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Abstract: To address aggravating environmental and energy problems, active, efficient, low-cost,
and robust electrocatalysts (ECs) are actively pursued as substitutes for the current noble metal ECs.
Therefore, in this study, we report the preparation of graphene flakes (GF) doped with S and N using
2-5-dimercapto-1,3,4-thiadiazole (S3N2) as precursor followed by the immobilization of cobalt spinel
oxide (Co3O4) or manganese spinel oxide (Mn3O4) nanoparticles through a one-step co-precipitation
procedure (Co/S3N2–GF and Mn/S3N2–GF). Characterization by different physicochemical techniques
(Fourier Transform Infrared (FTIR), Raman spectroscopy, Transmission Electron Microscopy (TEM)
and X-ray Diffraction (XRD)) of both composites shows the preservation of the metal oxide
spinel structure and further confirms the successful preparation of the envisaged electrocatalysts.
Co/S3N2–GF composite exhibits the best ORR performance with an onset potential of 0.91 V vs. RHE,
a diffusion-limiting current density of −4.50 mA cm−2 and selectivity for the direct four-electron
pathway, matching the results obtained for commercial Pt/C. Moreover, both Co/S3N2–GF and
Mn/S3N2–GF showed excellent tolerance to methanol poisoning and good stability.

Keywords: oxygen reduction; carbon material; metal oxides; heteroatom doping

1. Introduction

The continuous exhaustion of fossil fuels highly contributing to environmental problems and the
increasing demand of energy has prompted the development of sustainable alternative energy sources
and conversion devices like metal–air batteries and fuel cells. The major problem for the wide spread
of these new technologies is related to the fact that the reaction occurring at the cathode, the oxygen
reduction reaction (ORR), has sluggish kinetics and is the major rate-limiting factor restricting achieving
the expected performance [1]. Ideally, this reaction should occur through a direct four-electron process,
but for most of the electrocatalysts developed it occurs through a less efficient two-electron process
with the production of an intermediate—hydrogen peroxide.

Currently, the most efficient electrocatalysts for ORR are noble metal platinum (Pt)-based
materials with low overpotential, large current densities and selectivity toward the direct four-electron
process [2,3]. However, these are extremely expensive due to limited platinum resources on earth,
and they suffer deactivation due to methanol poisoning [3]. Consequently, the development and
application of fuel cells and metal–air batteries have been limited. These drawbacks have stimulated
the search for alternative, cost-effective and stable ORR electrocatalysts.
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Among the most promising electrocatalysts to displace the expensive Pt/C are the earth-abundant
first row transition metal nitrogen-doped carbons. These have gained particular attention since 1964,
when Jasinski first observed ORR activity on a cobalt macrocyclic complex [4,5]. Cobalt and manganese
oxides have emerged as a promising group of non-precious metal electrocatalysts due to their
intrinsic electrocatalytic activity attributed to their characteristic mixed-valence states, high stability,
low environmental impact, and exceptional 3d electronic configurations [6–9]. However, the limited
number of active sites and the poor electrical conductivity have limited their wide application [10].
This drawback can be circumvented by designing hybrid materials of metal oxides supported onto
electrically conductive materials. Carbon materials have been proven to modulate the electrical
conductivity of cobalt, for example, by providing increased charge transport and exposing active sites
due to the high surface area of carbon, thereby promoting the electrocatalytic activity of cobalt [11,12].
However, some studies have reported a limitation in electron transfer at the interface and restricted
electrocatalytic tunability caused by the lack of bridged bonds between the carbon lattice and metal
oxide, commanding the use of doped carbon to create effective bonds [13,14]. Graphene-based transition
metal oxide (Fe, Co, Cu, Ni, and Mn) nanocomposites have already been a subject of study and have
been proven to be a promising type of highly efficient and economic nanocatalyst for optimizing the
ORR to solve the current energy crisis [11,15]. For example, iron oxides supported on N-doped carbon
catalysts have been studied for a long time for the ORR due to the extremely low cost of Fe and their
good performance in both acidic and alkaline electrolytes [16]. Similarly, different researchers reported
the synthesis of cobalt oxides/N-graphene for ORR with very good electrocatalytic performances [17].

