
materials

Article

Preparation and Mechanical Behavior of Ultra-High
Strength Low-Carbon Steel

Zhiqing Lv 1,2,*, Lihua Qian 1, Shuai Liu 1, Le Zhan 1 and Siji Qin 1

1 Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education of China
Yanshan University, Qinhuangdao 066004, China; 18753360971@163.com (L.Q.);
liushuai951003@163.com (S.L.); Zhanle223@163.com (L.Z.); plastics@ysu.edu.cn (S.Q.)

2 State Key Laboratory of Metastable Material Science and Technology, Yanshan University,
Qinhuangdao 066004, China

* Correspondence: zqlv@ysu.edu.cn

Received: 16 December 2019; Accepted: 14 January 2020; Published: 18 January 2020
����������
�������

Abstract: The low-carbon steel (~0.12 wt%) with complete martensite structure, obtained by quenching,
was cold rolled to get the high-strength steel sheets. Then, the mechanical properties of the sheets
were measured at different angles to the rolling direction, and the microstructural evolution of
low-carbon martensite with cold rolling reduction was observed. The results show that the hardness
and the strength gradually increase with increasing rolling reduction, while the elongation and impact
toughness obviously decrease. The strength of the sheets with the same rolling reduction are different
at the angles of 0◦, 45◦, and 90◦ to the rolling direction. The tensile strength (elongation) along the
rolling direction is higher than that in the other two directions, but the differences between them
are not obvious. When the aging was performed at a low temperature, the strength of the initial
martensite and deformed martensite increased with increasing aging time during the early stages of
aging, followed by a gradual decrease with further aging. However, the elongation increases with
increasing aging time. The change of hardness is consistent with that of strength for the cold-rolled
martensite, while the hardness of the initial martensite decreases gradually with increasing aging time.
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1. Introduction

At present, the production technology of the traditional steel has matured. The research and
development of a new generation of steel are the primary objectives of steel manufacturers in the
21st century. In recent years, numerous advanced technologies for preparing ultra-high strength
steel have emerged. As is well known, grain refinement can significantly improve strength of the
materials. Therefore, the preparation of ultra-fine grain steel has become the focus of research
on high-strength materials. The methods of severe plastic deformation (SPD) are an effective means
of grain refinement [1–4], which have been widely used in the preparation of ultra-high strength
materials. The SPD methods mainly include cold rolling [5,6], equal channel angular pressing
(ECAP) [7–9], high-pressure torsion (HPT) straining [10,11], accumulative roll-bonding (ARB) [12–14],
multidirectional forging (MDF) [15–17], etc. Valiev et al. [18,19] reported the preparation and application
of bulk nanostructured materials from SDP. Astafurova et al. [20] prepared high-strength steel with
nanosized grain subgrain structure by HPT deformation of a low-alloy steel. Mousavi Anijdan et al. [21]
treated Fe-28.5Ni steel by the ARB process and obtained the high-strength steel with a mean grain
size of a few hundred nanometers after a 6-cycle process. Wang et al. [22] prepared ultra-fine-grained
low carbon steel (Fe–0.15 wt% C–0.52 wt% Mn) with ultra-high strength by performing 10 times equal
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channel angular pressing (ECAP) at room temperature. Generally, severe cold deformation can increase
the strength and hardness of the material while obviously reducing plasticity and toughness [18–22].

Martensitic transformation is another effective method to refine the grains of the materials,
and so the strength level of the material can be greatly improved when the martensite structure is
obtained [23–26]. The phase transformation strengthening of low carbon martensitic steel is mainly
used to form fine lath martensite structure during quenching [27], and introduces high dislocation
density [28,29] which can obtain high strength while retaining a certain plasticity to facilitate subsequent
rolling deformation. An IF steel with two different initial structural states, namely ferrite and lath
martensite, was cold rolled. When the cold rolling deformation reached to 80%, the UTS of the IF
steel sheet with the initial ferrite state (grain size 150 µm) was about 616 MPa, while the UTS of the IF
steel sheet with the initial lath martensite state reached to about 770 MPa [30]. Li et al. [31] performed
cold rolling deformation on an interstitial free (IF) steel with coarse grain ferrite (120 µm). It was then
found that the strength increased with increasing reduction, and the UTS was 530 MPa when the cold
rolled reduction reached to 80%. These findings indicate that an IF steel with initial lath martensite can
acquire higher strength than the IF steel with the initial ferrite state after the same plastic deformation.
Astafurova et al. [20] prepared high-strength steel by HPT deformation of a low-alloy steel with two
different initial structural states (ferritic-pearlitic state and martensitic state). They found that HPT
deformation leads to a considerable increase in the microhardness compared to its microhardness in the
initial state. Additionally, the hardness of the steel with an initial martensitic state was obviously higher
than that of the steel with an initial ferritic-pearlitic state after the same HPT deformation.

