γs <sup>p</sup> |
| 4                                  | PtBA    | 58.36                               | 2.63                  | 90.06 | 1.93                  | 29.82                                                   | 26.94          | 2.88            |
| 4                                  | PAA     | 45.12                               | 0.76                  | 69.50 | 2.17                  | 41.09                                                   | 30.32          | 10.77           |
| 5                                  | PtBA    | 70.64                               | 1.30                  | 92.34 | 0.96                  | 23.54                                                   | 19.55          | 3.99            |
| 5                                  | PAA     | 50.49                               | 0.91                  | 81.96 | 1.75                  | 35.01                                                   | 30.06          | 4.95            |

Table S6. Volume mean diameter of rifampicin-based macromolecules at varying pH.ª

| Sample | рН    | Hydrodynamic<br>diameter<br>(nm) |
|--------|-------|----------------------------------|
| 1      | 12.90 | $14.59\pm0.60$                   |
| 2      | 10.03 | $11.96\pm0.80$                   |
| 3      | 7.92  | $11.48 \pm 1.16$                 |
| 4      | 6.06  | $9.21 \pm 1.35$                  |
| 5      | 4.00  | $6.96\pm0.50$                    |
| 6      | 2.99  | $5.48 \pm 0.84$                  |
| 7      | 2.00  | $5.70 \pm 0.29$                  |

<sup>a</sup> The experiment was conducted for the polymer sample received according to Table 1, entry 5 after acidic hydrolysis.

## References

- 1. Zhong, M.; Matyjaszewski, K. How fast can a CRP be conducted with preserved chain end functionality? *Macromolecules* **2011**, *44*, 2668–2677, doi:10.1021/ma102834s.
- Chmielarz, P.; Krys, P.; Wang, Z.; Wang, Y.; Matyjaszewski, K. Synthesis of well-defined polymer brushes from silicon wafers *via* surface-initiated *se*ATRP. *Macromol. Chem. Phys.* 2017, 218, 1700106, doi:10.1002/macp.201700106.
- Buback, M.; Kurz, C.H.; Schmaltz, C. Pressure dependence of propagation rate coefficients in free-radical homopolymerizations of methyl acrylate and dodecyl acrylate. *Macromol. Chem. Phys.* 1998, 199, 1721– 1727, doi:10.1002/(SICI)1521-3935(19980801)199:8<1721::AID-MACP1721>3.0.CO;2-5.
- Dervaux, B.; Junkers, T.; Schneider-Baumann, M.; Du Prez, F.E.; Barner-Kowollik, C. Propagation rate coefficients of isobornyl acrylate, *tert*-butyl acrylate and 1-ethoxyethyl acrylate: A high frequency PLP-SEC study. *J. Polym. Sci. A Polym. Chem.* 2009, 47, 6641–6654, doi:10.1002/pola.23706.
- Bortolamei, N.; Isse, A.A.; Di Marco, V.B.; Gennaro, A.; Matyjaszewski, K. Thermodynamic properties of copper complexes used as catalysts in atom transfer radical polymerization. *Macromolecules* 2010, 43, 9257–9267, doi:10.1021/ma101979p.

- 6. Wang, Y.; Kwak, Y.; Buback, J.; Buback, M.; Matyjaszewski, K. Determination of ATRP equilibrium constants under polymerization conditions. *ACS Macro Lett.* **2012**, *1*, 1367–1370, doi:10.1021/mz3005378.
- 7. Chmielarz, P. Synthesis of α-D-glucose-based star polymers through simplified electrochemically mediated ATRP. *Polymer* **2016**, *102*, 192–198, doi: 10.1016/j.polymer.2016.09.007.
- Chmielarz, P.; Fantin, M.; Park, S.; Isse, A.A.; Gennaro, A.; Magenau, A.J.D.; Sobkowiak, A.; Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization (*e*ATRP). *Prog. Polym. Sci.* 2017, 69, 47–78, doi:10.1016/j.progpolymsci.2017.02.005.
- 9. Buback, M.; Kurz, C.H.; Schmaltz, C. Pressure dependence of propagation rate coefficients in free-radical homopolymerizations of methyl acrylate and dodecyl acrylate. *Macromolecular Chemistry and Physics* **1998**, 199, 1721–1727, doi:10.1002/(SICI)1521-3935(19980801)199:8<1721::AID-MACP1721>3.0.CO;2-5.
- 10. Barth, J.; Buback, M.; Hesse, P.; Sergeeva, T. Termination and transfer kinetics of butyl acrylate radical polymerization studied via SP-PLP-EPR. *Macromolecules* **2010**, *43*, 4023–4031, doi:10.1021/ma1006039.



© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).