With this in mind, here we report the preparation of graphene flakes doped with nitrogen and sulfur
(S3N2–GF) to serve as bridging atoms to facilitate electron transport. Subsequently, two composites
based on the immobilization of Co3O4 and Mn3O4 nanoparticles supported on S3N2–GF were developed
and efficiently employed for oxygen reduction. A scalable and easy procedure was used for the N- and
S-doping process which constitutes an advantage. Additionally, the designed ECs exhibited enhanced
ORR performances as a result of the covalent coupling effect between the S- and N-doped GF and the
metal oxide nanoparticles.

2. Materials and Methods

2.1. Materials and Instrumentation

The materials and solvents used in the electrocatalyst preparation and in the electrocatalytical
studies were used as received and are described in detail in the Supplementary Material (SM) file.
All electrocatalysts were characterized prior to their application using different techniques (Raman,
FT-IR, XRD, XPS and TEM) and the methods and equipment used are detailed in the SM file.

Electrocatalytic performance was evaluated using a PGSTAT 302N potentiostat (Metrohm Autolab
B.V., Utrecht, The Netherlands) controlled by NOVA 2.1 and using a conventional 3-electrode system.
For all details regarding electrodes, electrode conditioning and modification, see the SM file.

2.2. Synthesis of S, N-graphene Flakes (S3N2–GF)

The preparation of dual-doped GF (nitrogen and sulfur) was achieved using a precursor containing
both heteroatoms (2-5-dimercapto-1,3,4-thiadiazole, S3N2). Briefly, 400 mg of GF was mixed with
400 mg of S3N2 in a ball miller (Retsch MM200, Retsch GMBH, Haan, Germany) at 15 Hz for 5 hours.
For a proper mixing of the two components, were chosen balls of zirconium oxide with a 2 mm
diameter (≈100). Then, the mixture was subjected to calcination at 800 ºC for 1 hour under N2 flow.

2.3. Synthesis of Co and Mn/S3N2–GF

For Co/S3N2–GF, the S, prior-prepared N-doped GF (235 mg) were dispersed in aqueous solution
(50 mL) containing 4 mmol of CoCl2.6H2O. Then, the solution of 1-amino-2-propanol (MIPA) (3 mol
dm−3) was added, at a rate of 50 mL h−1, until the pH = 10. This mixture was stirred at room
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temperature during 24 h and the slurry material was filtered, washed with water and ethanol and
left to dry 12 h under vacuum (at 50 ◦C). Finally, the obtained material was calcined at 250 ◦C for 3 h
in air. For the preparation of Mn/S3N2–GF, the procedure was very similar: 217 mg of S3N2–GF and
4.4 mmol MnCl2.4H2O were used, and calcination with air flux for 5 h at 300 ◦C.

3. Results and Discussion

3.1. Electrocatalysts Characterization

The successful doping of graphene flakes was confirmed by X-ray photoelectron spectroscopy
(XPS) analysis and the high-resolution spectra are depicted in Figure S1. The C 1s high-resolution
spectrum of S3N2–GF was fitted with six peaks at: 283.0 (C–S–C), 284.6 eV (sp2, C–C, C=C), 286.1 eV
(C-O, C–N), 287.1 eV (C=O), 288.3 eV (O–C=O), and 290.7 eV (π-π* transition) [18,19]. The fitting
was similar to that of pristine GF published previously with the exception of a new small peak
corresponding to C–S–C (from doping with S3N2) and the contribution of C–N bonds to the peak at
286.1 eV [18]. The O 1s high-resolution spectrum of S3N2–GF is shown in Figure S1b and was fitted
with three peaks: one at ≈ 531.3 eV corresponding to C=O, one at ≈ 532.8 eV attributed to C-O and
another at ≈ 534.6 eV assigned to O-C=O [18,20]. The N 1s XPS spectrum of S3N2–GF (Figure S1c)
was fitted with three main peaks at 398.4, 399.8 and 400.7 eV, attributed to pyridiniC–N, pyrroliC–N,
and graphitic N, respectively. Those at 398.4 and 399.8 eV may be attributed to the π-conjugated system
with a pair of p-electrons in graphene layers, while those at 400.7 eV demonstrate the replacement of
N atoms in the carbon layers [21,22]. The S 2p XPS spectrum (Figure S1d) is slightly complex due to
spin-orbital coupling phenomenon. The pair of peaks at ≈ 163.9 eV (2p3/2) and 164.9 eV (2p1/2) can be
attributed to the C–S–C covalent bonds, those at 165.4 and 166.4 eV to C-SH, and that at 168.6 eV is
assigned to some oxidized sulphur (-C-SOx-C-, x = 2, 3) [23,24]. The XPS surface atomic percentages
were also determined, at 97.1% (C 1s), 1.1% (O 1s), 1.1% (N 1s) and 0.5% (S 2p).

