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Abstract: Seismic isolation systems have been used worldwide in bridge structures to reduce vibration
and avoid collapse. The seismic isolator, damper, and Shock Transmission Unit (SUT) are generally
adopted in the seismic design of bridges to improve their seismic safety with economic efficiency.
There are several seismic isolation systems, such as Natural Rubber Bearing (NRB), Lead Rubber
Bearing (LRB), and the Eradi-Quake System (EQS). EQS as a new technology is expected to effectively
reduce both seismic force and displacement, but there is still some need to verify whether it might
provide an economical and practical strategy for a bridge isolation system. Moreover, it is important
to guarantee consistent performance of the isolators by quality control. A comparative evaluation
of the basic properties of the available seismic isolators is thus necessary to achieve a balance
between cost-effectiveness and the desired performance of the bridge subjected to extreme loading.
Accordingly, in this study, the seismic response characteristics of the seismic isolation systems for
bridges were investigated by conducting compressive test and compressive-shear test on NRB, LRB,
and EQS.

Keywords: seismic isolator; seismic isolation of bridges; natural rubber bearing; lead rubber bearing;
Eradi-Quake System (EQS); energy dissipated per cycle (EDC)

1. Introduction

1.1. General

Seismic isolation systems such as the seismic isolator, damper, and Shock Transmission Unit
(SUT) have been widely used in bridge structures to reduce vibration, prevent collapse, and improve
seismic safety with economic efficiency. Among these systems, the seismic isolation bearing or seismic
isolator allows the structure to behave more flexibly with enhanced seismic response by decoupling
the superstructure from the foundation and providing additional damping. The isolators are laterally
flexible elements but can carry the vertical loads of the overlying structure. Since the isolators are
more flexible than the structure, most of the lateral movements caused by the earthquake occur in the
isolators which make the isolated structure experience less motion and reduced forces. Compared to a
traditional non-isolated structure, seismic isolation can reduce the forces and displacements in the
structure by up to 75% that allow the structure to remain functional with less or no damage. The cost
saving brought by the seismic isolation is achieved by the possibility to reduce the dimensions of the
foundation by dropping the elastic forces down by up to 75% in the design [1–4].

There are several seismic isolation systems such as Natural Rubber Bearing (NRB), Lead Rubber
Bearing (LRB), and Eradi-Quake System (EQS). EQS as a new technology has been proven to effectively
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reduce both seismic force and displacement [5–8], but there is still the need to verify whether it might
provide an economical and practical strategy for bridge isolation systems. Moreover, it is important
to guarantee consistent performance of the isolators by quality control. A comparative evaluation of
the basic properties of the available seismic isolators is thus necessary to achieve a balance between
cost-effectiveness and the desired performance of the bridge subjected to extreme loading. Accordingly,
in this study, the seismic response characteristics of the seismic isolation systems are investigated by
conducting a compressive test and compressive-shear test on NRB, LRB, and EQS.

1.2. Elastomeric Bearings

The concept of base isolation is quite simple. The system decouples the structure from the
horizontal components of the ground motion by interposing structural elements with low horizontal
stiffness between the structure and the foundation [9]. The first use of a rubber isolation system
to protect a structure from earthquakes happened in 1969 for an elementary school in Skopje,
Yugoslavia [10]. Based on their main properties and composition, there are two types of elastomeric
bearings: NRB (Figure 1a) and LRB (Figure 1b).

Figure 1. Elastomeric bearings: (a) Natural Rubber Bearing (NRB); (b) Lead Rubber Bearing (LRB).

NRBs are made of alternating steel shims vulcanized or glued together and elastomeric layers
which provide lateral flexibility and elastic restoring force. The steel plates reinforce the bearing by
providing vertical load capacity and preventing lateral bulge. A rubber cover protects the ensemble.
Mounting plates connect the device to the structure above and below. Depending on the elastomeric
compounds used, NRBs are available as either low damping or high damping. Low damping NRBs are
used in conjunction with supplementary damping devices, whereas high damping NRBs can be used
without other devices since they provide sufficient inherent damping [3,9,11–14]. LRBs are similar to
NRBs but contain a lead core. The steel shims confine the lead plug and force it to deform in shear.
Along with this deformation, dissipation of energy takes place.