At present, there are few studies on the preparation of ultra-high strength steel by small plastic
deformation. The combination of martensitic transformation and plastic deformation can further
enhance the grain refinement process while still maintaining good plasticity, which will be an effective
way to prepare a high-strength low-carbon steel with higher strength grades. The ultra-high strength
low-carbon steel will be obtained after plastic deformation at low strain when the initial structure of
the steel is martensite.

In the present study, a plain AISI 1010 low-carbon steel is quenched to obtain a martensitic structure.
Then the martensite lath structure was refined by plastic deformation at low strain, followed by an aging
treatment to prepare 1600 MPa grade steel. The microstructural evolution and mechanical properties
of the low-carbon steel are further examined and analyzed during the cold rolling deformation and
subsequent aging treatment. This will provide the theoretical basis and experimental support for the
preparation of ultra-high strength low carbon steel sheet.

2. Materials and Methods

A commercial plain low-carbon steel, namely AISI 1010 (0.12C-0.3Mn-0.15Cr-0.2Si, wt%), was
used in this work. The sheets were 3 mm thick, 20 mm wide, and 50 mm long. The sheets were
austenitized at 1200 ◦C for five min, followed by water quenching (at about 0 ◦C) to obtain the
martensite structure. The sheets with martensitic microstructure were cold rolled to a reduction of 10%
and 30% in thickness. The preparation process of the high-strength martensitic steel is depicted in
Figure 1. The as-transformed specimens and the cold rolled specimens were subsequently aged at
120 ◦C.Materials 2020, 13, x FOR PEER REVIEW 3 of 15 
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perchloric acid solution at 30 V. TEM observations were performed with a Talos f200x (Thermo 
scientific TM, Hillsboro, OR, USA) transmission electron microscope with an acceleration voltage of 
200 KV. The dislocation density of the material was analyzed by X-ray diffraction (XRD) on a D/max-
2500PC X-ray diffractometer (Rigaku Corp, Tokyo, Japan), with Cu-Kα (λ = 0.15406 nm) radiation at 
a scan rate of 2°/min, and operation voltage and current of 40 kV and 100 mA, respectively. Tensile 
specimens at different angles 0°, 45°, and 90° to the RD were selected from the steel sheets. The 
sampling positions and dimensions of the tensile specimens are shown in Figure 2. The tensile tests 
were conducted on a table Inspekt 100 kN universal material testing machine (Hegewald & Peschke 
MPT GmbH, Nossen, Germany), and the hardness was measured on an FM-700 FM-ARS 
microhardness tester (Future-Tech Corp., Kawasaki City, Kanagawa, Japan). The impact toughness 
test was carried out on Zwick RKP450 pendulum impact tester (Zwick GmbH & Co., Ulm, Germany) 
at room temperature. The impact specimens (cross-sectional dimension of about 10 mm thickness, 10 
mm width, and 50 mm length) and Charpy U-notch impact specimens were assembled in multiple 
layers of thin plates of equal thickness. The approximate impact toughness of the sheets was obtained 
from the actual cross-sectional area calculated according to the actual thickness of the experimental 
sample.  
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3. Results 
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The quenched martensite of AISI 1010 steel is shown in Figure 3, revealing the typical lath 
martensite structure in the original austenite grains of the low-carbon steel. The parallel direction of 
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distributed in multiple orientations and there is no specific angle with the subsequent deformation 
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The microstructure of each specimen was examined by various techniques. The structures were
characterized by optical microscopy (OM), with an Axiovert-200MAT (Carl Zeiss Microscopy GmbH,
Jena, Germany) and scanning electron microscopy (SEM) using a Hitachi S-3400N scanning electron
microscope (Hitachi Corp., Tokyo, Japan) that the accelerating voltage was 20 KV. All specimens were
observed on the rolling direction (RD)-normal direction (ND) plane of the sheets. Thin foils for TEM
observation were cut into 6 mm long and 0.4 mm thickness by wire cutting equipment, mechanically
thinned to 30 µm thickness, and electropolished by a twin-jet polisher with 10% perchloric acid solution
at 30 V. TEM observations were performed with a Talos f200x (Thermo scientific TM, Hillsboro, OR,
USA) transmission electron microscope with an acceleration voltage of 200 KV. The dislocation density
of the material was analyzed by X-ray diffraction (XRD) on a D/max-2500PC X-ray diffractometer
(Rigaku Corp, Tokyo, Japan), with Cu-Kα (λ = 0.15406 nm) radiation at a scan rate of 2◦/min, and
operation voltage and current of 40 kV and 100 mA, respectively. Tensile specimens at different angles
0◦, 45◦, and 90◦ to the RD were selected from the steel sheets. The sampling positions and dimensions
of the tensile specimens are shown in Figure 2. The tensile tests were conducted on a table Inspekt
100 kN universal material testing machine (Hegewald & Peschke MPT GmbH, Nossen, Germany),
and the hardness was measured on an FM-700 FM-ARS microhardness tester (Future-Tech Corp.,
Kawasaki City, Kanagawa, Japan). The impact toughness test was carried out on Zwick RKP450
pendulum impact tester (Zwick GmbH & Co., Ulm, Germany) at room temperature. The impact
specimens (cross-sectional dimension of about 10 mm thickness, 10 mm width, and 50 mm length) and
Charpy U-notch impact specimens were assembled in multiple layers of thin plates of equal thickness.
The approximate impact toughness of the sheets was obtained from the actual cross-sectional area
calculated according to the actual thickness of the experimental sample.
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3. Results

