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Abstract: The residual stress of machined surface has a crucial influence on the performance of parts.
It results in large deviations in terms of the position accuracy, dimension accuracy and service life.
The purpose of the present study is to provide a novel semi-empirical residual stress prediction
approach for turning Inconel 718. In the method, the bimodal Lorentz function was originally applied
to express the residual stress distribution. A statistical model between the coefficients of the bimodal
Lorentz function and cutting parameters was established by the random forest regression, in order to
predict the residual stress distribution along the depth direction. Finally, the turning experiments,
electrolytic corrosion peeling, residual stress measurement and correlation analysis were carried
out to verify the accuracy of predicted residual stress. The results show that the bimodal Lorentz
function has a great fitting accuracy. The adjusted R2 (Ad-R2) are ranging from 95.4% to 99.4% and
94.7% to 99.6% in circumferential and axial directions, respectively. The maximum and minimum
errors of the surface residual tensile stress (SRTS) are 124.564 MPa and 18.082 MPa, those of the peak
residual compressive stress (PRCS) are 84.649 MPa and 3.009 MPa and those of the depth of the
peak residual compressive stress (DPRCS) are 0.00875 mm and 0.00155 mm, comparing three key
feature indicators of predicted and simulated residual stress. The predicted residual stress is highly
correlated with the measured residual stress, with correlation coefficients greater than 0.8. In the
range of experimental measurement error, the research in the present work provides a quite accurate
method for predicting the residual stress in turning Inconel 718, and plays a vital role in controlling
the machining deformation of parts.

Keywords: semi-empirical prediction; residual stress; finite element model; lorentz function; turning
Inconel 718

1. Introduction

Nickel-based superalloys, especially Inconel 718, are widely applied in the aviation industry
because of their excellent mechanical properties at high temperature [1,2]. However, Inconel 718 is a
hard material to be machined even for its wear resistance. In the process of machining, owing to the
coupling effect of thermal-mechanical load, complex residual stress distribution will be formed on the
machined surface and subsurface, which will affect the machining accuracy, surface integrity and the
service life of the parts [3–5]. Generally, the residual compressive stress is beneficial to the fatigue life
of the parts, while the residual tensile stress is the opposite [6]. The existence of complex residual stress
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is a severe challenge for the control of dimensional accuracy and shape and position error of the parts.
Therefore, it is of great practical significance to study the residual stress distribution of Inconel 718.

At present, the prediction of residual stress mainly focuses on numerical method [7–10], analytical
method [11–14] and semi-empirical method [15–18]. In the literature [7,8], the incremental updated
Lagrangian method was applied to turning simulations of titanium alloy and nickel alloy, and the
predicted residual stress profile has the same shape as the measured in experiment, such as the same hook
shape for turning Inconel 718. Mondelin et al. [9] investigated the distribution of thermo-mechanical
loads during the simulation of the orthogonal cutting with the Arbitrary Lagrangian and Eulerian
(A.L.E.) model. The equivalent loads instead of the thermo-mechanical loads in the cutting process
were directly employed to the machined surface without chip deformation and material separation.
The predicted stress values are relatively close to the measured. Ulutan et al. [11] established a
thermomechanical model to calculate the residual stress, with the shear energy in the primary shear
zone, the friction energy in the chip contact zone, and the thermal balance between the chip, tool and
workpiece based on the first law of thermodynamics included. This model was further improved in
the work of Lazoglu et al. [12]. Liang et al. [13] combined cutting conditions and workpiece material
properties into the predictive model for cutting forces, cutting temperatures and residual stresses
caused by machining. Furthermore, Huang et al. [14] introduced the heating time of interest points to
improve the stress field model on the basis of literature [11–13]. The analytical method has an accurate
prediction effect for 2D orthogonal cutting.

The numerical method applies the finite element software to simulate the machining process of
the material. Given the initial thermal and mechanical boundaries, the residual stress after cutting can
be calculated. However, the numerical method needs rich experience in setting the initial thermal and
mechanical boundaries, and the simulation process is also computationally expensive. The analytical
method mainly is on the basic of thermal equation and elastic-plastic equation to predict the residual
stress of the interest point. Compared with the numerical method, the analytical method is time-saving,
but the analytical method has made many simplifications in the prediction process, and is only suitable
for the prediction of the residual stress in 2D turning [19]. The semi-empirical method utilizes the
function fitting simulated or experimental data to obtain the function expression of machining residual
stress distribution [20–22], which is helpful to study the converse depth of tensile and compressive
residual stress and the amplitude and location of the maximum peak compressive residual stress in
surface and subsurface.

Polynomial functions [15] and exponentially damped sine/cosine functions [20,21] are often
employed in semi-empirical method to fit residual stress data. Ma et al. [15] studied the distribution
trend of residual stress by using the six-order polynomials and the influence of the thermal load
on the residual stress distribution in the rough machining stage of face turning. In the research of
Ulutan et al. [16], exponentially damped cosine function was applied to fit the measured residual stress
data of turning and milling nickel-based superalloys. The coefficients of exponentially damped cosine
function were determined with particle swarm optimization (PSO) algorithm minimizing the difference
between the model and the measurements. Tan et al. [17] utilized an exponential decay function and
damped cosine function to study the residual stress distribution after milling, polishing and shot
peening. The model coefficients were obtained by establishing regression relationships between the
coefficients of the proposed model and the processing parameters. In the literature of Yang et al. [20],
a 2D milling simulation finite element model was established, and the finite element results of residual
stress distribution along the depth direction were fitted by using the exponentially damped cosine
function and particle swarm optimization algorithm. Furthermore, the regression functions between
the coefficients of the fitting function and the cutting parameters were applied to predict the distribution
of residual stress along the depth direction.

