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Abstract: Acid soluble collagen (ASC) was extracted from Silver Carp fish skin. Collagen was dissolved
in acetic acid at varying concentrations and its rheological properties were studied. Steady shear
flow properties of collagen solutions at concentrations of 5 and 10 mg/mL were characterized using
rheometry at 20 ◦C. Collagen solutions were irradiated with UV light (wavelength 254 nm) for up to
2 h and rheological properties were measured. All the collagen solutions showed a shear-thinning flow
behavior. A constant viscosity region was observed after 1 h of UV irradiation, which showed that
collagen molecules were fully denatured. A short treatment with collagen solution by UV (ultraviolet)
light led to an increase in viscosity; however, the denaturation temperature of UV-irradiated collagen
decreased. Depending on the time of UV treatment, collagen extracted from Silver Carp fish skin
may undergo physical crosslinking or photodegradation. Physically crosslinked collagen may find
applications in functional food, cosmetic, biomedical, and pharmaceutical industries.
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1. Introduction

Collagen is a widely used material in the cosmetics, biomedicine, and food industries. However,
native collagen is sensitive to high temperatures and UV treatment. UV irradiation of collagen molecules
leads to several photochemical reactions [1–11]. Under UV irradiation of collagen, conformational
changes were observed in collagen extracted from rat tail tendon [3–8]. The UV treatment of the collagen
materials may influence the mechanical properties of the final collagen products [8–10]. Although
there are some interesting studies regarding collagen alterations by UV irradiation, the molecular
mechanisms behind the influence of UV light on collagen are still unknown. It has been shown that
aromatic amino acids play the main role in the absorption of UV light by collagen molecules [11].
After absorption of UV light, a photochemical process in collagen may occur. It should be emphasized
that the photochemical behavior of collagen may differ depending on the collagen origin and type,
because the content of aromatic amino acids (phenylalanine and tyrosine) in the biopolymer chain
may be different [12]. The whole collagen family encompasses 29 genetically distinct collagen types.
The major ones involve type I (found in skin, tendon, and bone tissues), type II (cartilage), and type III
(skin and vasculature) collagen [13–15]. In food and cosmetic applications, type I collagen is prevalently
used. In food, mainly denatured collagen known as gelatin finds its use because it is much cheaper
than native collagen [16].

Collagen has been traditionally isolated from land-based animal skins, e.g., cow and pig
skin. For scientific research, mainly rat tail tendon collagen is employed because its denaturation
temperature is around 40 ◦C [6]. Non-denatured collagen finds applications in cosmetics, biomedical,
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and pharmaceutical industries [12,16]. Denatured collagen, however, known as gelatin, is used not
only in food but also in pharmaceutical and biomedical products [17].

As it was said before, collagen can be obtained from several animal tissues. Bovine collagen
has been widely applied; however, its employment is burdened with the risk of bovine spongiform
encephalopathy (BSE) and transmissible spongiform encephalopathy (TSE) development. Scientists
are looking for safer alternatives, resources different from mammalian tissues—for example, collagen
extracted from marine sources (fish skin and scales, marine sponges, or jellyfish umbrella). In the
case of cosmetic creams containing collagen obtained from the marine sponge and those containing
mammalian collagen, when comparing their impact on skin, it can be noticed that their effects on the
skin pH, moisture, and sebum are comparable. This means that in cosmetic preparations, mammalian
collagen can be successfully replaced with marine sponge collagen. The potential of marine collagen
was discovered approximately 70 years ago and, from this time, research has contributed to learning
about the structural and physicochemical features of many marine origin collagens. However, it is
worth mentioning that collagen properties may vary depending on the fish species. Fish collagen
is commonly applied in food production and can replace mammalian collagen; however, its low
denaturation temperature is usually its main disadvantage. The low denaturation temperature of fish
collagen is a result of the significantly lower content of hydroxyproline in the polypeptide chain of fish
collagen than in the chain of mammalian collagen. Collagen extracted from Silver Carp skin has attracted
much attention in recent years due to its relatively high denaturation temperature in comparison to
collagen from other fish species [18]. Although there are some papers regarding the properties of
collagen from Silver Carp, to our best knowledge, the influence of UV irradiation on the rheological
properties of such kinds of collagen has not been studied yet. Rheological properties of collagen are
essential in several applications. In the case of cosmetic and food applications, its rheological behavior
at different temperature values is essential to design a proper formulation and check its applicability
under several conditions. Based on rheological study, one can design a product with properties which
can be tailored to the desired use—for example, for tissue engineering purposes. Collagen gels can
be used for studying cell–matrix mechanical interactions as well as developing tissue equivalents,
the rheological properties of which are very important [19]. UV irradiation can be used as a sterilizing
agent for several biomaterials, so it is very important to study the influence of UV light on collagen
gels. The rheological behavior of several collagen solutions depends on the collagen concentration and
temperature [20–22].