The initial assessment of the composite ECs was performed by FTIR and the spectra of Co/S3N2–GF
and Mn/S3N2–GF are exhibited in Figure 1 (see Figure S2 for full spectra). For comparison, those of
metal oxide NPs are also included. The presence of two bands at 575 and 662 cm−1 in the Co/S3N2–GF
spectrum (Figure 1a) confirms the successful preparation of the desired composite. These two bands
confirm the Co3O4 with spinel structure [25,26]. Similarly, the presence of two bands at 629 and
522 cm−1 in the Mn/S3N2–GF spectrum (Figure 1b) indicates that the Mn3O4 nanoparticles were
prepared with spinel structure [21,27]. The composites also present the bands related to the S, N-doped
GF (≈3591, 1534, 1325 and 1178 cm−1). Those at approximately 3591, 1534 and 1178 cm−1 correspond
to the stretching vibrations of the OH groups, C=C and C–O/ C–S, respectively, while that at 1325 cm−1

corresponds to the C–N stretching vibration [28,29].
Raman spectra of the prepared composites and of S3N2–GF, Co3O4 and Mn3O4 nanoparticles are

depicted in Figure 2. The spectrum of the S3N2–GF shows peaks at 1336 cm−1 (D band), 1570 cm−1 (G
band), 2684 cm−1 (2D band) and a smaller one at 2926 cm−1 (D + G band). Graphene doping shifts the
Fermi level away from the Dirac point, decreasing the probability of charge carrier recombination [30].
The reduced recombination increases and sharpens the G band as can be seen in Figure 2. An increased
electron (e−) concentration results in a decrease in the 2D band peak position, with an expanded
crystal lattice, decreased Raman phonons and asymmetry in the doping effect of the G band peak
position [31,32]. The presence of Co3O4 nanoparticles in the Co/S3N2–GF composite (Figure 2a) is
confirmed by the peaks assigned to the Raman active modes of the Co3O4 structure at 671 (A1g),
603 (F2g), 507 (F2g) and 466 cm−1 (Eg) [33,34]. The presence of the Raman bands corresponding to
the doped carbon material is also observed (1342, 1573 and 2694 cm−1). The slight shift in the peak
positions with respect to the undoped material suggests the interaction between the doped GF and
the nanoparticles.
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Figure 1. FTIR spectra of Co/S3N2–GF (a) and Mn/S3N2–GF (b) composites.
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Figure 2. Raman spectra of Co/S3N2–GF (a) and Mn/S3N2–GF (b) composites. 
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Figure 2. Raman spectra of Co/S3N2–GF (a) and Mn/S3N2–GF (b) composites.

The successful in situ preparation of Mn3O4 nanoparticles with spinel structure in the presence of
S3N2–GF (Figure 2b) is also confirmed through the existence of Raman peaks at 640 (A1g), 351 (T2g)
and 273 cm−1 (Eg). The peaks assigned to the D, G and 2D modes are also observed at 1342 cm−1,
1575 cm−1 and 2682 cm−1, respectively.