3.1. Microstructure after Cold Rolling

The quenched martensite of AISI 1010 steel is shown in Figure 3, revealing the typical lath
martensite structure in the original austenite grains of the low-carbon steel. The parallel direction
of the laths shows various angles with respect to the axes of the sample. The lath bundles are
randomly distributed in multiple orientations and there is no specific angle with the subsequent
deformation direction.

The structure of lath martensite has been widely studied and reported in the literature. There is
a three-level hierarchy in this morphology: (I) lath, a single crystal of martensite including high density
lattice defects; (II) block, aggregation of laths with the same crystallographic orientation (variant);
and (III) packet, aggregation of the blocks with the same habit plane [32–35]. The SEM images of
the microstructure of the 10 and 30% cold rolled specimens are shown in Figure 4a,b, respectively.
According to Ueji et al. [32], the structure of cold rolled martensite is divided into three kinds of
microstructures, designated by the alphabetical characters (A, B, and C) and defined as follows:

A Very fine lamellar structure mainly elongated parallel to the RD.
B Irregularly bent lamellar structure.
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C Lump of martensite laths with shear bands that is parallel to the ND.
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Figure 3. Optical microscopy (OM) image (a) and scanning electron microscopy (SEM) image (b)
showing the microstructures of the as-quenched martensite in the experimental steel.
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Figure 4. SEM images showing the microstructures of the experimental steel cold-rolled to a reduction
of 10% (a) and 30% (b). The initial microstructure was martensite. Alphabetic characters denote which
type of microstructure is exhibited. A, lamellar dislocation cell (LDC); B, irregularly bent lath (IBL);
C, kinked lath (KL); D, lath martensite (M)).