The concentrated solutions of synthetic and natural polymers are characterized by complex
viscoelastic properties. Almost all these fluids show non-Newtonian behavior. For them, apparent
shear viscosity (ηa) changes with shear rate (

.
γ). If the apparent shear viscosity decreases with an

increase in the shear rate, the fluid is shear-thinning, i.e., exhibits pseudo-plastic behavior—typical
of many polymers [23–25]. The opposite trend, which occurs rarely, is named shear thickening
(dilatant fluid). The shear stress curve obtained as a function of shear rate (so-called flow curve) at
various temperature values allows calculation of the rheological parameters from different equations
(e.g., Ostwald de Waele model, Cross model, Carreau model, and others) and recognition of the type
of polymer flow behavior [24–26]. The knowledge of rheological properties of polymer solutions or
fluids allows us to evaluate their final properties and enables the arrangement and optimization of the
processing conditions.

The aim of this work was to study the rheological behavior of collagen obtained from Silver Carp
skin before and after different times of UV irradiation. Knowledge about the rheological behavior
of UV-treated collagen can be essential in the preparation of cosmetics and food products based on
collagen from Silver Carp skin. Moreover, the possibility of sterilization of collagen gels for biomedical
applications using UV treatment can be predicted. The UV-irradiated collagen gels can be further used
for the preparation of wound healing materials.
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2. Materials and Methods

2.1. Raw Materials and Collagen Preparation

Collagen was purchased from WellU sp. z.o.o, Gdynia, Poland. It was obtained by collagen
isolation from Silver Carp skin. The skin fragments were removed manually and washed with chilled
tap water to get rid of the adhering tissues. In the next stage, the material was disinfected with 3%
hydrogen peroxide water solution, residues of which were further rinsed off. The purified skin was
placed in a lactic acid solution and left for 3 days to extract the collagenous proteins. The thus obtained
solution was pressed through the material, which allowed for collagen separation. The samples were
then placed in polyethylene bags and stored at −25 ◦C until use.

The collagen solution was dialyzed against distilled water for 2 days and then lyophilized.
After lyophilization, collagen gels were prepared in diluted 0.1 M acetic acid at the concentrations of 5
and 10 mg/mL. For prepared collagen gels, the rheological properties were measured. In the next step,
collagen solutions were irradiated with UV light for different time intervals and again the rheological
properties were measured.

2.2. Measurement of Rheological Properties

For the study of rheological properties, the solutions of collagen at the concentrations of 5 and
10 mg/mL were prepared. A rheological investigation was carried out on the prepared samples by
means of a rotational viscometer, Bohlin Visco 88 (Malvern Panalytical, Malvern, UK), equipped with
a heating system and a solvent trap kit. Steady-state viscosity curves were evaluated at different
temperature values, i.e., 15–33 ◦C (samples were thermally equilibrated for 300 s), at a shear rate
19–250 s−1 range using a concentric cylinder. In order to evaluate the time dependence of the apparent
shear viscosity, i.e., to observe whether thixotropy takes place, the flow measurements were performed
in two steps: at increasing shear rates (from the minimum to the maximum shear rate value—upward
curve) and their return to the maximum value at decreasing shear rates (downward curve). Additionally,
the time-dependent viscosity for the collagen solution at two different, constant, and imposed shear
rates, i.e., 90 and 250 s−1 at 16.5 and 25 ◦C, were determined.