Based on the discussions above, it can be concluded from references [15–17,20] that there are
fewer undetermined coefficients using the exponentially damped sine/cosine function in the process of
fitting residual stress data. However, due to the sine and cosine terms, the fitted subsurface residual
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stress will fluctuate. Therefore, it is necessary to select a suitable function for fitting the residual stress
data to improve the fitting accuracy. Moreover, the main prediction method is to establish the function
relationship between the fitting function coefficients and the processing parameters. It is complicated
to establish the function relationship and the prediction accuracy needs to be improved.

Overall, this study aims to develop a novel residual stress model and prediction approach for
turning Inconel 718. As shown in Figure 1, thirteen 3D turning simulations are carried out and the
residual stress data along the depth direction is extracted. The bimodal Lorentz function is utilized to fit
the residual stress distribution for the first time. Simultaneously, the statistical model was established
by using random forest method and it realizes the prediction of residual stress distributions under
the desired cutting parameters. Compared with three extra simulations and predictions, the three
key feature indicators, the surface residual tensile stress (SRTS), the peak residual compressive stress
(PRCS) and the depth of peak residual compressive stress (DPRCS), have small error. Furthermore,
comparing the prediction model with measured residual stress in experiments, the validity of the
prediction model is well verified.

Figure 1. The main steps of residual stress prediction.

2. Methods

2.1. FEM Simulation

As shown in Figure 2, a 3D turning finite element elastic-plastic model is established by using
AdvantEdge V7.4015 software (V7.4015, Third Wave Systems, Minneapolis, MN, USA), in which
the workpiece has the dimensions of 5 mm × 3 mm × 2 mm (length × width × height). The DOC
means the depth of cut. The AdvantEdge software automatically divides the mesh of the workpiece
and the tool with tetrahedral elements. The maximum and minimum element sizes are 0.5 mm and
0.03 mm, respectively. Moreover, in the setting of the workpiece, the adaptive remeshing parameter is
0.005 mm and the curvature-safety keeps 3 so that the finer mesh in the cutting area is automatically
divided. And the physical and mechanical properties of Inconel 718 are shown in Table 1, where the
Young’s Modulus and Poisson’s Ratio are measured by X-ray diffractometer. The thermal conductivity,
specific heat and thermal expansion coefficient are temperature dependent. The Johnson-Cook
constitutive model [23] used in the present study is a common constitutive model for researching
elastic-plastic materials in Equation (1), including strain hardening effect, strain rate hardening effect
and thermal softening effect of materials.

σ = (A + Bεn)︸      ︷︷      ︸
Strain hardening

1 + C ln


.
ε
.
ε0


︸            ︷︷            ︸

Strain rate hardening

(
1−

(
T − Troom

Tmelt − Troom

)m)
︸                      ︷︷                      ︸

Thermal so f tening

(1)

where σ is equivalent plastic stress (MPa), ε is equivalent plastic strain,
.
ε is equivalent plastic strain

rate (s−1),
.
ε0 is reference equivalent plastic strain rate (s−1), T is temperature (◦C), Tmelt is melting

point of workpiece material (◦C), A, B, C, m and n are material parameters. In the preprocessing
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settings of the simulation, Troom was taken as 20 ◦C. The heat treatment process of Inconel 718 material
in the present work includes annealing, solution treatment, primary aging and secondary aging
(in Experimental Schedules), which is the similar to the one of the precipitation hardening Inconel 718

in the literature [24]. Thus, A, B, C, m, n and
.
ε0 taken as 1290 MPa, 895 MPa, 0.016, 1.55, 0.526 and 0.03

respectively were applied to the present work.

Figure 2. The simplified diagram of 3D finite element turning.

Table 1. Physical and mechanical properties of Inconel 718 [25].

Density
(kg/m3)

Young’s
Modulus

(GPa)

Poisson’s
Ratio

Thermal
Conductivity

(W/(M·K))

Specific
Heat

(J/(kg·K))

Thermal Expansion
Coefficient (10−6/K)

Melting
Temperature

(K)

8240 214.58 0.305

10.53 (293 K) 435 (293 K) 11.8 (293 K–373 K)

1573
14.7 (373 K) 481.4 (573 K) 13 (293 K–573 K)
17.8 (573 K) 514.8 (773 K) 14.1 (293 K–673 K)
19.6 (773 K) 573.4 (973 K) 14.8 (573 K–873 K)

In addition, the carbide tool with 0.002 mm TiAlN coating was modelled as a rigid body in
AdvantEdge software, which has 55◦ top angle, 1.2 mm nose radius, −7◦ inclination angle, −6◦

rake angle, 6◦ relief angle, −17.5◦ lead angle and 0.02 mm edge radius. The tool material was set
to Carbide-Grade-M. The tool was meshed with the tetrahedral element provided by AdvantEdge
software, with maximum element size of 0.3 mm and minimum element size of 0.01 mm and the contact
area between the tool, workpiece and chips has a finer mesh automatically. The friction coefficient
between the tool and the workpiece is 0.23.

In the simulation, the tool is fixed and the workpiece moves along the cutting direction, that is,
the workpiece motion in Figure 2. The length of cut is 6 mm in the setting of cutting parameters.
As mentioned above, the length of the workpiece is 5 mm. Therefore, it is the process of 1 mm empty
cutting when the workpiece moves along the cutting direction from 5 mm to 6 mm, and the purpose is
to make the chips separate from the workpiece and realize the complete machining of the workpiece.