1.3. EQS

EQS is an innovative sliding-type seismic isolation bearing system designed to minimize forces
and displacements experienced by structures subjected to seismic load. As shown in Figure 2,
its components consist of top and bottom plates which are fixed to the superstructure and substructure
of the bridge, respectively. In the bottom plate, a Poly Tetra Fluoro Ethylene (PTFE) friction disc,
which has a primary stiffness, performs friction damping and dissipates seismic energy with resistant
force caused by its sliding resilient friction. The lateral Mass Energy Regulator (MER) springs that
supply restoring forces primarily reposition the plate back to its original position after finishing
displacement responses. EQS transfers the seismic energy into heat and spring energy through friction
of a PTFE disc pad and MER [2,6–8,15–21]. Whereas the rubber bearings exhibit relatively significant
dispersion in their mechanical parameters, EQS can be tuned to the desired level of stiffness and
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damping, and generally has a force–displacement relationship presenting post-yield stiffness-hardening
during large inelastic displacement.

Figure 2. Composition of Eradi-Quake System (EQS).

2. Experimental Program

2.1. Design Properties of Test Specimens

The seismic resistance of NRB, LRB, and EQS was evaluated experimentally on a total of seven
specimens (NRB: 3 specimens, LRB: 3 specimens, EQS: 1 specimen). Table 1 lists the properties of the
NRB and LRB specimens where d is the diameter of rubber; Pv is the vertical load bearing capacity; G is
the shear modulus; Kv and Kh are the vertical and horizontal stiffnesses, respectively; Py is the yield
strength; EDC is the energy dissipated per cycle, which is the energy dissipation capacity of the isolator
when it displays a reciprocating motion under seismic load; and Pb is the buckling load. For further
comparison, the NRB and LRB specimens were designed to sustain the same Pv of 2945 kN and have
the same diameter and shear modulus. Table 2 arranges the design properties of the EQS specimens
designed for Pv = 2775 kN and design maximum displacement (dmax) of 50 mm. In Table 2, Ldead, Llive,
and L are the design dead load, the design live load, and design load, respectively. In addition, fmax is
the coefficient of friction of the PTFE disc at high velocity of sliding, and fmin is the coefficient of friction
at essentially zero velocity of sliding. Keff denotes the effective stiffness.

Table 1. Design properties of NRB and LRB specimens.

Isolator d
(mm)

Pv
(kN)

G
(MPa)

Kv
(kN/mm)

Kh
(kN/mm)

Py
(kN)

EDC
(kN·mm) Pb (kN)

LRB 500 2945 0.392 2.057 1.414 67.5 25.118 12,824
NRB 500 2945 0.392 1.865 0.768 - - 10,766

Table 2. Design properties of EQS specimens.

Isolator Ldead
(kN)

Llive
(kN)

L
(kN)

Pv
(kN)

dmax
(mm) fmax fmim

Keff
(kN/mm)

EDC
(kN·mm)

EQS 1350 500 1850 2775 ±50 0.138 0.055 3.219 18.900

2.2. Testing Method and Setup

2.2.1. Compressive Load Test

The setup adopted for the compressive test is illustrated in Figure 3. Biaxial loading was applied
using two hydraulic actuators. The vertical actuator (Samyeon Tech, Daegu, Korea) with a capacity
of 3500 kN and the horizontal actuator (Samyeon Tech, Daegu, Korea) with a horizontal capacity of
500 kN are components of the testing machine and can be extended up to 150 and 600 mm, respectively.
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A Linear Variable Displacement Transducer (LVDT) (Samyeon Tech, Daegu, Korea) was installed to
measure the biaxial displacements, as depicted in Figure 3c for the NRB and LRB specimens and
Figure 3d for the EQS specimens. The loading details are explained in Figure 4 and Table 3. The design
vertical load (p0) was 2000 kN for LRB and NRB, and 1850 kN for EQS. The compressive loads were
imparted three times on the specimens within a range between p1 and p2, which are 70% and 130% of
the design vertical load. The compressive stiffness, Kv, can be calculated by Equation (1) with the test
data, p1, p2, Y1, and Y2, where Y1 and Y2 are the horizontal displacements corresponding to p1 and p2,
respectively, as shown in Figure 4. Moreover, the compressive stresses, f1 and f2, can be calculated by
Equations (2) and (3) using the compressive loads, p1 and p2.