Rheological behavior of the collagen solutions was analyzed with the well-known Ostwald de
Waele model (Equation (1)) and Cross equation (Equation (2)) to determine the relationship between
the apparent shear viscosity and the shear rate [24–26].

Ostwald de Waele model:
τ = k

.
γ

n and η =
τ
.
γ
= k

.
γ

n−1 (1)

where τ is shear stress (Pa),
.
γ is shear rate (1/s), η is shear viscosity (Pa·s), n and k are rheological

parameters known as non-Newtonian index (dimensionless) and consistency index (Pa·sn), respectively.
The value of n < 1 indicates the shear-thinning effect, and the value of n > 1 implies the shear-thickening
behavior. If n is unity (n = 1), then k is identical to η and Equation (1) takes the form of Newton’s law.

Cross model:
η = η∞

η0 − η∞

1 + λ
.
γ

m (2)

where η0 and η∞ are zero-shear viscosity and infinite viscosity (Pa·s), respectively, λ is the characteristic
relaxation time (s), and m is a dimensionless constant corresponding to the fluid.

The temperature dependence of the apparent shear viscosity (ηa) was determined with the
Arrhenius equation [25,27]:

ηa = A0 exp(Ea/RT) (3)

where A0 is a pre-exponential parameter and Ea is the viscous flow activation energy.
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2.3. UV Irradiation of Collagen Solution

Collagen solutions (the concentrations of 5 and 10 mg/mL) were irradiated using a UV lamp,
ULTRAVIOL NBV 15, which emitted mainly UVC with 254 nm wavelength. Collagen solutions were
irradiated at a distance of 5 cm from the UV lamp.

3. Results

3.1. Rheological Behaviour of Collagen Solutions and Gels

Figure 1 reports the viscosity curves of collagen solutions with concentrations of 5 and 10 mg/mL
(collagen gel).
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3.2. The Ostwald de Waele and Cross Models 

Figure 1. Viscosity curves of the collagen solutions: (A) 10 mg/mL, (B) 5 mg/mL in temperature range
15 to 33 ◦C.

A collagen solution is characterized by the typical shear-thinning behavior of polymer solutions
observed in the decrease in viscosity as the shear rate increases due to the progressive orientation
and disentanglement of the chains. The apparent viscosity of the collagen solution is heightened with
increasing concentrations. While the concentration of the collagen solution increases, the viscosity
curves present a more pronounced shear-thinning behavior. This is caused by an increase in collagen
macromolecule interactions, leading to the increase in the entanglement of the chains and more pronounced
non-Newtonian behavior. The time-dependent apparent viscosity at the constant shear rate value is
another important characteristic of the non-Newtonian behavior of polymer solutions [24]. Some of
them are rheologically unstable fluids. Such solutions are classified as thixotropic and rheopectic fluids.
For thixotropic ones, viscosity decreases in time, while the rheopectic fluid viscosity increases. Figure 2
shows the apparent viscosity and lapsed time relationship for a 5 mg/mL collagen solution at different,
constant, and imposed shear rates. As can be seen, the constant and uniform viscosity value is observed
in the time of the experiment (131 s). Thus, this collagen can be considered as rheologically stable.
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3.2. The Ostwald de Waele and Cross Models