XRD analysis was also carried out and the patterns can be observed in Figure 3. The XRD pattern
of S3N2–GF shows diffraction peaks at 25◦, 43◦ and 54◦, corresponding to the 002, 100 and 101 XRD
crystal planes, respectively, which can be indexed to the hexagonal crystalline graphite (JCPDS No.
41-1487) [35,36]. The XRD pattern of Co3O4 NPs (Figure 3a) shows the typical diffraction peaks
indexed to the (111), (220), (311), (222), (400), (511) and (440) crystal planes of face-centred-cubic phase
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of the Co3O4 spinel structure at 2θ = 19◦, 31◦, 37◦, 38◦, 45◦, 59◦ and 65◦ (JCPDS No. 42-1467) [37].
These results are in accordance with previously reported results [21,37,38]. The Co/S3N2–GF XRD
patterns present one peak at 2θ = 26º assigned to the (002) XRD plane of stacked graphene layers,
and those assigned to Co3O4 NPs. In Figure 3b are presented the XRD pattern of Mn3O4 NPs and
corresponding Mn/S3N2–GF composite. In both patterns peaks can be observed at 2θ ≈ 18◦, 29◦, 31◦,
32◦, 36◦, 38◦, 44◦, 51◦, 54◦, 56◦, 58◦ and 60º, indexed to (101), (112), (200), (103), (211), (004), (220), (105),
(312), (303) and (321) XRD crystal planes of a body-centred-cubic phase/structure, respectively (ICDD
PDF card no.04-004-864). The presence of these peaks confirms the existence of Mn3O4 NPs with spinel
structure [39]. The XRD results validate the results obtained by Raman analysis confirming in situ
preparation of metal oxide NPs in the presence of S3N2–GF. Additionally, the particle size of Co3O4

and Mn3O4 nanoparticles (pristine and in the presence of S3N2–GF) was estimated using Scherrer
equation [40]. The Scherrer equation was used on the most prominent peak (2θ = 27º for Co3O4 and
Co/S3N2–GF, 2θ = 36º for Mn3O4 and 2θ = 29º for Mn/S3N2–GF) leading to estimated particle size of
23.0, 13.1, 26.2 and 28.6 nm for Co3O4, Co/S3N2–GF, Mn3O4 and Mn/S3N2–GF, respectively. 
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Figure 4. Transmission electron micrographs of S3N2–GF (A), Co/S3N2–GF (B) and Mn/S3N2–GF (C) 

with their corresponding EDS spectra. 

(a) (b) 

Figure 3. X-ray diffraction spectra of Co/S3N2–GF (a) and Mn/S3N2–GF (b) and the individual elements
(S3N2–GF and metal oxide NPs).

The morphology of S3N2–GF and of both composites (Mn/S3N2–GF and Co/S3N2–GF) was
evaluated using TEM (Figure 4). The TEM image of S3N2–GF (Figure 4a) shows graphene sheets which
appear transparent and clear, consistent with literature reports [41,42]. The TEM image of Co/S3N2–GF
suggests that spherical Co3O4 nanoparticles, which have been formed, agglomerate onto the surface
of S3N2–GF sheets (Figure 4b). For the Mn/S3N2–GF composite, the TEM images show a section
with dispersed tetragonal-shaped Mn3O4 NPs on the surface of S3N2–GF and another with some
agglomeration (Figure 4c). It can also be seen on the TEM micrographs that the Mn3O4 nanoparticles
formed comparably larger particles on the surface of S3N2–GF sheets when compared with the Co3O4

nanoparticles. The energy dispersive spectroscopy (EDS) analysis also suggests the presence of Mn3O4

and Co3O4, through the observation of Mn and Co species on the spectra. The presence of Cu on the
spectra arises from the copper grids used as support during TEM analysis.
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Figure 4. Transmission electron micrographs of S3N2–GF (A), Co/S3N2–GF (B) and Mn/S3N2–GF (C)
with their corresponding EDS spectra.

3.2. Electrochemical Performance of the Electrocatalysts towards ORR

The three materials prepared (S3N2–GF, Co/S3N2–GF and Mn/S3N2–GF) were evaluated as ORR
electrocatalysts using cyclic voltammetry (CV) in nitrogen- and oxygen-saturated solutions (0.1 mol
dm−3 KOH). The CVs can be observed in Figure 5. In the absence of oxygen, no electrochemical
processes are observed for S3N2–GF and Co/S3N2–GF, whereas for Mn/S3N2–GF a redox pair with
very low intensity can be observed (Epc = 0.85 V and Epa = 1.07 V vs. RHE). This pair of peaks can
be attributed to manganese redox processes [21,43]. On the other hand, when oxygen is present,
all composites show an irreversible ORR peak at Epc = 0.63, 0.76 and 0.80 V vs. RHE for S3N2–GF,
Co/S3N2–GF and Mn/S3N2–GF, respectively. In the same experimental conditions, for Pt/C (20 wt. %)
the ORR peak was observed at Epc = 0.86 V vs. RHE.