Kv =
p2 − p1

Y2 −Y1
, (1)

p1 = Aload· f1, (2)

p2 = Aload· f2, (3)

where Aload is the net loading area excluding the area of the lead core in the LRB specimens.

Figure 3. Compressive test setup: (a) photograph of compressive test machine; (b) conceptual drawing
of compressive test; (c) installed Linear Variable Displacement Transducer (LVDT) for LRB and NRB;
(d) installed LVDT for EQS.
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Figure 4. Details of biaxial loading adopted in compressive test of seismic isolators.

Table 3. Details of biaxial loading adopted in compressive test by type of seismic isolators.

Isolator Diameter,
d (mm)

Design Vertical
Load, p0 (kN) p1 = 70% × p0 (kN) p2 = 130% × p0 (kN)

LRB 500 2000 1400 2600
NRB 500 2000 1400 2600
EQS 305 1850 1295 2405

2.2.2. Compressive-Shear Test

The specimens were tested according to the test guidelines for bridge isolators [22] developed by
the Korea Institute of Civil Engineering and Building Technology (KICT) using a compressive-shear
testing machine (Samyeon Tech, Daegu, Korea), the conceptual drawing of which is shown Figure 5.
The shear force and the horizontal displacement were measured under constant vertical load. During the
testing, the loading plates should be parallel to each other and the actuator must apply a constant
vertical load when the height of the specimen is changed. The lateral (shear) loading history is shown
in Figure 6. The shear stiffness and the equivalent damping can be calculated using the measured test
results. The shear force measured by a horizontally installed load cell had to be calibrated after the test
because the friction force of the testing machine was added to the measured load, even though the
bearings were installed to reduce such friction of the machine.

Figure 5. Conceptual drawing of compressive-shear test setup.
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Figure 6. Lateral (shear) loading history: (a) NRB and LRB; (b) EQS.

Figure 7 shows the theoretical shear behaviors of NRB, LRB, and EQS isolators, where X and Y
denote the lateral (shear) displacement and the lateral (shear) load applied by the actuator, respectively.
In Figure 7a, representing the hysteresis of NRB, the isolator shows quasi-linear behavior. In Figure 7b,
representing the shear behavior of LRB and EQS, the area enclosed in the hysteresis is larger owing to
the additional damping brought by these two types of isolators.
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The shear stiffness (Kh) and equivalent damping (heq) can be derived by Equations (4) and (5)
using the test results.

Kh =
Q2 −Q1

X2 −X1
, (4)

heq =
2·∆W

πKh(X2 −X1)
2 , (5)

where Q1 and Q2 are the maximum and minimum shear forces, respectively; X1 and X2 are the
maximum and minimum displacements corresponding to Q1 and Q2, respectively; and ∆W is the area
enclosed by the hysteresis curve and represents the energy absorbed by the isolator.
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3. Test Results and Discussion

3.1. Compressive Load Test Results

All the specimens were first loaded monotonically until the design vertical load (p0), and then
cyclic compressive load was applied three times with a range between 70% (p1) and 130% (p2) of the
design vertical load. Table 4 arranges the compressive test results, and Figure 8 plots the compressive
force–displacement curves of NRB, LRB, and EQS.

Table 4. Compressive test results of NRB, LRB, and EQS specimens.