The experimental data of the collagen solutions used in this study were fitted with the Ostwald
de Waele model (Equation (1)) and Cross model (Equation (2)), with R2 values ranging from 0.963 to
0.999 and from 0.994 to 1.00, respectively. The corresponding rheological parameters and regression
coefficients (R2) are presented in Table 1. Noteworthy is the fact that all the n values from the Ostwald de
Waele model were less than 1, indicating deviation from Newtonian behavior (shear-thinning behavior).
An increase in the collagen solution concentration to 10 mg/mL causes a pronounced decrease in the
n value from 0.39 to 0.26 at 18 ◦C. Such low n values may suggest the high association degree and
collagen molecule entanglement in the solution. For all the collagen solutions, the temperature rise
by 15 ◦C only slightly influences the n parameter (e.g., n increases from 0.39 to 0.43 in the collagen
solution at the concentration of 5 mg/mL). The consistency index (k) values increase with an increase in
the collagen solution concentration but insignificantly decrease as the temperature increases from 15 to
25 ◦C. As shown in Equation (1), the k parameter value presents a direct relationship with viscosity;
it can be used to represent the viscosity characteristics of fluids under certain conditions. Therefore,
the k results are as expected because the temperature will normally lower the viscosity of fluids.
However, viscosity will increase together with a rise in concentration.

Table 1. The rheological parameters from the Ostwald de Waele model and Cross model for collagen
solution as function of concentration and temperature.

T (◦C)
Ostwald de Waele Model Cross Model

n k (Pasn) R2 η0 (Pas) η∞ (Pas) λ (s) m R2

collagen c = 5 mg/mL

15 0.39 3.18 0.999 0.673 0.0443 0.0185 1.13 0.999
18 0.39 3.00 0.999 0.657 0.0420 0.0225 1.09 0.999
20 0.39 2.88 0.999 0.582 0.0446 0.0148 1.15 0.999
25 0.41 2.52 0.999 0.538 0.0410 0.0175 1.12 0.998
30 0.43 1.76 0.999 0.362 0.0382 0.00980 1.21 0.998
31 0.48 0.87 0.999 0.184 0.0331 0.00292 1.43 0.997

collagen c = 10 mg/mL

16 0.25 19.1 0.998 3.079 0.126 0.0225 1.18 0.998
18 0.26 17.5 0.998 3.272 0.286 0.761 0.38 1.00
20 0.27 16.5 0.999 2.742 0.263 0.0101 1.41 0.998
25 0.26 16.3 0.999 2.867 0.101 0.0286 1.13 0.998
30 0.22 7.45 0.963 0.629 0.070 7.69 × 10−4 1.80 0.994

Moreover, both η0 and η∞ values increase simultaneously with the collagen concentration. The η0
value is directly related to the number of interactions between the polymer macromolecules and the
solvent [28,29]. Thus, the increase in the η0 values together with an increase in the collagen solution
concentration confirm that the development of a temporary network or the number of entanglements of
collagen molecules in the solution increased. With the increased temperature, the η0 values decreased,
especially at temperatures ranging from 25 to 31 ◦C. This can be explained by the increase in the
molecules’ mobility and the interactions between those which were partly destroyed.

3.3. The Effect of Temperature and the Viscous Flow Activation Energy

The effect of temperature on the apparent viscosity of collagen solutions was investigated. It can
be observed that temperature showed a weak effect on the apparent viscosity, which decreased slightly
with an increasing temperature range from 15 to 28 ◦C, as it has been shown in Figure 3. The increase in
temperature from 30 to 32 ◦C caused a large reduction of the apparent viscosity value. Thus, the results
show that collagen molecules are fully denatured at 32 ◦C.
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shear rates.

The value of the viscous flow activation energy reflects the sensitivity of polymer solutions
towards temperature. For the collagen solution, Ea values were determined using Equation (3) at
different shear rates (in the temperature range between 15 and 28 ◦C) and are tabulated in Table 2.
As can be observed, the values of viscous flow activation energy decrease with an increasing shear
rate and collagen concentration. This behavior can be explained by the entanglement formation in the
polymer solution. At a higher shear rate (

.
γ ≥ 90.9 s−1), the entanglement density between collagen

molecules was independent of shear rate. The Ea value is practically constant in this range. Moreover,
the calculated Ea values indicated that the collagen solution exhibited the low sensitivity of viscosity to
temperature changes in the range of 15–28 ◦C.