According to the change of cutting forces in the whole cutting process, the Figure 3 illustrates that
the cutting forces are stable between 0.5 mm and approximately 4 mm, and the fluctuation of cutting
forces is gradual. The research on turning residual stress in this range is closer to the actual situation of
cylindrical turning. The residual stress distribution in the circumferential direction (X direction) in
Figure 4 is not uniform. The mechanical load and thermal load are coupled with each other during the
machining process. When the tool starts to cut into the workpiece, the heat dissipation conditions of
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the tool, workpiece and chips are conducive to heat dissipation. As the cutting continues, the heat
dissipation capacity becomes weaker, the thermal softening effect of the material is enhanced, and the
cutting force is reduced (approximately 3 mm in Figure 3). The strength of this effect is related to
feed, depth of cut and cutting speed, which causes the different degrees of non-uniformity in stress
distribution. The literature [26] has given the method to extract the residual stress. In the simulation
results, two planes ( 1O and 2O in Figure 4) were sliced, and the residual stress data were extracted at
1.25 mm, 2.5 mm and 3.75 mm of these two planes respectively, which are recorded as RS1, RS2, RS3,
RS4, RS5 and RS6, as shown in Figure 4. The three distances above are all in the range of 0.5 mm
to 4 mm, which belong to the stable cutting process. In order to reduce the simulation error and
non-uniformity of the residual stress, the residual stress to be studied is the average value of 6 groups
of the extracted data, namely:

σ(h) =
1
6

6∑
i=1

RSi (2)

where h is the depth along the radial direction from the cutting surface (mm); σ(h) is the residual stress
along the radial direction (MPa); RS is the abbreviation of the residual stress.

Figure 3. The cutting forces fitting diagram of simulation process.

Figure 4. The schematic diagram of residual stress extraction.

2.2. Random Forest Regression

The decision trees and regression methods are the approaches to establish predictive models [27,28].
In the literature [29], a prediction model of ore crushing plate lifetimes was proposed based on the
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decision trees and artificial neural networks. Random forests are an effective tool in prediction.
On the basis of bagging algorithm [30], some sample features are randomly selected from all the
sample features, in which an optimal sample feature is chosen as the sub partition of the decision
tree on the root node. For regression problems, the final prediction is the average value from the
prediction of all the trees in the prediction sets. In this way, the bagging predictors is improved by
random forests to ensure the accuracy of prediction [31]. In the present work, the random forest
algorithm [18] realizes the prediction between cutting parameters and residual stress distribution.
As shown in Figure 5, the simulation results under the known cutting parameters

→
p are fitted to

obtain the independent parameters
→
s of the corresponding fitting function, which can get the training

data sets
{
→
p i,
→
s i

}
train

, i = 1, 2, · · ·, m (m is the number of training data sets.). However, in order to

predict the parameters
→
s O of the residual stress fitting function corresponding to the input cutting

parameters
→
p I, it is necessary to establish the mapping relationship f :

→
p →

→
s between the cutting

parameters
→
p and the parameters

→
s of the function. Generally, equation

→
s = f

(
→
p
)

expressed by
specific function is applied to establish the mapping relationship. However, it is difficult to give the
specific functional relationship because of the complexity between the residual stress distribution and
the cutting parameters.

Figure 5. The parameters prediction flow chart of random forest regression.

By comparison, the random forest algorithm is able to establish the mapping relationship
f :
→
p →

→
s between

→
p and

→
s without giving the specific equation by utilizing the bagging method

to carry out the random sampling with return of the training data sets and applying the regression
tree to the fitting of the corresponding random samples. Test sets are applied to test the predicted
accuracy (in Results and Discussions). For the input parameters

→
p I in the test sets, the random forest

algorithm gives the output value
→
s Oj of each regression tree, and takes the mean value of

→
s Oj as the

final predicted value
→
s O.
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2.3. Model of Residual Stress Based on Lorentz Function

As is known to all, the mechanical load generally causes the residual compressive stress, and the
thermal load often produces the residual tensile stress. As shown in Figure 6a, the Zone 1 is near
the machining surface and the Zone 2 is far from the surface. The mechanical load leads to plastic
deformation of materials in the Zone 1, while the materials have elastic strain in the Zone 2. With the
mechanical load removed, the materials in the Zone 1 still retain large plastic strain, while the strain in
the Zone 2 remains at a low level. Therefore, the materials in the Zone 1 form residual compressive
stress under the constraint of materials in the Zone 2. In contrast, the thermal gradient in the Zone 1 is
larger than that in the Zone 2, so the materials in the Zone 1 keep a larger thermal expansion than that
in the Zone 2. After cooling, residual tensile stress is formed in the Zone 1 due to the limitation of the
inner layer materials in the Zone 2. Therefore, the coupled mechanical and thermal loads result in the
residual stress profile in the machined surface layer of the parts. The effect of thermal load is more
obvious than that of mechanical load on the machined surface of Inconel 718 material, so the residual
tensile stress state is formed on the surface. With the increase of depth, the effect of mechanical load on
the inner layer material is enhanced, which make it change to the residual compressive stress state,
and there is a peak value of the residual compressive stress. Finally, the residual stress remains at the
level in the bulk material. The three key feature indicators of residual stress distribution along the
depth direction are shown in Figure 6b, including the SRTS, the PRCS and the DPRCS. The distribution
trend of residual stress along the depth direction can be expressed by a proper function. The random
forest algorithm predicts the residual stress distribution in the turning Inconel 718 material under the
desired cutting parameters.

Figure 6. (a) The simplified diagram of turning process; (b) The typical distribution of residual stress
along the depth direction.

The Lorentz function, applied to fit spectral characteristics, has an excellent effect for fitting data
with peak characteristics. Equation (3) is one of the expressions of the Lorentz function. On the basis
of the Lorentz function, Equation (4), called the bimodal Lorentz model, was proposed to predict
the residual stress distribution along the depth direction of the surface layer after turning Inconel
718. In Equation (4), h is the independent variable and σ(h) is the dependent variable. There are five
undetermined coefficients, namely σ0, A1, A2, ω and hc.