The symbols of A, B, C, and D denote the lamellar dislocation cell (LDC), irregularly bent lath (IBL),
kinked lath (KL) structures and lath martensite structures (M), in Figure 4, respectively. The broken
lines in Figure 4 indicate the boundaries between the different structures with the A, B, C, and D
microstructures. In the SEM image in Figure 4a reveals that the microstructures in the 10% cold-rolled
specimen of low carbon martensitic steel is mainly M structure. The deformed microstructure is
disordered and randomly distributed in different orientations and is at no specific angle with respect
to the RD direction. The IBL and LDC structures were easily categorized by their characteristic
morphology. However, the LDC and martensite structures both show similar lamellar structures,
so they are sometimes difficult to distinguish. When the lamellar structure is elongated in a direction
within 20◦ from the RD, it is considered as an LDC structure, otherwise the structure was categorized as
a martensite structure (M) [33]. According to the images shown in Figure 4, all three kinds of deformed
structures (LDC, IBL, and KL) occur in the 30% cold rolled specimens, and a fairly large amount of
martensite structure still remains. The area occupied by the LDC, IBL, and KL structures increases at
the same time, and the LDC structure occupies the largest area. The martensite lath also begins to be
elongated along the RD.

The as-quenched martensitic steel was cold rolled to a reduction of 10%, and 30%, and the fractions
of M, LDC, IBL, and KL of low-carbon martensitic steel under different rolling reductions are as shown
in Figure 5. The fractions of the M, LDC, IBL, and KL structures in the 10% cold rolled sheet were 49%,
24%, 14% and 13%, respectively. The area fraction of the LDC, IBL, and KL increased with increasing
the reduction, however, the area fraction of the M decreased. When the cold rolled reduction reaches
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to 30%, the area fraction of M decreases to 12%, but the area fraction of LDC, IBL, and KL increases to
40%, 31% and 17%, respectively. In other words, the martensite lath rotates with increasing cold rolled
reduction. The lath is continuously elongated along the RD and gradually tends to become parallel to
the RD. The martensitic microstructure is effective to obtain ultrafine grains, and the blocks and packets
of martensite have angular and rugged shape [36]. Such high density of high-angle boundaries and
complicated shape of blocks and packets would lead to inhomogeneous deformation (grain subdivision)
during plastic deformation, which can result in an ultra-fine deformation microstructure with large
local misorientations. After cold rolling deformation at low strains (Figure 4a,b), the martensitic
structure mostly remains the same.
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Figure 5. Fraction of the areas showing lamellar dislocation cells (LDCs), irregularly bent lath (IBL),
kinked lath (KL), and lath martensite (M) in the sheets cold rolled to a reduction of 10% and 30%.
The initial microstructure was martensite.

3.2. Mechanical Properties after Cold Rolling

The stress-strain curves of the as-quenched specimen and cold rolled specimens (10% and 30%
reduction) are shown in Figure 6. The stress-strain curve of the normalized specimen is also shown in
order to compare with the as-quenched specimen. The yield strength, tensile strength, and elongation
of the experimental steel after normalizing (85 ◦C held for 10 min, air cooled) are 233 MPa, 320 MPa,
and 32.2%, respectively. The results presented in Figure 6 reveal that cold deformation significantly
enhances the strength and decreases the plasticity compared with the quenched specimen. The strength
of the martensitic steel gradually increases, while the plasticity gradually decreases with increasing
reduction. When the deformation reaches to 30%, the tensile strength of the low-carbon martensitic
steel reaches to about 1600 MPa.
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Figure 7. Mechanical properties of high-strength steel. 
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Figure 6. Tensile curves of the experimental steels at different states (quenched and cold rolled states).

The yield strength, tensile strength, hardness, elongation, and impact toughness of the experimental
steel after quenching and cold rolling are shown in Figure 7. After quenching, the strength and hardness
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markedly increased, while the elongation decreased compared with the normalized specimen.
The hardness and tensile strength of the initial martensite were 440 HV and 1302 MPa, respectively.
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Figure 7. Mechanical properties of high-strength steel. 
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Figure 7. Mechanical properties of high-strength steel.

After a cold rolled reduction of 30%, the hardness and tensile strength increase to 466 HV and
1585 MPa, respectively. The elongation and impact toughness of the quenched martensite were 15% and
95 J/cm2, respectively. With the increase of the cold rolled reduction to 30%, the elongation and impact
toughness were reduced to 10.2% and 67 J/cm2, respectively. During the deformation process, the laths
are also sheared by the micro-shear band while migrating toward the RD, thereby destroying the
initial lath boundaries and causing a large misorientation within the martensite structure [30,32]. Then,
the microstructure is further refined and the crystal defect density is gradually increased. As a result,
the tensile strength and hardness of the experimental steel increase with the increasing cold rolled
reduction, and the elongation tends to decrease.