Table 2. Ea value for collagen solution at different shear rates.

c (mg/mL)
Ea (kJ/mol)

0 s−1 R2 43.3 s−1 R2 90.9 s−1 R2 110 s−1 R2

10
17.1 0.914 13.9 0.975 11.4 0.975 10.9 0.979
19.5 0.657 10.3 0.943 9.3 0.944 8.7 0.940

3.4. The Effect of UV Irradiation on the Collagen Solution

Figure 4 shows viscosity curves for the collagen solution before and after various times of
UV irradiation. It can be seen that after a short time of U irradiation, an increase in viscosity is
observed. After 15 min of UV irradiation viscosity increased almost three times. This may suggest that
UV irradiation causes the crosslinking of collagen molecules. In general, after absorbing a photon,
the electronically excited molecule either undergoes a photochemical process, such as fragmentation,
rearrangement, or photoaddition, or it will lose its energy via one of several photophysical ways
(fluorescence, phosphorescence, internal conversion). It seems that short action of UV leads to
photoaddition which is manifested by an increase in viscosity. After 30 min of UV treatment,
the viscosity of the irradiated collagen solution is still higher than that for collagen without irradiation.
After one hour of irradiation, the collagen solution lost its viscous properties. This suggests that
after one hour of UV irradiation, collagen molecules are fully denatured. Prolonged UV treatment
of collagen solution leads to the breaking of hydrogen bonds and fragmentation of macromolecules.
When collagen solution is irradiated for 2 h and longer than 2 h, collagen is denatured and no
crosslinking reaction appears. This clearly suggests that irradiation for more than two hours may
lead only to the degradation of collagen chains, without any influence on rheological properties.
The viscosity of the collagen solution with a concentration of 10 mg/mL is higher than that for the



Materials 2020, 13, 4453 7 of 10

collagen solution with a concentration of 5 mg/mL. However, the rheological behavior after UV
irradiation is similar to irradiated collagen solution with a concentration of 5 mg/mL After 15 min of
UV irradiation, viscosity increased almost three times, from around 1.7 to 5.3 Pas.
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Table 3 presents the alteration of a rheological parameter after UV irradiation of the collagen
solution. The values of n remained at a similarly low level after UV irradiation to those before UV
treatment and exhibited an obvious decrease from 0.27 to 0.13 with increasing temperature. Moreover,
the values of η0 for the collagen solution increased from 2.742 Pas before irradiation to 20.04 Pas,
implying the formation of a polymer network under the influence of a short time of exposure to
UV treatment.

Table 3. The rheological parameters from Ostwald de Waele model and Cross model for collagen
solution after 15 min of UV irradiation versus temperature.

T (◦C)
Ostwald de Waele Model Cross Model

n k (Pasn) R2 η0 (Pas) η∞ (Pas) λ (s) m R2

collagen c = 10 mg/mL
20 0.27 58.5 0.998 22.04 0.0605 0.2205 0.84 1.00
25 0.23 61.0 0.997 17.17 0.2083 0.1031 0.99 0.999
30 0.13 4.79 0.835 0.358 0.0313 1.38 × 10−3 1.78 0.991

In Figure 5, one can see the influence of UV irradiation on the apparent shear viscosity of the
collagen solution. As one can see, the rise in temperature from 25 to 29 ◦C caused a large decrease in the
apparent viscosity. Therefore, the denaturation temperature decreased after 15 min of UV irradiation
of the collagen solution. The UV-irradiated collagen molecules are fully denatured at 30 ◦C, whereas
for collagen molecules which had not been treated with UV light, the molecules are fully denatured at
32 ◦C. This suggests that UV irradiation leads to partial cleavage of hydrogen bonds responsible for
the ternary structure of collagen.