All composites were further studied by linear sweep voltammetry (LSV) in 0.1 mol dm−3 KOH in
both N2- and O2-saturated solutions. Figure 6a shows the LSV for Pt/C, S3N2–GF, Co/S3N2–GF and
Mn/S3N2–GF in O2-saturated solution (after the subtraction of LSV in N2-saturated solution) and the
main parameters determined are in Table 1. It can be clearly seen that the introduction of cobalt and
manganese oxide nanoparticles into the S, N-doped GF leads to an improvement of the ORR features,
not only in terms of diffusion-limiting current density (jL) values, but also onset potentials. The first
duplicates from S3N2–GF (−2.05 mA cm−2) to Co/S3N2–GF and Mn/S3N2–GF (−4.50 and −3.66 mA
cm−2, respectively), while the Eonset values shift 140 and 120 mV, respectively, towards more positive
potentials. The onset potentials of both composites are similar to the value obtained for Pt/C and
Co/S3N2–GF present comparable jL value to that obtained for Pt/C. However, Mn/S3N2–GF shows
a lower jL value than Pt/C (less 20%). As evidenced by LSV results, Co/S3N2–GF displays the highest
ORR activity among the three composites prepared, which is reflected by its having the most positive
Eonset and highest jL value.
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Figure 5. CVs in N2-saturated (dash line) and O2-saturated (full line) 0.1 mol dm−3 KOH solution at
0.005 V s−1 for S3N2–GF (a), Co/S3N2–GF (b), Mn/S3N2–GF (c) and commercial Pt/C (20wt%) modified
electrodes (d).
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Figure 6. ORR LSV curves obtained in 0.1 mol dm−3 KOH saturated with O2 for Pt/C, S3N2–GF,
Co/S3N2–GF and Mn/S3N2–GF at 1600 rpm and 0.005 V s−1 (a) and the corresponding ORR Tafel
plots (b).
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Table 1. Onset potentials (Eonset), diffusion-limiting current density values (jL,0.26 V,1600 rpm) and Tafel
slopes determined from the ORR LSV curves in 0.1 mol dm−3 KOH and the number of electrons
transferred for each O2 molecule.

Sample Eonset
(5%Total)

Eonset (j =
0.1mAcm−2)

jL (mA cm−2) Tafel (mV
dec−1)

ñO2

Pt/C 0.91 0.94 −4.67 89 4.0
S3N2–GF 0.77 0.77 −2.05 164 3.6

Co/S3N2–GF 0.91 0.93 −4.50 57 4.1
Mn/S3N2–GF 0.89 0.89 −3.66 137 3.9

LSVs at different rotation speeds and quantitative Koutecky–Levich (KL) plots were obtained
to gather more information about the ORR kinetics of these composites. Figure 7 shows the LSV in
O2-saturated solution (after the subtraction of LSV in N2-saturated solution) while the corresponding
KL plots can be observed in Figure 8. Both the composites prepared and Pt/C electrocatalyst show
a first order ORR in relation to the concentration of oxygen dissolved with the KL plots presenting
good linearity with lines showing similar slopes in the potential range scanned for each material.
This suggests that the applied potential does not have a significant influence on the number of electrons
transferred per oxygen molecule (nO2). In fact, the nO2 values estimated were almost constant with
nO2 = 4.0, 3.6, 4.1 and 3.9 for Pt/C, S3N2–GF, Co/S3N2–GF and Mn/S3N2–GF, respectively. These values
show that the ORR process at these electrocatalysts seems to proceed via a direct pathway (direct
reduction of oxygen to water) involving four electrons. In the fuel cell industry, this is the preferred
pathway, since it directly produces OH− ions as the final product without the formation of OOH− ions.