The tensile specimens were also selected in the direction of 0◦, 45◦, and 90◦ with respect to the RD
of the experimental steel. The differences in the elongation and tensile strength of the experimental steel
when the selected specimens were in different directions to the RD are shown in Figure 8. The strength
along the 0◦ RD is little higher than that along the 45◦ and 90◦ RD, whereas the change in elongation is
the opposite.
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Figure 8. Elongation (a) and tensile strength (b) of low-carbon martensitic steel in the directions at 
angles 0°, 45°, and 90° with respect to the RD. 
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which reveals that the fracture mode is mainly based on a ductile fracture, with fibers that are parallel 
to the initial fracture surface and arranged in rows. In the microscopic image of the fracture (Figure 
9b), there are obvious equiaxed dimples, a large number of which are aggregated. The matching 
dimples are elongated in the same direction. Images of the fracture morphology of a 10% cold rolled 
specimen are shown in Figure 9c,d. Tearing edges appear at the heart of the fracture and the shear 
lip is mainly distributed around the fracture with a large number of voids. The dimple size and depth 
are gradually reduced compared with the as-quenched martensitic steel. When the reduction reaches 
30%, there is a distinct tear-like structure in the core of the fracture displayed in Figure 9e. Compared 
with the 0% and 10% cold rolled specimens, the ductile fracture zone becomes very small and the 
material fracture mode is a mixed fracture mode. In Figure 9f, the dimple size and depth are 
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Figure 8. Elongation (a) and tensile strength (b) of low-carbon martensitic steel in the directions at
angles 0◦, 45◦, and 90◦ with respect to the RD.

The mechanical properties (elongation and strength) of the undeformed martensite steel at the
different angles are almost the same, and the differences between them are very small (less than
0.7%). There is no obvious orientation concentration in the initial martensitic steel (Figure 3), and the
martensite lath is randomly distributed in all directions. The deviations for the elongation and strength
between 0◦ and 45◦ (or 0◦ and 90◦) slightly increase after cold rolling. The martensite lath bundle
underwent extension, bending, or torsion after cold rolling (Figure 4), which resulted in anisotropy of
the structure in different orientations.
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When the cold rolled reduction reaches to 10%, the deviation of the elongation between 0◦ and
45◦ (or 0◦ and 90◦) is 0.75% (or 1.9%), and the deviation of the strength between 0◦ and 45◦ (or 0◦ and
90◦) is 1.0% (or 2.1%). When the cold rolled reduction reaches to 30%, the deviation of the elongation
between 0◦ and 45◦ (or 0◦ and 90◦) is 0.49% (or 0.98%), and the deviation of the strength between 0◦

and 45◦ (or 0◦ and 90◦) is 0.8% (or 1.9%). These results reveal that the anisotropy of material properties
is not obvious for the martensitic steel and the cold rolled martensitic steel at low strain (below 30%
reduction).

The fracture morphology of the tensile specimens for the experimental steel is shown in Figure 9.
Specifically, the fracture morphology of the as-quenched martensitic steel is shown in Figure 9a, which
reveals that the fracture mode is mainly based on a ductile fracture, with fibers that are parallel to the
initial fracture surface and arranged in rows. In the microscopic image of the fracture (Figure 9b), there
are obvious equiaxed dimples, a large number of which are aggregated. The matching dimples are
elongated in the same direction. Images of the fracture morphology of a 10% cold rolled specimen are
shown in Figure 9c,d. Tearing edges appear at the heart of the fracture and the shear lip is mainly
distributed around the fracture with a large number of voids. The dimple size and depth are gradually
reduced compared with the as-quenched martensitic steel. When the reduction reaches 30%, there is
a distinct tear-like structure in the core of the fracture displayed in Figure 9e. Compared with the 0%
and 10% cold rolled specimens, the ductile fracture zone becomes very small and the material fracture
mode is a mixed fracture mode. In Figure 9f, the dimple size and depth are significantly reduced.Materials 2020, 13, x FOR PEER REVIEW 8 of 15 
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3.3. Effects of Aging