L(x) =
2
π
×

ω

4(x− xc)
2 +ω2

(3)

σ(h) = σ0 +
2A1

π
×

0.2
4h2 + 0.04

+
2A2

π
×

ω

4(h− hc)
2 +ω2

(4)
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For the continuous function on the interval [a, b]:

y = f (x) (5)

There is the extreme point xe and corresponding extreme value ye, satisfying the condition of
Equation (6).  dy

dx |x=xe
=

d f (x)
dx |x=xe

= 0
ye = f (xe)

(6)

Similarly, the extreme point he and corresponding extreme value σe of the Equation (4) satisfy the
Equation (7):  dσ(h)

dh |h=he
= 0

σe = σ(he)
(7)

Therefore, in Equation (4), the extreme point {he}train of the residual stress distribution under each
group of cutting parameters

{
vc, ap, f

}
train

in the simulation data set was calculated by the derivative of
σ(h), and the extreme value {σe}train of the residual stress distribution was further obtained. In this way,
the key parameters {A1, A2,ω, hc, σe}train were adopted to determine fitting function rather than five
coefficients, and the random forest regression was utilized to establish the corresponding relationship
between cutting parameter

{
vc, ap, f

}
train

and key parameters {A1, A2,ω, hc, σe}train, so as to further

predict the residual stress distribution under the desired cutting parameters
{
vc, ap, f

}
desired

(cutting
parameters in test sets). That is to say, five parameters {A1, A2,ω, hc, σe}predict predicted by random forest
regression determine the residual stress distribution equation under the desired cutting parameters{
vc, ap, f

}
desired

.

3. Experimental Schedules

3.1. Workpiece and Cutting Tool

Inconel 718 pipes were used in turning experiments, with outer diameter of 76 mm, wall thickness
of 8 mm and axial length of 200 mm. After annealed, 720 ◦C/8 h, cooled at 50 ◦C/h to 620 ◦C, held at
620 ◦C/8 h and quick cooled, Inconel 718 has the hardness of 43 HRC. The chemical composition of the
material is shown in Table 2.

Table 2. The composition of main elements in Inconel 718.

Elements Ni Fe Cr Nb Mo Ti

Weight (%) 52.860 19.150 19.085 5.085 3.105 0.710

The turning experiments were carried out on the SK50P horizontal CNC machine tool. In Figure 7,
the tool holder (DDHNR 2525M 1504) has the section of 25 mm × 25 mm and the inclination angle of
−7◦. Insert (DNMG 15 04 12-SMR 1105) is a D-type (55◦ top angle) tool with PVD (TiAlN) coating and
tool nose radius of 1.1906 mm. Other parameters are consistent with the tool settings in the simulation.
Moreover, each test is dry cut with a new insert.
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Figure 7. The experimental details of turning Inconel 718 pipes.

3.2. Turning Parameters

There are 16 sets of cutting parameters using 3-factor 4-level orthogonal table, namely L16(43).
Among them, 13 sets of parameters were simulated to establish the statistical model of residual stress.
The turning experiments adopted the remaining three sets of cutting parameters in Table 3. In Section 4.3,
the results of turning experiments will be applied to verify the residual stress prediction model.

Table 3. The turning experiment parameters.

No. of Experiments Cutting Speed vc (m/min) Feed Rate f (mm/r) Depth of Cut ap (mm)

1 30 0.1 0.2
2 90 0.3 0.2
3 120 0.4 0.2

3.3. Measurements of Residual Stress

In the experiments, the µ—360n type X-ray diffractometer was utilized to measure the surface
residual stress, shown in Figure 8a. The residual stress of the cut surface can be measured by X-ray
diffraction without damaging the cutting surface, which is one of the reliable methods to obtain the
residual stress of the machined surface. In the measurement, Cr K-Beta tube was applied with 30 kV
voltage and 1.2 mA current, the X-ray wavelength was 2.08480 A, 311 crystal plane was selected,
and diffraction angle (2Theta) and diffraction lattice angle were 150.876◦ and 29.124◦ respectively.

The points to be measured were calibrated on the cut surface of the workpiece after turning. Then,
the workpiece was placed on the base of the feeding system worktable. The height of workpiece
was adjusted with the lead screw, which made the spot of the X-ray diffractometer coincide with
the measured point on the cut surface by the feed system control box. During the measurement,
the oscillation unit continuously adjusted the angle, so that the sensor unit could measure the
Inconel 718 material at the right angle of measurement, and the residual stress values along the
circumferential and axial directions of the machined surface were obtained by computer. Furthermore,
the electrolytic corrosion method was adopted in order to study the trend of the surface residual stress
along the depth direction after turning Inconel 718 material. Compared with chemical corrosion,
the electrolytic corrosion method has higher efficiency and controllable corrosion depth. Figure 8b
shows the electrolytic corrosion device, in which the curved surface fits the machined surface of
the Inconel 718 pipes. The electrolyte enters from the electronic entrance through the peristaltic
pump, flows through the cathode corrosion rod and the workpiece surface, and finally flows into the
electrolytic cell from the electronic exit, where the workpiece is the anode. The residual stress values at
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different depths were obtained by electrolytic corrosion peeling and the residual stress measurement
after turning Inconel 718 pipes. Table 4 shows the electrolytic corrosion parameters in the peeling.

Figure 8. (a) The details of X-ray residual stress measurement; (b) The electrolytic corrosion device.

Table 4. The electrolytic parameters.

Electrolytic Parameters Values

Electrolyte 10% NaCl
Electrolyte speed 800 mL/min

Voltage 24 V
Electric current 3 A
Polishing rate 0.005 mm/s

4. Results and Discussions

4.1. Statistical Model of Predicting Residual Stress

For 3-factor 4-level orthogonal table L16(43), except for three sets of cutting parameters used
in experimental verification, the remaining 13 groups of cutting parameters were simulated by
finite element method and then residual stress data were extracted. The Equation (2) calculated the
average value of residual stress in circumferential and axial directions, and moreover the five key
parameters {A1, A2,ω, hc, σe}train were obtained by using Equation (4) to fit the data of the simulation.
Then, the random forest algorithm established the statistical model of predicting residual stress.
Tables 5 and 6 show the key parameter values of the fitting function of circumferential and axial
residual stress respectively, where the closer the Ad-R2 is to 1, the higher the fitting accuracy is.
As shown in Tables 5 and 6, the Ad-R2 is not less than 0.947, indicating that the fitting effect of residual
stress with Equation (4) is desirable.
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Table 5. The key parameters of circumferential residual stresses fitting function (vc: cutting speed in
m/min; f : feed rate in mm/r; ap: depth of cut in mm).