The results obtained for the Co/S3N2–GF and Mn/S3N2–GF composites are similar or better
than others reported for similar compounds. For example, Duan et al. reported the application of
Mn3O4 nanoparticles on nitrogen-doped graphene (Mn3O4@N–GF) [43] and on N-doped reduced
graphene oxide (Mn3O4/N-rGO) [44] as ORR electrocatalysts with 0.87 ≥ Eonset ≥ 0.83 V and nO2 = 3.8.
Wang and co-workers have also successfully applied a Co3O4@g-C3N4/NG electrocatalyst for ORR,
reaching an nO2 of 3.9 and a jL of −5.0 mA cm−2; however, the preparation of the electrocatalysts was
time consuming and involved harsh conditions (higher temperatures) [10].

 

 

duplicates from S3N2–GF (-2.05 mA cm-2) to Co/S3N2–GF and Mn/S3N2–GF (-4.50 and -3.66 mA cm-2, 

respectively), while the Eonset values shift 140 and 120 mV, respectively, towards more positive 

potentials. The onset potentials of both composites are similar to the value obtained for Pt/C and 

Co/S3N2–GF present comparable jL value to that obtained for Pt/C. However, Mn/S3N2–GF shows a 

lower jL value than Pt/C (less 20%). As evidenced by LSV results, Co/S3N2–GF displays the highest 

ORR activity among the three composites prepared, which is reflected by its having the most positive 

Eonset and highest jL value. 

       

Figure 6. ORR LSV curves obtained in 0.1 mol dm-3 KOH saturated with O2 for Pt/C, S3N2–GF, 

Co/S3N2–GF and Mn/S3N2–GF at 1600 rpm and 0.005 V s-1 (a) and the corresponding ORR Tafel plots 

(b). 

LSVs at different rotation speeds and quantitative Koutecky–Levich (KL) plots were obtained to 

gather more information about the ORR kinetics of these composites. Figure 7 shows the LSV in O2-

saturated solution (after the subtraction of LSV in N2-saturated solution) while the corresponding KL 

plots can be observed in Figure 8. Both the composites prepared and Pt/C electrocatalyst show a first 

order ORR in relation to the concentration of oxygen dissolved with the KL plots presenting good 

linearity with lines showing similar slopes in the potential range scanned for each material. This 

suggests that the applied potential does not have a significant influence on the number of electrons 

transferred per oxygen molecule (nO2). In fact, the nO2 values estimated were almost constant with nO2 

= 4.0, 3.6, 4.1 and 3.9 for Pt/C, S3N2–GF, Co/S3N2–GF and Mn/S3N2–GF, respectively. These values 

show that the ORR process at these electrocatalysts seems to proceed via a direct pathway (direct 

reduction of oxygen to water) involving four electrons. In the fuel cell industry, this is the preferred 

pathway, since it directly produces OH- ions as the final product without the formation of OOH- ions.  

   

0.2 0.4 0.6 0.8 1.0 1.2
-5.0

-4.0

-3.0

-2.0

-1.0

0.0

 PtC

 S
3
N

2
-GF

 Mn/S
3
N

2
-GF

 Co/S
3
N

2
-GF

 j 
/ 
m

A
 c

m
-2

E / V vs. RHE

-0.5 0.0 0.5 1.0 1.5 2.0

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

137 mV/dec

160 mV/dec

57 mV/dec

89 mV/dec

 

 

E
 /
 V

 v
s
. 

R
H

E

log  j
K
 / mA cm

-2
 mg

-1


0.2 0.4 0.6 0.8 1.0 1.2
-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

 400 rpm

 800 rpm

 1200 rpm

 1600 rpm

 2000 rpm

 3000 rpm

 

j 
/ 
m

A
 c

m
-2

E / V vs. RHE
0.2 0.4 0.6 0.8 1.0 1.2

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

 400 rpm

 800 rpm

 1200 rpm

 1600 rpm

 2000 rpm

 3000 rpm

 

j 
/ 
m

A
 c

m
-2

E / V vs. RHE

(a) (b) 

(a) (b) 

Figure 7. Cont.



Materials 2020, 13, 1562 9 of 13
 

 

 

Figure 7. ORR polarization curves at different rotation rates in O2-saturated 0.1 mol dm-3 KOH 

solution at 0.005 V s-1 for S3N2–GF (a), Co/S3N2–GF (b), Mn/S3N2–GF (c) and commercial Pt/C (20wt%) 

modified electrodes (d). 