Isolator Compressive
Stiffness, Kv (kN/mm)

Shear Stiffness, Kh
(kN/mm)

EDC
(kN·mm)

Equivalent
Damping, heq

NRB

Specimen #1 1236 0.9423 - -
Specimen #2 1248 0.9975 - -
Specimen #3 1193 0.9611 - -

Average 1226 0.9670 - -

LRB

Specimen #1 1347 1.3008 32,574 0.3995
Specimen #2 1418 1.3139 32,536 0.3951
Specimen #3 1361 1.3069 34,247 0.4181

Average 1375 1.3072 33,119 0.4042

EQS Specimen #1 1370 2.7400 16,303 0.3788

1 
 

  
(a) (b) 

 
(c) 

 

 

Figure 8. Measured compressive force–displacement curves: (a) NRB; (b) LRB; (c) EQS.

Noting that the elastomeric bearings have limitations in their vertical stiffness with a design
vertical stiffness of 1680 kN/mm for NRB and 1995 kN/mm for LRB, Table 4 exhibits some impropriety
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in the vertical stiffness for LRB. Specimens #1 and #3 of LRB showed lower values than the limit
value, which is 70% of the design vertical stiffness (1397 kN/mm), whereas all NRB specimens showed
higher values than 70% of the design vertical stiffness (1176 kN/mm). In Figure 8, EQS showed similar
vertical stiffness to the other types of isolator, but permanent displacement occurred after the peak load.
This latter observation stresses the necessity to apply strict quality management on the commercial
seismic isolators.

3.2. Compressive-Shear Test Results

As stated in the test guideline for bridge isolators, all the specimens were horizontally loaded
three times within a range of design displacement. The shear force–displacement curves measured
for the specimens are plotted in Figure 9. The compressive-shear test results are provided in Table 4
and can be compared with the design properties listed in Tables 1 and 2. It appears that the shear
stiffness of NRB and LRB can satisfy the design limit (90% of design shear stiffness). The shear stiffness
of NRB was 25.9% higher than the design shear stiffness of 0.768 kN/mm. Even if the average shear
stiffness of LRB fell below the design value, the design criterion was satisfied according to the guideline.
On the contrary, the shear stiffness of EQS reached 85.1% of the design value and did not satisfy the
design criterion. In view of EDC, LRB showed 33.119 kN·mm—that is, 130% of the design EDC—while
EDC of EQS was 16.303 kN·mm—that is, 86% of the design value. Consequently, the considered
commercial EQS failed to satisfy the test guideline for the bridge isolator despite its advantages in
terms of size and maintenance. Here, this latter observation also stresses the necessity to apply strict
quality management on the commercial seismic isolators.

Figure 9. Measured shear force–displacement curves: (a) NRB; (b) LRB; (c) EQS.
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4. Conclusions

A series of compressive tests and compressive-shear tests were conducted on NRB, LRB,
and EQS specimens to examine the response characteristics of representative seismic isolation systems.
The following conclusions are drawn:

1. NRB showed relatively more consistent test results than LRB and EQS. LRB, which has improved
energy dissipation capacity compared with NRB, exhibited lower performance than the design
compressive stiffness. Though LRB and EQS have performance superior to that of NRB in terms
of energy absorption capacity, only NRB satisfied the design criteria. It is, therefore, primordial to
examine the quality of the isolators before their application to the structures.

2. EQS is a novel seismic isolator with improved features. It is known that EQS can resist relatively
larger vertical load than other kinds of isolators, and that it can be easily fixed after an earthquake.
However, permanent deformation occurred when the design vertical load was applied in the
test. Such unexpected deformation of the isolator can affect the friction between the components
of EQS. Although EQS showed relatively high shear stiffness, the test results of EDC did not
satisfy the target value in accordance with the test guideline for the bridge isolator. Therefore,
it can be concluded that strict quality management on the commercial seismic isolators should
be implemented.

3. During the lifetime of the isolators, ageing and air temperature are important factors that affect
the degradation of the rubber and friction coefficient of the sliding surface, respectively [23].
Therefore, further research will be conducted with considerations of durability.
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