No. vc f ap A1 A2 ω hc σe Ad-R2

1 30 0.2 0.4 364.017 −104.180 0.099 0.0896 −285.156 0.979
2 30 0.3 0.6 263.666 −106.190 0.120 0.0976 −333.720 0.952
3 30 0.4 0.8 547.769 −454.569 0.235 0.0769 −451.186 0.994
4 60 0.1 0.4 444.092 −214.326 0.142 0.0774 −352.967 0.991
5 60 0.2 0.2 252.347 −111.825 0.112 0.0811 −288.342 0.972
6 60 0.3 0.8 891.701 −725.995 0.212 0.0428 −377.403 0.982
7 60 0.4 0.6 460.210 −287.150 0.172 0.0807 −424.856 0.981
8 90 0.1 0.6 346.455 −169.498 0.124 0.0852 −378.482 0.971
9 90 0.2 0.8 470.750 −292.847 0.159 0.0711 −525.055 0.984
10 90 0.4 0.4 616.592 −492.188 0.213 0.0633 −379.655 0.980
11 120 0.1 0.8 355.264 −180.584 0.137 0.0854 −375.208 0.972
12 120 0.2 0.6 503.378 −307.003 0.148 0.0663 −421.425 0.986
13 120 0.3 0.4 388.973 −216.087 0.147 0.0745 −320.907 0.988

Table 6. The key parameters of axial residual stresses fitting function (vc: cutting speed in m/min; f :
feed rate in mm/r; ap: depth of cut in mm.).

No. vc f ap A1 A2 ω hc σe Ad-R2

1 30 0.2 0.4 435.127 −174.628 0.111 0.0852 −463.574 0.985
2 30 0.3 0.6 323.190 −137.632 0.127 0.0952 −342.327 0.947
3 30 0.4 0.8 852.431 −702.291 0.238 0.0543 −401.623 0.992
4 60 0.1 0.4 471.094 −269.212 0.148 0.0754 −393.947 0.990
5 60 0.2 0.2 368.356 −210.993 0.137 0.0733 −324.781 0.980
6 60 0.3 0.8 649.120 −430.848 0.177 0.0636 −401.583 0.990
7 60 0.4 0.6 564.902 −368.620 0.182 0.0746 −383.094 0.980
8 90 0.1 0.6 396.488 −233.340 0.134 0.0783 −468.865 0.979
9 90 0.2 0.8 480.306 −290.734 0.151 0.0730 −406.263 0.992
10 90 0.4 0.4 682.622 −506.349 0.202 0.0593 −331.225 0.987
11 120 0.1 0.8 515.575 −349.894 0.175 0.0775 −420.300 0.991
12 120 0.2 0.6 590.375 −432.663 0.169 0.0618 −528.207 0.996
13 120 0.3 0.4 577.711 −372.320 0.171 0.0664 −347.409 0.992

The random forest algorithm was applied to establish the mapping relationship between cutting
parameters

{
vc, ap, f

}
train

and fitting function key parameters {A1, A2,ω, hc, σe}train, and predict the
residual stress profile under the desired cutting parameters on the basic of the training data sets, i.e.,
the cutting parameters and the key parameters in Tables 5 and 6. In the literature [32], the R2 values
of the test sets are in the range of 0.797 and 0.890. Therefore, in the present study, R2 values were
controlled between 0.80 and 0.85 to avoid over fitting. Therefore, the statistical model takes the cutting
parameters in Table 3 as the input parameters, and Table 7 shows the predicted five key parameters
corresponding to the bimodal Lorentz function (Equation (4)).

Table 7. The predicted key parameters of the residual stress prediction function (vc: cutting speed in
m/min; f : feed rate in mm/r; ap: depth of cut in mm).

vc f ap A1 A2 ω hc σe Direction Test No.

30 0.1 0.2
343.879 −128.140 0.116 0.0875 −292.893 Circumferential (a)
389.361 −163.529 0.128 0.0846 −352.447 Axial (b)

90 0.3 0.2
511.643 −308.741 0.165 0.0682 −316.324 Circumferential (c)
557.601 −347.867 0.159 0.0660 −340.623 Axial (d)

120 0.4 0.2
475.457 −369.108 0.185 0.0677 −326.093 Circumferential (e)
575.243 −438.225 0.194 0.0641 −373.932 Axial (f)
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4.2. Residual Stress Comparisons between Simulation and Prediction

Three sets of cutting parameters in Table 7 were simulated, and the simulation data was compared
with the predicted results. Figure 9 shows the comparisons between the predicted residual stress
distribution curves and the simulation results. It indicates that the curves predicted by the three
sets of cutting parameters, whether circumferential residual stress or axial residual stress, have good
consistency with the simulation results. The three key feature indicators, SRTS, PRCS and DPRCS, of six
residual stress distributions along the depth direction in Table 7 are compared, as shown in Figure 10.
It can be indicated that for the SRTS, the difference between the predicted value and the simulation
result of test (f) is the largest, the error is 124.564 MPa, and that of test (d) is the smallest, the error
is 18.082 MPa, in Figure 10a; besides, Figure 10b shows that for the PRCS, the difference between
the predicted value and the simulation result of test (a) is the largest, with an error of 84.649 MPa,
and that of test (e) is the smallest, with an error of 3.009 MPa; moreover, Figure 10c illustrates that
for the DPRCS, the difference between the predicted value and the simulation result of test (f) is the
largest, the error is 0.00875 mm, and that of test (a) is the smallest, the error is 0.00155 mm.