Table 4 shows that the activation energy was changed in the viscous flow of the collagen solution
after 15 min of UV irradiation. For the collagen solution before exposure to UV irradiation, Ea values
are significantly lower (Table 2) than after UV irradiation (Table 4). Moreover, the values of viscous flow
activation energy increase with an increasing shear rate in the range between 43.3 and 110 s−1. This fact
may suggest that photocrosslinking reactions occur in the collagen solution and new crosslinks are
responsible for the Ea increase. After photocrosslinking reactions, stronger intermolecular interactions
between collagen molecules appear and they are responsible for the activation energy increase with an
increasing shear rate. Thus, the collagen solution after 15 min of UV irradiation was more sensitive to
temperature changes and the apparent viscosity decreased more. However, it should be emphasized
that structural changes in collagen caused by UV irradiation depend on collagen type, its degree of
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hydration, and pH conditions [30–32]. The results obtained in this study for collagen from Silver Carp
skin may differ from results obtained for other types of collagen extracted from different sources.
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Moreover, the values of η0 for the collagen solution increased from 2.742 Pas before irradiation to 
20.04 Pas, implying the formation of a polymer network under the influence of a short time of 
exposure to UV treatment. 

Table 3. The rheological parameters from Ostwald de Waele model and Cross model for collagen 
solution after 15 min of UV irradiation versus temperature. 

T (°C) Ostwald de Waele Model Cross Model 
n k (Pasn) R2 η0 (Pas) η∞ (Pas) λ (s) m R2 

collagen c = 10 mg/mL 
20 0.27 58.5 0.998 22.04 0.0605 0.2205 0.84 1.00 
25 0.23 61.0 0.997 17.17 0.2083 0.1031 0.99 0.999 
30 0.13 4.79 0.835 0.358 0.0313 1.38 × 10-3 1.78 0.991 

In Figure 5, one can see the influence of UV irradiation on the apparent shear viscosity of the 
collagen solution. As one can see, the rise in temperature from 25 to 29 °C caused a large decrease in 
the apparent viscosity. Therefore, the denaturation temperature decreased after 15 min of UV 
irradiation of the collagen solution. The UV-irradiated collagen molecules are fully denatured at 30 
°C, whereas for collagen molecules which had not been treated with UV light, the molecules are fully 
denatured at 32 °C. This suggests that UV irradiation leads to partial cleavage of hydrogen bonds 
responsible for the ternary structure of collagen. 

 

Figure 5. Apparent shear viscosity versus temperature for 10 mg/mL collagen solution at three different
shear rates after 15 min of UV irradiation.

Table 4. Ea value for collagen solution at different shear rates after 15 min of UV irradiation.

c (mg/mL)
Ea (kJ/mol)

0 s−1 R2 43.3 s−1 R2 90.9 s−1 R2 110 s−1 R2

10 49.8 0764. 41.5 0.801 49.1 0.836 54.2 0.859

4. Conclusions

The results showed that the solution of collagen extracted from the Silver Carp fish skin used in
this study is a rheologically stable fluid in which the rheological properties do not change over time.
The rise in temperature from 30 to 32 ◦C caused a large reduction of the apparent viscosity value
showing that collagen molecules are fully denatured at 32 ◦C. UV-treatment of collagen solution leads
to the increase of the viscosity in the beginning, but after prolonged UV-treatment a large reduction of
the apparent viscosity value was observed showing that collagen molecules are fully denatured after
one hour of UV treatment. After 15 min of UV-irradiation of collagen solution the collagen molecules
underwent thermal denaturation at 30 ◦C.

