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Figure S1. Characterization of the SBA-15 template: nitrogen sorption isotherm (a) XRD 
diffractogram (b) and SEM images (c,d). 
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Figure S2. SEM microphotographs of the carbons studied. 

 
Figure S3. XRD diffractograms of the carbons studied. 
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Figure S4. Raman spectra of the carbons studied. 

 
Figure S5. Values of zeta potential of the studied carbons as a function of pH. 
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Figure S6. XPS survey spectra for the carbons studied: P-CMK (a), H-CMK (b), D-CMK (c), T-CMK 

(d). 

 
Figure S7. Deconvolution of C 1s energy level for the carbons studied: P-CMK (a), H-CMK (b), 
D-CMK (c), T-CMK (d). 
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Figure S8. Deconvolution of O 1s energy level for the carbons studied:P-CMK (a), H-CMK (b), 
D-CMK (c), T-CMK (d). 

 
Figure S9. Functional group content versus pHIEP of the carbons studied. 
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Figure S10. Nitrogen adsorption isotherm of Norit SX2 (left), SEM images of Norit SX2 (right). 

 
Figure S11. Comparison of DICL adsorption kinetics onto the studied CMK materials and Norit SX2 
carbon (initial concentration of DICL: 50 mg L-1). 
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Table S1. Results of the deconvolution of the XPS C 1s and O 1s core energy levels. 

Binding Energy (eV) Bond Assignment P-CMK D-CMK T-CMK H-CMK 
 C 1s 91.0  94.8  92.4  81.8  

283.9-284.2 C=C sp2 90.6 90.4 85.7 84.8 
284.8-285.6 C–C sp3 2.8 4.4 8.8 4.1 

285.9-286.1 
C–O (alcohol, phenol, ether), C–N 

(amine, amide) 
5.0 3.4 3.4 3.5 

286.6-286.8 C=O (carbonyl) 1.6 - - 1.6 
288.2-288.6 O–C=O (ester, carboxyl) - 1.8 2.1 6.0 

 O 1s 7.0  5.2  4.5  15.9  
530.8-531.0 O=C (carbonyl) 21.7 2.6 5.1 11.2 
531.4-531.6 O*=C–O (ester, carboxyl) 21.7 - - 33.1 
532.2-532.6 Aliphatic C–O (alcohol, phenol) 36.8 44.9 53.1 25.4 
533.5-533.8 Aromatic C–O (ether) 19.8 52.5 41.8 30.3 
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Table S2. Comparison of DICL maximum adsorption capacities by carbon-derived sorbents reported in the literature. 

Sorbent 
Observed Uptake 

(mg g−1) 
Remarks Ref. 

Oxidized activated carbon (treated with a solution of 
ammonium persulfate and sulfuric acid) 

487 mg g−1 
Optimal pH: 5.5–6.0. Oxidation increases adsorbed amount 6 times. Proposed mechanism based on 

electrostatic interactions and hydrogen bonding. Desorption by acetone provides up to 5 reusable cycles.  
[1] 

Multi-walled carbon nanotubes treated with dilute nitric 
acid 

24 mg g−1  Opt. pH: 5.0. Fast (teq ≈ 1 h) and multilayered adsorption was observed. [2] 

Graphene oxide reduced by sodium borohydride 60 mg g−1 
Opt. pH: 10.0. Adsorption equilibrium reached after  

3 h. Proposed mechanism based on π–π interactions, electrostatic attraction and hydrogen bonding. 
[3] 

Activated carbon from cocoa shell 64 mg g−1 
Opt. pH: 7.0, teq ≈ 4 h. Proposed mechanism based on 

π–π-stacking, hydrogen bonding and van der Waals forces. AC effectively removed 96% of a mixture of 
different organic compounds in a medium with high salinity and sugar content. 

[4] 

Activated carbon from agricultural by-product 56 mg g−1 
Opt. pH: 7.0, teq > 5 h. Proposed mechanism based on π–π stacking, hydrogen bonding and/or van der Waals 

forces. 
[5] 

Graphene oxide 500 mg g−1 Opt. pH: 7.0, teq ≈ 24 h. Proposed mechanism based on hydrophobic interactions and π–π stacking. [6] 
Expanded graphite 330 mg g−1 Fast (Eq. time≈ 0.5 h) adsorption onto energetically uniform carbon surface. [7] 

Activated carbon from olive stones 11 mg g−1 Opt. pH: 2.0. Fast (teq ≈ 0.5 h) adsorption of DICL related to film diffusion and intraparticle diffusion. [8] 

Activated carbon from Terminalia catappa 91 mg g−1 
Opt. pH: 5.0; teq ≈ 2 h. Proposed mechanism based on hydrogen bonding. Desorption at pH = 5 and 60 °C 

provides up to 8 reuses with 85% removal. 
[9] 

Carbon derived from TiC by chlorination 551 mg g−1 Fast (teq ≈ 0.5 h), selective and multilayered adsorption was observed. [10] 

Activated carbon cloth 414 mg g−1 
Opt. pH: 7.5; teq > 20 days. Oxidation decreases adsorption capacity. Proposed mechanism based on dispersive 

and hydrophobic interactions. 
[11] 

Activated carbon, multi-walled carbon nanotubes and 
carbon nanofibers 

329 mg g−1 Slow (teq > 14 days) and non-selective adsorption was observed. [12] 

Iron-enriched magnetic biocarbon 316 mg g−1 
Opt. pH: 5; teq > 3 h. Proposed mechanism based on electrostatic interactions, hydrogen bonding and π–π 

stacking. Desorption by acetone provides up to 4 recyclable runs. 
[13] 

Iron-enriched activated carbon from orange peels 144 mg g−1 
Opt. pH:4.5; teq > 3 h. Proposed mechanism based on hydrogen bonding, π–π stacking, ion-dipole interactions 

and Fenton-like degradation.  
[14] 

Hydrochar from dried fruit powder 601 mg g−1 Opt. pH: 4.4. Fast (teq ≈ 1.5 h) and physical adsorption was observed. [15] 
CO2-activated carbon from coconut shell 1033 mg g−1 Opt. pH: 7.0; teq > 7 days. Proposed mechanism based on π–π stacking and electrostatic interactions. [16] 

3D reduced graphene oxide aerogel 597 mg g−1 
Opt. pH: 6.0, teq ≈ 1 h. Proposed mechanism based on electrostatic attraction, π–π stacking, hydrogen bonding 

and hydrophobic interactions. 
[17] 

Activated carbon from tea waste 62 mg g−1 Opt. pH: 6.5; teq > 6 h. Spontaneous, endothermic and physical adsorption was observed. [18] 
Multi-walled carbon nanotubes 6 mg g-1 Opt. pH: 7.0; teq ≈ 0.5 h. Desorption by 0.1 M HCl provides 1 reuse cycle. [19] 

Thermochemically modified CMK-3 carbon 241 mg g-1 Opt. pH ≈ 5.5–6.0. Fast adsorption kinetics, possibility of partial regeneration 
This 
work 
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