Figure 9. Cont.
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Figure 9. The comparisons of simulated and predicted residual stress results.

Figure 10. The indicators of predicted and simulated residual stress distribution. (a) The comparisons
of predicted and simulated SRTS; (b) The comparisons of predicted and simulated PRCS; (c) The
comparisons of predicted and simulated DPRCS.

The prediction of residual stress distribution is in good agreement with the simulation results for
turning Inconel 718 pipes. Therefore, it is proved that the Equation (4) and the random forest algorithm
are acceptable for prediction of residual stress distribution in turning Inconel 718 pipes.

4.3. Experimental Verification

The turning experiments were carried out to prove that Equation (4) is reliable for predicting
the residual stress distribution of Inconel 718 material. The predicted curves were compared with
the residual stress data measured in the experiments. Figure 11 indicates that the experimental data
and prediction curves have good consistency. Besides, the stress values of points were calculated on
each prediction curve with abscissas of the points consistent with the abscissas of the experimental
measured points. Therefore, two groups of point sets were got,

{
(hE, σE)

}
and

{(
hE, σp

)}
. Based on the
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correlation analysis on
(
σE, σp

)
, Table 8 shows correlation coefficients between the experimental stress

values and the predicted stress values, calculated by Equation (8).

r =

n∑
i=1

(σEi − σE)
(
σpi − σp

)
√

n∑
i=1

(σEi − σE)
2

√
n∑

i=1

(
σpi − σp

)2
(8)

where σEi represents the ith measured residual stress value, σE represents the average value of the
measured residual stress, σpi represents the ith predicted residual stress value, and σp represents the
average value of the predicted residual stress, all in MPa.

Figure 11. The comparisons of measured and predicted residual stress results.
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Table 8. The correlation coefficients between measured and predicted results.

Test No. (a) (b) (c) (d) (e) (f)

r 0.8776 0.9588 0.9193 0.8702 0.8558 0.8180

In Figure 11, the predicted curves and the experimental measured distributions have the same
hook shape, but the predicted curves are higher than the experimental residual stress values before the
depth of 0.05mm in most cases. The depth was calculated by the rate and time of electrolytic polishing
in the experiment. At the beginning of the electrolytic process, the top of the workpiece is closer to
the cathode corrosion rod (a < b), so the corrosion rate is faster than the surrounding, as shown in
Figure 12a. This effect is obvious at the initial stage of corrosion and will gradually weaken with
the progress of electrolytic corrosion, as illustrated in Figure 12b,c. Therefore, in the initial stage of
corrosion, the actual depth of corrosion is greater than that obtained by the product of polishing rate
and time (depth value in Figure 11), which causes the measured residual stress to be less than the
predicted before the depth of 0.05 mm. In particular, there is a slight increase in circumferential residual
stress (vc = 120 m/min, ap = 0.2 mm, f = 0.4 mm/r), which is due to the influence of cutting residual
height on electrolytic corrosion depth. In Figure 13 and Equation (9), the residual height increases
with the increase of feed. The existence of residual height increases the error between actual depth
and timing depth, which makes the maximum residual compressive stress peak appear in advance.
This effect is more significant with the increase of feed. Therefore, the circumferential and axial residual
stresses measured in the experiment shifted slightly to the left in Figure 11 for vc = 120 m/min, ap = 0.2
mm, f = 0.4 mm/r, resulting in a slight increase in the circumferential direction.

hr = Rtool−nose −

√
R2

tool−nose −

(
f
2

)2

(9)

where hr is the cutting residual height, Rtool−nose is the tool nose radius and f is the feed rate.
In the Test No. (a) to (f), the correlation coefficients between the measured and predicted results are

0.8776, 0.9588, 0.9193, 0.8702, 0.8558 and 0.8180 respectively. It is found that the correlation coefficients
between the predicted values and the experimental data of six groups of tests are between 0.8 and
1.0 in Table 8, indicating that the predicted results are highly correlated with the experimental data.
The validity of the prediction model is well verified considering the experimental measurement error
and the bimodal Lorentz model is acceptable.

Figure 12. The schematic diagram of electrolytic corrosion process. (a) The distance between the center
of the cathode corrosion rod and the workpiece is less than that between the edge of the cathode
corrosion rod and the workpiece, a < b; (b) a = b; (c) a > b.
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Figure 13. The schematic diagram of cutting residual height.

5. Conclusions

The residual stress of cylindrical turning Inconel 718 pipe was studied in this paper. A new
prediction equation of residual stress distribution was proposed on the basic of the Lorentz function.
Additionally, comparing the results of prediction and simulation, and comparing the data of prediction
and experiment, the results show that the prediction model of residual stress is accurate for prediction
of residual stress distribution of turning Inconel 718 material by using random forest regression.
According to the research content, it is summarized as follows:

1. The bimodal Lorentz model (Equation (4)) has a good accuracy for fitting the residual stress
distribution, whose Ad-R2 for fitting simulated residual stress data is over 0.947. The statistical
model of residual stress prediction is established by random forest regression based on the
training data sets, and the precision of the testing sets is controlled between 0.80 and 0.85. The key
parameters {A1, A2,ω, hc, σe} of the prediction model are predicted under the expected cutting
parameters in the testing sets.

2. The three extra simulations and experiments are carried out under the desired cutting parameters
in the testing sets, and the three key feature indicators are compared between the simulated and
predicted residual stress, including the SRTS, the PRCS, and the DPRCS. The results show that the
maximum and minimum values of the SRTS error are 124.564 MPa and 18.082 MPa respectively,
those of the PRCS error are 84.649 MPa and 3.009 MPa respectively, and those of the DPRCS error
are 0.00875 mm and 0.00155 mm respectively.