The results obtained for the Co/S3N2–GF and Mn/S3N2–GF composites are similar or better than 

others reported for similar compounds. For example, Duan et al. reported the application of Mn3O4 

nanoparticles on nitrogen-doped graphene (Mn3O4@N–GF) [43] and on N-doped reduced graphene 

oxide (Mn3O4/N-rGO) [44] as ORR electrocatalysts with 0.87 ≥ Eonset ≥ 0.83 V and nO2 = 3.8.  Wang and 

co-workers have also successfully applied a Co3O4@g-C3N4/NG electrocatalyst for ORR, reaching an 

nO2 of 3.9 and a jL of -5.0 mA cm-2; however, the preparation of the electrocatalysts was time 

consuming and involved harsh conditions (higher temperatures) [10].  

The excellent ORR performance of the as-prepared composites can be attributed to nitrogen and 

sulphur dual-doping, introduced asymmetry charge and spin density, and strong coupling between 

Co3O4 or Mn3O4 nanoparticles and doped graphene flakes. The unbalanced charge distribution 

resulting from nitrogen and sulphur dual-doping is considerably favourable to oxygen adsorption, 

while a strong bonding between doped graphene flakes and Co3O4 or Mn3O4 nanoparticles (NPs) can 

facilitate the electron transfer, and also assures a good durability.  

  

0.2 0.4 0.6 0.8 1.0 1.2

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

 400 rpm

 800 rpm

 1200 rpm

 1600 rpm

 2000 rpm

 3000 rpm

 

j 
/ 

m
A

 c
m

-2

E / V vs. RHE
0.2 0.4 0.6 0.8 1.0 1.2

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

 400 rpm

 800 rpm

 1200 rpm

 1600 rpm

 2000 rpm

 3000 rpm

 

j 
/ 
m

A
 c

m
-2

E / V vs. RHE

0.02 0.03 0.04 0.05
0.4

0.5

0.6

0.7

0.8

0.9

 0.27 V

 0.30 V

 0.35 V

 0.40 V

 0.45 V

 0.50 V

 

 

j 
-1
 /
 c

m
2
 m

A
-1

 

-1/2 / rps-1/2

ñ = 3.6 electrons

0.02 0.03 0.04 0.05
0.15

0.20

0.25

0.30

0.35

0.40

0.45

 0.27 V

 0.30 V

 0.35 V

 0.40 V

 0.45 V

 0.50 V

 0.55 V

 

 

j 
-1
 /
 c

m
2
 m

A
-1

 

-1/2 / rps-1/2

ñ = 4.1 electrons

(c) (d) 

(a) (b) 

Figure 7. ORR polarization curves at different rotation rates in O2-saturated 0.1 mol dm−3 KOH
solution at 0.005 V s−1 for S3N2–GF (a), Co/S3N2–GF (b), Mn/S3N2–GF (c) and commercial Pt/C (20wt%)
modified electrodes (d).
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Figure 8. Koutecky–Levich (KL) plots obtained from the data in Figure 7 for S3N2–GF (a), Co/S3N2–GF 

(b), Mn/S3N2–GF (c) and commercial Pt/C (20wt%)-modified electrodes (d). 

Table 1. Onset potentials (Eonset), diffusion-limiting current density values (jL,0.26 V,1600 rpm) and Tafel 

slopes determined from the ORR LSV curves in 0.1 mol dm-3 KOH and the number of electrons 

transferred for each O2 molecule. 
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Figure 8. Koutecky–Levich (KL) plots obtained from the data in Figure 7 for S3N2–GF (a), Co/S3N2–GF
(b), Mn/S3N2–GF (c) and commercial Pt/C (20wt%)-modified electrodes (d).
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The excellent ORR performance of the as-prepared composites can be attributed to nitrogen and
sulphur dual-doping, introduced asymmetry charge and spin density, and strong coupling between
Co3O4 or Mn3O4 nanoparticles and doped graphene flakes. The unbalanced charge distribution
resulting from nitrogen and sulphur dual-doping is considerably favourable to oxygen adsorption,
while a strong bonding between doped graphene flakes and Co3O4 or Mn3O4 nanoparticles (NPs) can
facilitate the electron transfer, and also assures a good durability.