The tensile strength, elongation and hardness of the specimens cold rolled and aging at 120 ◦C are
shown in Figure 10a,b, respectively. The data in Figure 10a reveal that the tensile strength of the initial
martensite and deformed martensite show an increasing trend at first, and then a decreasing trend with
increasing aging time, and the tensile strength reaches a maximum value after aging for 5 h. The tensile
strength of the as-quenched martensitic steel and the 30% cold rolled martensitic steel increases to
1339 and 1625 MPa, respectively, after aging treatment for 5 h. When the aging time reaches to 36 h,
the tensile strength of the as-quenched martensitic steel and 30% cold rolled martensitic steel is 1320
and 1604 MPa, respectively. The elongation of the initial martensite and deformed martensite also
increases with increasing aging time. When the aging treatment time reaches to 36 h, the elongation of
the as-quenched martensitic steel increases from 15% to 17%, and the elongation of the 30% cold rolled
specimen increases from 10.2% to 11%. The results in Figure 10b reveal that there are differences in
the changes of the hardness with the aging time between the as-quenched and deformed martensite
steel specimens. The hardness of the as-quenched specimen decreases gradually, decreasing from
440 to 411 HV with the increase of the aging time to 36 h. However, the hardness of the cold rolled
deformed martensitic steel increases at first, but then decreases with increasing aging time. In particular,
the hardness of the 30% cold rolled specimens increased from 466 to 479 HV after aging time for 5 h,
but decreased gradually with increasing aging time. When the aging time reaches to 36 h, the hardness
becomes 470 HV.
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Figure 10. Tensile strength, elongation (a), and hardness (b) of the experimental steel after aging at
120 ◦C for various time periods.

The SEM images showing the microstructure of the as-quenched specimens and the 30% cold
rolled specimens, and then aging at 120 ◦C for various time periods are displayed in Figure 11a–c.
Specifically, Figure 11a,b show that after the aging treatment, the microstructures are not so different
from the as-quenched one. The microstructure still exhibits the typical tempered lath martensite
structures composed of recovered lath martensite. After aging at 120 ◦C for 36 h, a few fine carbides
were found. The segregation and redistribution of carbon atoms take place into lattice defects such as
dislocations, lath boundaries, and prior grain boundaries. In addition, the transitional epsilon-carbides
also formed in this aging stage [37–39]. The locations of the precipitation of fine carbides are various
throughout the deformed lath martensite and are worth studying further in the future. As shown in
Figure 11c, when the reductions reached to 30%, the martensite phase interface becomes blurred and
the substructure becomes coarser that the aging time was 36 h. Figure 11d showed a TEM image of
a 30% cold rolled specimen after aging at 120 ◦C for 36 h, which can be clearly seen that the high-density
dislocations still exist between the martensite laths and the lath martensite boundary becomes blurred.
Carbides precipitated which showing a diffuse distribution. The carbide particles are small with size
of 10–20 nm.
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Figure 11. The SEM microstructures (a–c) and TEM microstructure (d) of the cold rolled sheets tempered
at 120 ◦C for various time periods, (a) quenched specimens with subsequent aging for 5 h, (b) quenched
specimens with subsequent aging for 36 h, (c) and (d) 30% cold rolled specimens with subsequent
aging for 36 h (Arrows point to the precipitated nano-carbides).

4. Discussion

The X-ray diffraction measurement results were used to analyze the samples under different
conditions, and the spectra of the (110), (200), (211), and (220) crystal plane with relatively strong
diffraction intensity were extracted. Jade software solves the full width at half maximum (FWHM)
values of each peak adds the FWHM of the four crystal faces of the sample, and introduces the empirical
Formula (1) [40] to calculate the dislocation density curve of different samples.

ρ =
β2

2 ln 2πb2 (1)

where ρ is the dislocation density, β is the full width at half maximum of each peak, b is the Berk vector,
where b = 0.247 nm [41].