3. The distributions of predicted residual stress and experimental data show the hook shape.
The residual stress predicted by the random forest regression is over predicted before the depth
of 0.05 mm, that is, the predicted values are greater than the measured values in the experiment.
This is due to the error between the product of the polishing rate and time and the actual depth in
the electrolytic cylindrical surface.

4. The correlation analysis was carried out between the measured and predicted residual stress based
on the experiments and the statistical model of random forest regression and the result shows
that the correlation coefficient is between 0.8 and 1.0, indicating that they are highly correlated.

On the basic of the present work, the accuracy of electrolytic corrosion depth needs to be improved
in the following work, and further research can be conducted on the real-time control of the stress level
during the cutting process, the improvement of the process planning and the deformation control of
the components.



Materials 2020, 13, 4341 17 of 18

Author Contributions: H.P., W.T. and Y.X. developed overall investigation goals; H.P., P.D. and X.C.
completed experiments and part of finite element simulations; C.Z. and X.Z. completed part of finite element
simulations; H.P. wrote the paper; W.T. and Y.X. provided experimental detail design and revised the paper;
X.Z. provided a wealth of research materials. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Shenyang Liming Aero-Engine (Group) Ltd. Project: Machining
Process Integrated Simulation Optimization System (No. 8902005102).

Acknowledgments: Thanks to the Shenyang Liming Aero-Engine (Group) Ltd. for the support of professional
finite element simulation software.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ulutan, D.; Ozel, T. Machining induced surface integrity in titanium and nickel alloys: A review. Int. J. Mach.
Tools Manuf. 2011, 51, 250–280. [CrossRef]

2. Fan, Y.; Hao, Z.; Zheng, M.; Sun, F.; Yang, S. Study of surface quality in machining nickel-based alloy Inconel
718. Int. J. Adv. Manuf. Technol. 2013, 69, 2659–2667. [CrossRef]

3. Outeiro, J.C.; Pina, J.C.; M’Saoubi, R.; Pusavec, F.; Jawahir, I.S. Analysis of residual stresses induced by dry
turning of difficult-to-machine materials. CIRP Ann. 2008, 57, 77–80. [CrossRef]

4. Niaki, F.A.; Mears, L. A comprehensive study on the effects of tool wear on surface roughness, dimensional
integrity and residual stress in turning IN718 hard-to-machine alloy. J. Manuf. Process. 2017, 30, 268–280.
[CrossRef]

5. Farid, A.A.; Sharif, S.; Namazi, H. Effect of Machining Parameters and Cutting Edge Geometry on Surface
Integrity when Drilling and Hole Making in Inconel 718. SAE Int. J. Mater. Manuf. 2009, 2, 564–569.
[CrossRef]

6. Webster, G.A.; Ezeilo, A.N. Residual stress distributions and their influence on fatigue lifetimes. Int. J. Fatigue
2001, 23, 375–383. [CrossRef]

7. Özel, T.; Ulutan, D. Prediction of machining induced residual stresses in turning of titanium and nickel based
alloys with experiments and finite element simulations. CIRP Ann. 2012, 61, 547–550. [CrossRef]

8. Arrazola, P.J.; Kortabarria, A.; Madariaga, A.; Esnaola, J.A.; Fernandez, E.; Cappellini, C.; Ulutan, D.; Özel, T.
On the machining induced residual stresses in IN718 nickel-based alloy: Experiments and predictions with
finite element simulation. Simul. Model. Pract. Theory 2014, 41, 87–103. [CrossRef]

9. Mondelin, A.; Valiorgue, F.; Rech, J.; Coret, M.; Feulvarch, E. Hybrid model for the prediction of residual
stresses induced by 15-5PH steel turning. Int. J. Mech. Sci. 2012, 58, 69–85. [CrossRef]

10. Ahn, J.; He, E.; Chen, L.; Wimpory, R.C.; Dear, J.P.; Davies, C.M. Prediction and measurement of residual
stresses and distortions in fibre laser welded Ti-6Al-4V considering phase transformation. Mater. Des. 2017,
115, 441–457. [CrossRef]

11. Ulutan, D.; Erdem Alaca, B.; Lazoglu, I. Analytical modelling of residual stresses in machining. J. Mater.
Process. Tech. 2007, 183, 77–87. [CrossRef]

12. Lazoglu, I.; Ulutan, D.; Alaca, B.E.; Engin, S.; Kaftanoglu, B. An enhanced analytical model for residual stress
prediction in machining. CIRP Ann. 2008, 57, 81–84. [CrossRef]

13. Liang, S.Y.; Su, J.C. Residual Stress Modeling in Orthogonal Machining. CIRP Ann. 2007, 56, 65–68. [CrossRef]
14. Huang, K.; Yang, W.; Chen, Q. Analytical model of stress field in workpiece machined surface layer in

orthogonal cutting. Int. J. Mech. Sci. 2015, 103, 127–140. [CrossRef]
15. Ma, Y.; Zhang, J.; Feng, P.; Yu, D.; Xu, C. Study on the evolution of residual stress in successive machining

process. Int. J. Adv. Manuf. Technol. 2018, 96, 1025–1034. [CrossRef]
16. Ulutan, D.; Arisoy, Y.M.; Özel, T.; Mears, L. Empirical Modeling of Residual Stress Profile in Machining

Nickel-based Superalloys Using the Sinusoidal Decay Function. Procedia CIRP 2014, 13, 365–370. [CrossRef]
17. Tan, L.; Zhang, D.; Yao, C.; Wu, D.; Zhang, J. Evolution and empirical modeling of compressive residual

stress profile after milling, polishing and shot peening for TC17 alloy. J. Manuf. Process. 2017, 26, 155–165.
[CrossRef]

