

Supplementary Materials



## Nanocomposite Polymeric Materials Based on Eucalyptus Lignoboost<sup>®</sup> Kraft Lignin for Liquid Sensing Applications

Sónia S. Leça Gonçalves <sup>1</sup>, Alisa Rudnitskaya <sup>2,\*</sup>, António J.M. Sales <sup>3</sup>, Luís M. Cadillon Costa <sup>3</sup>, and Dmitry V. Evtuguin <sup>1,\*</sup>

- <sup>1</sup> CICECO and Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal; leca.sofia@ua.pt
- <sup>2</sup> CESAM and Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
- <sup>3</sup> I3N and Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal; jsales@ua.pt (A.J.M.S.); kady@ua.pt (L.C.C.)
- \* Correspondence: alisa@ua.pt (A.R.); dmitrye@ua.pt (D.V.E.)

Received: 16 February 2020; Accepted: 30 March 2020; Published: date



| Wavenumber, cm <sup>-1</sup> | Band assignment                                               |  |
|------------------------------|---------------------------------------------------------------|--|
| 2970, 2916 and 2868          | CH stretching (symmetric and asymmetric) in CH $_{\!\!3}$ and |  |
|                              | CH <sub>2</sub>                                               |  |
| 1733                         | C=O stretching (urethane group)                               |  |
| 1536                         | NH bend (secondary amine in urethane group)                   |  |
| 1372                         | O-CO stretching (urethane group)                              |  |
| 1090                         | C-O vibration (polyether bridges)                             |  |
|                              |                                                               |  |

**Figure S1.** FT-MIR spectra of LignoBoost® kraft lignin-based polymers undoped (LignoBoost®PU) and doped with 1.4% (w/w) MWCNTs(LignoBoost®PU + MWNTC).



**Figure S2.** DSC curves of LignoBoost® kraft lignin-based polyurethane undoped (**a**) and doped with 1.4% (w/w) MWCNTs (**b**).



**Figure S3.** TGA curves of LignoBoost® kraft lignin (**a**) and LignoBoost® kraft lignin-based polyurethane undoped and doped with 1.4% (w/w) MWCNTs (**b**).

| Slope, mV/pCu | Detection Limit, mol·L <sup>-1</sup> | Linear Range, mol·L <sup>-1</sup>         | Ref.      |
|---------------|--------------------------------------|-------------------------------------------|-----------|
| 28.7          | $1 \times 10^{-6}$                   | $1.0 \times 10^{-6} - 1.0 \times 10^{-2}$ | 1         |
| 28.3          | $8.3 \times 10^{-7}$                 | $1.0 \times 10^{-6} - 1.0 \times 10^{-1}$ | 2         |
| 28.8          | 6.3 × 10 <sup>-7</sup>               | $2 \times 10^{-6} - 5 \times 10^{-3}$     | 3         |
| 34.2          | $7 \times 10^{-6}$                   | $8 \times 10^{-6} - 1.0 \times 10^{-2}$   | 4         |
| 29.3          | $4 \times 10^{-6}$                   | $4.4 \times 10^{-6} - 1.0 \times 10^{-1}$ | 5         |
| 32            | 6 × 10 <sup>-6</sup>                 | $8 \times 10^{-6} - 1.0 \times 10^{-3}$   | This work |

**Table S1.** Comparison of the performance characteristics of some copper ion sensors based on organic ionophores reported in the literature and developed in this work.

## References

- 1. Faridbod, F.; Davarkhah, N.; Beikzadeh, M.; Yekefallah, M.; Rezapour, M. Cu<sub>2+</sub> -selective Sensors Based on a New Ion-Carrier and Their Application for the Analysis of Copper Content of Water Samples. *Int. J. Electrochem. Sci.* **2017**, *12*, 876–889, doi:10.20964/2017.02.11.
- 2. Andac, M.; Coldur, F.; Bilir, S.; Birinci, A.; Demir, S.; Uzun, H. View Solid-contact polyvinyl chloride membrane electrode based on the bis[(2-(hydroxyethylimino)phenolato]copper(II) complex for trace level determination of copper ions in wastewater. *Can. J. Chem.* **2014**, *92*, 324–328, doi:10.1139/cjc-2013-0530.
- Kopylovich, M.N.; Mahmudov, K.T.; Pombeiro, A.J.L. Poly(Vinyl) Chloride Membrane Copper-Selective Electrode Based on 1-Phenyl-2-(2-Hydroxyphenylhydrazo)Butane-1,3-Dione. J. Hazard. Mater. 2011, 186, 1154–1162, doi:10.1016/j.jhazmat.2010.11.119.
- 4. Kamel, A.H.; Mahmoud, W.H.; Mostafa, M.S. Response Characteristics Of Copper-Selective Polymer Membrane Electrodes Based On A Newly Synthesized Macrocyclic Calix[4]Arene Derivative As A Neutral Carrier Ionophore. *Electroanalysis* **2010**, *22*, 2453–2459, doi:10.1002/elan.201000187.
- Gupta, V.K.; Jain, A.K.; Maheshwari, G.; Lang, H.; Ishtaiwi, Z. Copper(II)-Selective Potentiometric Sensors Based On Porphyrins In PVC Matrix. *Sens. Actuators B Chem.* 2006, 117, 99–106, doi:10.1016/j.snb.2005.11.003.



© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).