The variation of the dislocation density for the as-quenched and deformed low-carbon martensitic
steel as a function of the tempering time at 120 ◦C is shown in Figure 12. The dislocation density
of the as-quenched and deformed low carbon martensitic steels showed a tendency to increase at
first and then began to decrease after low temperature tempering for 1 h. Without aging treatment,
the dislocation density of low-carbon martensitic steel increased from 1.18 × 1015 m−2 to 1.45 × 1015 m−2

with increasing cold rolled reduction. However, the dislocation density of the undeformed low-carbon
martensitic steel was higher than that of the cold rolled specimen after aging treatment. When the
aging time reached to 36 h, the dislocation density of the undeformed and deformed low-carbon
martensitic steel were 1.64 × 1015 m−2 and 1.57 × 1015 m−2, respectively. The dislocation density of the
cold rolled specimens continued to increase with the increase of the amount of cold rolled deformation
after aging treatment. For the specimens with cold rolling of 10% and 30%, the dislocation density was
1.55 × 1015 m−2 and 1.62 × 1015 m−2 after aging treatment for 1 h, respectively. When the aging time
increased to 36 h, the dislocation density was 1.53 × 1015 m−2 and 1.57 × 1015 m−2, respectively.
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Figure 12. Dislocation density of the as-quenched and deformed martensitic steel with subsequent 
aging at 120 °C for various time periods. 
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Figure 12. Dislocation density of the as-quenched and deformed martensitic steel with subsequent
aging at 120 ◦C for various time periods.

Since the carbon content of the experimental steel is low, when low-carbon martensite is tempered
at 120 ◦C for 1 h, carbides will not precipitate after a short period of aging. Only carbon atoms will
be segregated near the dislocations [42] and the Cottrell atmosphere will be formed. Speich [43]
used calculations to find that in the case of steels containing less than 0.2 wt% C, almost 90% of the
carbon segregates to dislocations and lath boundaries during quenching. When tempered at lower
temperatures for a shorter period of time, these martensites cause additional segregation but no carbide
precipitation. Due to the segregation of carbon atoms, result in an increase in dislocation density and
tensile strength of martensitic steel after tempering for 1 h. When the tempering time exceeds 1 h,
the recovery of the partial lath martensite occurred, and a small amount of supersaturated carbon
precipitated from the martensite laths that can form ε-carbide and pinning movable dislocations [44–46].
At this time, the dislocation density began to decrease, but the tensile strength continued to increase.
In other words, the phenomenon of “secondary hardening” occurred. After the aging time exceeded 5 h,
as the aging time continued to increase, the martensite microstructure phase interface became blurred
and the martensite lath bundles began to decompose. Additionally, the carbides precipitated between
the martensite lath bundles began to undergo rearrangement and annihilation, which caused the
martensite laths to coarsen. As a result, the dislocation density continued to decrease, and the tensile
strength began to decrease. Caron and Krauss [47] pointed out that when fine carbides in the martensite
laths were precipitated, the recovery was suppressed, causing the lath bundles to be effectively pinned
and moved, thereby decreasing the dislocation density and resulted in the occurrence of the coarsen
phenomenon. After aging for 1–36 h, the carbides gradually precipitated and the martensite laths
gradually coarsened, which is the same as the conclusion obtained in reference [47]. After the aging
treatment, the deformed martensite lath was coarsened (from Figure 11) which suppressed the recovery,
so that the dislocation density of the undeformed martensitic steel was higher than the dislocation
density of the cold rolled deformed martensitic steel.