Tafel plots were obtained from the LSV curves at 1600 rpm and are depicted in Figure 6b. The Pt/C
electrocatalysts presents an ORR Tafel slope of 89 mV dec−1 while for S3N2–GF, Co/S3N2–GF and
Mn/S3N2–GF composites the values obtained were 160, 57 and 137 mV dec−1. These results suggest that
for Co/S3N2–GF the global reaction rate is ruled by the conversion of intermediate surface adsorbed
specie MOO- to MOOH with M representing an empty site on the surface of EC. For S3N2–GF and
Mn/S3N2–GF the rate is defined by the consumption of MOOH species or by the first discharge
step [45]. Additionally, the fact that the Co/S3N2–GF composite presents a lower Tafel slope than Pt/C
suggests that it can easily adsorb oxygen molecules onto its surface and activate it, boosting the ORR
electrocatalytic performance.

The application of electrocatalysts as cathodes in fuel cells powered by methanol is highly
dependent on their tolerance to methanol crossover. The evaluation of potential electrocatalysts’
methanol tolerance is of extreme importance since in this type of fuel cells, the fuel (methanol) can
permeate from the anode to the cathode through the polymer membrane. This will cause a critical
decay in the EC performance as the active sites will be used for methanol oxidation contributing to
a progressive CO poisoning leading to a continuous decrease in active sites for ORR. To evaluate the
methanol crossover effect, a chronoamperometric test was performed in 0.1 mol dm−3 KOH saturated
with O2 and the results are presented in Figure 9a.
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Figure 9. Chronoamperometric responses at E = 0.50 V vs. RHE and 1600 rpm of Pt/C, Co/S3N2–GF
and Mn/S3N2–GF in 0.1 mol dm−3 O2-saturated KOH with the addition of 0.5 mol dm−3 methanol at t
= 500 s (a) and without any addition for 20,000 s (b).

The addition of methanol causes a current decrease of ≈ 49% when Pt/C is used; however,
for Co/S3N2–GF and Mn/S3N2–GF, its influence is almost insignificant, leading to current retentions
of 90% and 95%, respectively. These results suggest a greater selectivity of the prepared composites
towards ORR compared to methanol oxidation which constitutes a huge advantage when developing
electrocatalysts for direct methanol fuel cells.

Another crucial issue when developing ORR electrocatalysts is their durability. In order to
evaluate the Co/S3N2–GF and Mn/S3N2–GF stability, a chronoamperometric test was performed for
20,000 s in O2-saturated KOH at 0.50 V and 1600 rpm. Figure 9b shows the obtained results (Pt/C was
included for comparison) and it can be seen even though Pt/C shows higher stability (87% current



Materials 2020, 13, 1562 11 of 13

retention), the prepared electrocatalysts present very similar values of current retention (79% and 82%)
suggesting good stability.

4. Conclusions

The synthesis of metal oxide (Mn3O4 and Co3O4) impregnated the S3N2–GF electrocatalyst with
enhanced electrochemical properties towards ORR is here reported using a simple, scalable and
cost-effective method. The structural characterization of the materials showed the preservation of
the Mn3O4 and Co3O4 spinel structures. All prepared nanocomposites displayed superior overall
ORR electrocatalytic activity in the alkaline medium with Co/S3N2–GF and Mn/S3N2–GF presenting
the most promising results, with Eonset values of 0.91 and 0.89 V vs. RHE and jL values of −4.50
and −3.66 mA cm−2, respectively. The improved performance of metal oxide-containing composites
was attributed to the coupling between Co3O4 or Mn3O4 nanoparticles and nitrogen and sulphur
dual-doped graphene flakes. Furthermore, these two composites revealed an excellent tolerance to
methanol and good stability. This work contributed to an efficient, simple, scalable and low-cost
procedure for the development of efficient and naturally abundant ORR electrocatalysts.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/7/1562/s1,
Figure S1 shows the deconvoluted high resolution XPS spectra of S3N2–GF: C 1s (a), O 1s (b), N 1s (c) and S 2p (d)
and Figure S2 shows the full FTIR spectra.
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