18. Dong, P.; Peng, H.; Cheng, X.; Xing, Y.; Tang, W.; Zhou, X. Semi-Empirical Prediction of Residual Stress
Profiles in Machining IN718 Alloy Using Bimodal Gaussian Curve. Materials 2019, 12, 3864. [CrossRef]

http://dx.doi.org/10.1016/j.ijmachtools.2010.11.003
http://dx.doi.org/10.1007/s00170-013-5225-1
http://dx.doi.org/10.1016/j.cirp.2008.03.076
http://dx.doi.org/10.1016/j.jmapro.2017.09.016
http://dx.doi.org/10.4271/2009-01-1412
http://dx.doi.org/10.1016/S0142-1123(01)00133-5
http://dx.doi.org/10.1016/j.cirp.2012.03.100
http://dx.doi.org/10.1016/j.simpat.2013.11.009
http://dx.doi.org/10.1016/j.ijmecsci.2012.03.003
http://dx.doi.org/10.1016/j.matdes.2016.11.078
http://dx.doi.org/10.1016/j.jmatprotec.2006.09.032
http://dx.doi.org/10.1016/j.cirp.2008.03.060
http://dx.doi.org/10.1016/j.cirp.2007.05.018
http://dx.doi.org/10.1016/j.ijmecsci.2015.08.020
http://dx.doi.org/10.1007/s00170-017-1542-0
http://dx.doi.org/10.1016/j.procir.2014.04.062
http://dx.doi.org/10.1016/j.jmapro.2017.02.002
http://dx.doi.org/10.3390/ma12233864


Materials 2020, 13, 4341 18 of 18

19. Huang, K.; Yang, W. Analytical modeling of residual stress formation in workpiece material due to cutting.
Int. J. Mech. Sci. 2016, 114, 21–34. [CrossRef]

20. Yang, D.; Liu, Z.; Ren, X.; Zhuang, P. Hybrid modeling with finite element and statistical methods for residual
stress prediction in peripheral milling of titanium alloy Ti-6Al-4V. Int. J. Mech. Sci. 2016, 108–109, 29–38.
[CrossRef]

21. Wang, J.; Zhang, D.; Wu, B.; Luo, M. Prediction of distortion induced by machining residual stresses in
thin-walled components. Int. J. Adv. Manuf. Technol. 2018, 95, 4153–4162. [CrossRef]

22. Wang, J.; Zhang, D.; Wu, B.; Luo, M. Numerical and Empirical Modelling of Machining-induced Residual
Stresses in Ball end Milling of Inconel 718. Procedia CIRP 2017, 58, 7–12. [CrossRef]

23. Johnson, R.; Cook, W.K. A constitutive model and data for metals subjected to large strains high strain
rates and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, Hague,
The Netherlands, 19–21 April 1983; pp. 541–547.

24. DeMange, J.J.; Prakash, V.; Pereira, J.M. Effects of material microstructure on blunt projectile penetration of a
nickel-based super alloy. Int. J. Impact Eng. 2009, 36, 1027–1043. [CrossRef]

25. Wang, B.; Liu, Z.; Hou, X.; Zhao, J. Influences of Cutting Speed and Material Mechanical Properties on Chip
Deformation and Fracture during High-Speed Cutting of Inconel 718. Materials 2018, 11, 461. [CrossRef]
[PubMed]

26. Qiu, X.; Cheng, X.; Dong, P.; Peng, H.; Xing, Y.; Zhou, X. Sensitivity Analysis of Johnson-Cook Material
Constants and Friction Coefficient Influence on Finite Element Simulation of Turning Inconel 718. Materials
2019, 12, 3121. [CrossRef] [PubMed]

27. Erdakov, I.N.; Tkachev, V.M.; Novokreshchenov, V.V. Increase of wear resistance of steel plates for crushing
stations. J. Frict. Wear 2014, 35, 514–519. [CrossRef]

28. Bustillo, A.; Grzenda, M.; Macukow, B. Interpreting tree-based prediction models and their data in machining
processes. Integr. Comput. Aided Eng. 2016, 23, 349–367. [CrossRef]

29. Juez-Gil, M.; Erdakov, I.N.; Bustillo, A.; Pimenov, D.Y. A regression-tree multilayer-perceptron hybrid
strategy for the prediction of ore crushing-plate lifetimes. J. Adv. Res. 2019, 18, 173–184. [CrossRef]

30. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
31. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
32. Zhao, Y.; Zhao, X.; Yan, L.; Liu, Z.; Liu, Q.; Liu, C.; Zhou, H.; Huang, K. Reconstruction of the Statistical

Characteristics of Electric Fields in Enclosures with an Aperture Based on Random Forest Regression. Trans.
Electromagn. Compat. 2020, 62, 1151–1159. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijmecsci.2016.04.018
http://dx.doi.org/10.1016/j.ijmecsci.2016.01.027
http://dx.doi.org/10.1007/s00170-017-1358-y
http://dx.doi.org/10.1016/j.procir.2017.03.177
http://dx.doi.org/10.1016/j.ijimpeng.2009.01.007
http://dx.doi.org/10.3390/ma11040461
http://www.ncbi.nlm.nih.gov/pubmed/29561770
http://dx.doi.org/10.3390/ma12193121
http://www.ncbi.nlm.nih.gov/pubmed/31557806
http://dx.doi.org/10.3103/S1068366614060051
http://dx.doi.org/10.3233/ICA-160513
http://dx.doi.org/10.1016/j.jare.2019.03.008
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/TEMC.2019.2926521
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	FEM Simulation 
	Random Forest Regression 
	Model of Residual Stress Based on Lorentz Function 

	Experimental Schedules 
	Workpiece and Cutting Tool 
	Turning Parameters 
	Measurements of Residual Stress 

	Results and Discussions 
	Statistical Model of Predicting Residual Stress 
	Residual Stress Comparisons between Simulation and Prediction 
	Experimental Verification 

	Conclusions 
	References