The hardness and tensile strength for the deformed low-carbon martensite steel followed by
aging were increased during the early aging time period, and when the aging time more than 5 h,
the hardness (tensile strength) is reduced from 479 HV (1625 MPa) to 470 HV (1604 MPa), respectively,
at 30% deformation. The variation of the tensile strength for the as-quenched martensite specimen
is the same as that of the deformed one, but the hardness always decreased from 440 HV to 411 HV
(Figure 10). The variation of the tensile strength and the hardness for the quenched martensite steel is
different, indicating that a clear correspondence does not exist between the hardness and strength when
the quenched steel was aging at low temperature. When the aging time reaches 36 h, the nano-carbide
underwent a slight precipitation (Figure 11d). A large number of dislocations have been introduced
during the martensitic transformation, and the structure of the martensite has been changed by cold
deformation, which leads to an increase in the deformation dislocations. The diffusion channels of
C atoms increase, and the diffusion activation energy of C atoms decreases, which may lead to the
precipitation of nano-carbides in martensitic steel during low-temperature aging treatment. After
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martensitic transformation and cold deformation treatment followed by the low temperature aging
treatment, the precipitation behavior of nano-carbides is needed to further research and discussion.
At the same time, the dislocations migrated to form a dislocation interface in the recovery process that
resulted in interface enhancement. The arrangement of the dislocation interface in the tensile process
increased the strength of the lath martensitic steel, but the effect on the hardness was relatively small.
Saeglitz and Krauss [48,49] have examined low temperature aging by varying time and temperature,
and pointed out that for the low-carbon martensitic steels subjected to low-temperature aging treatment,
the high hardness and strength are very much dependent on the density of the transition carbides and
dislocations built into the low-temperature aging substructure of the tempered martensite crystals,
and these carbon-dependent densities control the strain hardening that leads to high hardness and
ultimate tensile strengths. Cahn et al. [50] pointed out that in brass, copper, or nickel with low
stacking fault energy, there is no drop-in hardness during recovery, the recovery being accomplished
by dislocation rearrangement, in contrast to aluminum and iron, where stacking fault energy is high
and substantial decreases in hardness during recovery are accomplished apparently by reductions in
dislocation density. The variation of the hardness and strength after aging treatment remains to be
further studied. Huang et al. and Tsuji et al. [51,52] comparatively studied the cold rolled deformation
of nanostructured pure aluminum and IF steel. After aging treatment, the stress of pure aluminum and
IF steel increases while the dislocation density decreases, and this indicates that the presence of a certain
amount of interior dislocations in the nanostructures produces softening rather than hardening as
is observed in conventional coarse grained materials. This correlation between dislocation source
density and intensity is usually observed in nanoscale metals through experiments [53] and through
atomic models [54]. The availability of dislocation sources or the lack of such sources may therefore
significantly affect the yield stress. The results of this study indicate that dislocations can cause softening
and will have important applications in the study of new nanomaterials. The typical age hardening
and over-aging softening behavior were observed through experiments. Due to the small content
of experimental steel alloy elements used in this study, the changes of the mechanical properties are
mainly related to the changes of dislocation motion and dislocation density. The softening phenomenon
in the experiments of this paper is basically consistent with the experimental conclusions obtained in
the literature.

5. Conclusions

The AISI 1010 low-carbon steel was quenched with ice water to obtain the lath martensite structure,
followed by cold rolling at low strains (<30%) and aging at low temperature (120 ◦C). The mechanical
behavior of the deformed martensitic structure was studied. The microstructural evolution of the
martensite was examined. The major results are summarized as follows:

(1) The deformed structures (LDC, IBL, and KL) were present in the 10% and 30% cold rolled
specimens and fairly large amount of the martensite structure remained the same. The area
occupied by the LDC, IBL and KL structure increased from 24, 14, and 13% to 40, 31, and 17%
with increasing rolling reductions. The martensite lath began to be elongated along the RD and
the martensite structure was gradually refined.

(2) As the reduction increased, the hardness and the tensile strength gradually increased, and the
elongation decreased. When the reduction reached to 30%, the hardness and tensile strength
increased to 466 HV and 1585 MPa, respectively. However, the elongation decreased to 10.2%.
When the tensile specimens were selected at 0◦, 45◦, and 90◦ in the RD, the specimens exhibited
different strength and elongation. The deviation was calculated to be within 3%. The anisotropy
of the material properties was not obvious for the martensitic steel and the cold rolled martensitic
steel at low strain (below 30% reduction).

(3) The strength of the initial martensite and deformed martensite showed an increasing trend at
first, and then a decreasing trend with increasing aging time, the tensile strength reached to
a maximum value after aging for 5 h. The tensile strength of the as-quenched martensitic steel
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and 30% cold rolled martensitic steel increased to 1339 and 1625 MPa after aging treatment for
5 h, respectively. The elongation of the initial martensite and deformed martensite increased
with increasing aging time. When the aging treatment time reached to 36 h, the elongation of the
as-quenched martensitic steel and 30% cold rolled specimen increased to 17 and 11%, respectively.
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