Collagen extracted from the Silver Carp fish skin is sensitive to UV-irradiation and may undergo
physical crosslinking and/or photodegradation. The short time of UV-irradiation may lead to
crosslinking of collagen molecules. Collagen extracted from the Silver Carp skin can be used in
cosmetics and food, however, the products should be stored in a temperature lower than denaturation
temperature of collagen. Sterilization of collagen gels with UV light can be done only for a very short
time, as prolonged UV treatment leads to photochemical destruction of the collagen molecule.
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16. Sionkowska, A.; Skrzyński, S.; Śmiechowski, K.; Kołodziejczak, A. The review of versatile application of

collagen. Poly. Adv. Technol. 2017, 28, 4–9. [CrossRef]
17. Jaipan, P.; Nguyen, A.; Narayan, R.J. Gelatin-based hydrogels for biomedical applications. MRS Commun.

2017, 7, 416–426. [CrossRef]
18. Zhang, J.; Duan, R.; Tian, Y.; Konno, K. Characterisation of acid-soluble collagen from skin of silver carp

(Hypophthalmichthys molitrix). Food Chem. 2009, 116, 318–322. [CrossRef]
19. Knapp, V.D.M.; Barocas, V.H.; Moon, A.G.; Tranquillo, R.T. Rheology of reconstituted type I collagen gel in

confined compression. J. Rheol. 1997, 415. [CrossRef]
20. Lai, G.; Li, Y.; Li, G. Effect of concentration and temperature on the rheological behavior of collagen solution.

Int. J. Biol. Macromol. 2008, 42, 285–291. [CrossRef]
21. Yang, Q.; Guo, C.; Deng, F.; Ding, C.; Yang, C.; Wu, H.; Ni, Y.; Huang, L.; Chen, L.; Zhang, M. Fabrication of

highly concentrated collagens using cooled urea/HAc as novel binary solvent. J. Mol. Liq. 2019, 291, 1–10.
[CrossRef]

22. Yang, H.; Duan, L.; Li, Q.; Tian, Z.; Li, G. Experimental and modeling investigation on the rheological
behavior of collagen solution as a function of acetic acid concentration. J. Mech. Behav. Biomed. Mater. 2018,
77, 125–134. [CrossRef] [PubMed]

23. Ghannam, M.T.; Esmail, M.N. Rheological properties of carboxymethyl cellulose. J. Appl. Polym. Sci. 1997,
64, 289–301. [CrossRef]

http://dx.doi.org/10.1016/0005-2795(71)90283-2
http://dx.doi.org/10.1021/bi00586a022
http://dx.doi.org/10.1111/j.1432-1033.1985.tb09198.x
http://dx.doi.org/10.1016/0141-3910(95)00158-1
http://dx.doi.org/10.1016/S0141-8130(99)00047-1
http://dx.doi.org/10.1074/jbc.M002346200
http://www.ncbi.nlm.nih.gov/pubmed/10893225
http://dx.doi.org/10.1002/bip.21725
http://www.ncbi.nlm.nih.gov/pubmed/22002434
http://dx.doi.org/10.1016/j.ijbiomac.2003.10.001
http://dx.doi.org/10.1016/0142-9612(94)90094-9
http://dx.doi.org/10.1016/S0141-3910(99)00176-7
http://dx.doi.org/10.1016/j.jphotobiol.2006.01.007
http://www.ncbi.nlm.nih.gov/pubmed/16504532
http://dx.doi.org/10.1016/j.progpolymsci.2011.05.003
http://dx.doi.org/10.1016/S0969-2126(01)00669-4
http://dx.doi.org/10.1016/j.jsb.2010.02.003
http://www.ncbi.nlm.nih.gov/pubmed/20149876
http://dx.doi.org/10.1002/pat.3842
http://dx.doi.org/10.1557/mrc.2017.92
http://dx.doi.org/10.1016/j.foodchem.2009.02.053
http://dx.doi.org/10.1122/1.550817
http://dx.doi.org/10.1016/j.ijbiomac.2007.12.010
http://dx.doi.org/10.1016/j.molliq.2019.111304
http://dx.doi.org/10.1016/j.jmbbm.2017.09.003
http://www.ncbi.nlm.nih.gov/pubmed/28898723
http://dx.doi.org/10.1002/(SICI)1097-4628(19970411)64:2&lt;289::AID-APP9&gt;3.0.CO;2-N


Materials 2020, 13, 4453 10 of 10

24. Lewandowska, K. Comparative studies of rheological properties of polyacrylamide and partially hydrolyzed
polyacrylamide solutions. J. Appl. Polym. Sci. 2007, 103, 2235–2241. [CrossRef]

25. Wang, S.; Le, H.; Guo, J.; Zhao, J.; Tang, H. Intrinsic viscosity and rheological properties of natural and
substituted guar gums in seawater. Int. J. Biol. Macromol. 2015, 76, 262–268. [CrossRef] [PubMed]

26. Tian, Z.; Duan, L.; Wu, L.; Shen, L.; Li, G. Rheological properties of glutaraldehyde-crosslinked collagen
solutions analyzed quantitatively using mechanical models. Mater. Sci. Eng. C 2016, 63, 10–17. [CrossRef]
[PubMed]

27. Martuscelli, E. Melt rheology of a compatible blend: Poly (ethylene oxide)/poly (methyl methacrylate).
Die Makromol. Chem. Rapid Commun. 1984, 5, 255–261. [CrossRef]

28. Razavi, S.M.; Cui, S.W.; Ding, H. Structural and physicochemical characteristics of a novel water-soluble
gum from Lallemantia royleana seed. Int. J. Biol. Macromol. 2016, 83, 142–151. [CrossRef]

29. Bertolo, M.R.V.; Martins, V.C.A.; Horn, M.M.; Brenelli, L.B.; Plepis, A.M.G. Rheological and antioxidant
properties of chitosan/gelatin-based materials functionalized by pomegranate peel extract. Carbohydr. Polym.
2020, 228, 115386. [CrossRef]

30. Xing, J.Y.; Bai, B.; Xue, W.B.; Yang, M.Y. Effect of UV on stability of collagen with consideration of hydratation
and fibrillogenesis. Food Sci. Biotechnol. 2013, 22, 1–5. [CrossRef]

31. Mori, H.; Hara, M. UV irradiation of type I collagen gels changed the morphology of the interconnected
brain capillary endothelial cells on them. Mater. Sci. Eng. C 2020, 112, 110907. [CrossRef] [PubMed]

32. Zheng, X.J.; Pei, Y.; Liu, J.; Wang, K.; Tang, K.Y. Effect of UV irradiation on the properties of goatskin collagen
matrices. J. Soc. Leather Technol. Chem. 2017, 101, 66–71.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/app.25247
http://dx.doi.org/10.1016/j.ijbiomac.2015.03.002
http://www.ncbi.nlm.nih.gov/pubmed/25749106
http://dx.doi.org/10.1016/j.msec.2016.02.047
http://www.ncbi.nlm.nih.gov/pubmed/27040190
http://dx.doi.org/10.1002/marc.1984.030050503
http://dx.doi.org/10.1016/j.ijbiomac.2015.11.076
http://dx.doi.org/10.1016/j.carbpol.2019.115386
http://dx.doi.org/10.1007/s10068-013-0204-8
http://dx.doi.org/10.1016/j.msec.2020.110907
http://www.ncbi.nlm.nih.gov/pubmed/32409061
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Raw Materials and Collagen Preparation 
	Measurement of Rheological Properties 
	UV Irradiation of Collagen Solution 

	Results 
	Rheological Behaviour of Collagen Solutions and Gels 
	The Ostwald de Waele and Cross Models 
	The Effect of Temperature and the Viscous Flow Activation Energy 
	The Effect of UV Irradiation on the Collagen Solution 

	Conclusions 
	References

