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Abstract: The effect of nano grain surface layer generated by ultrasonic impact on the fatigue behaviors
of a titanium alloy Ti3Zr2Sn3Mo25Nb (TLM) was investigated. Three vibration strike-numbers
of 24,000 times, 36,000 times and 48,000 times per unit are chosen to treat the surface of TLM
specimens. Nanocrystals with an average size of 30 nm are generated. The dislocation motion
plays an important role in the transformation of nanograins. Ultrasonic surface impact improves
the mechanical properties of TLM, such as hardness, surface residual stress, tensile strength and
fatigue strength. More vibration strike numbers will cause a higher enhancement. With a vibration
strike number of 48,000 times per square millimeter the rotating-bending fatigue strength of TLM
at 107 cycles is improved by 23.7%. All the fatigue cracks initiate from the surface of untreated
specimens, while inner cracks appear after the fatigue life of 106 cycles with the ultrasonic surface
impact. The crystal slip in the crack initiation zone is the main way of growth for microcracks. Crack
cores are usually formed at the junction of crystals. The stress intensity factor of TLM titanium alloy
is approximately 7.0 MPa·m1/2.
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1. Introduction

As a kind of advanced multifunctional material, biomedical materials can be used to diagnose,
cure, repair or replace human tissues, organs or enhance their functions. Their unique efficacy is
irreplaceable by drugs. In view of the high strength-to-weight ratio and excellent corrosion resistance,
titanium and its alloys are widely used in medical instruments and biomedical implants. According to
the development history and long-term clinical feedback of medical titanium alloys, its future focus
continues to be the in vitro biocompatibilities and mechanical compatibilities. The ultimate aim is
to improve its in vivo biological safety and persistent service. Pure Ti and Ti3Al2.5V were chosen to
make dental implants, which bear less stress in mouth, in the 1950s [1]. Since the end of the 1970s,
a higher strength titanium alloy Ti6Al4V has been extensively applied in the medical field, such as
hip joint, cardiac valves and artificial bones [2]. Ti6Al7Nb and Ti5Al2.5Fe were developed in the
corresponding period but it was found that the elements aluminum and vanadium are harmful to
the human body. In addition, the large difference between these titanium alloys (more than 100 GPa)
and bones (3–40 GPa) causes stress shielding [3]. Because of the stress shielding, clinical images
show that the prosthetic loosening, osteonecrosis and bone degeneration usually happen. In recent
decades, a kind of titanium alloy with no toxic element, high strength and low elastic modulus has
been the main subject for researchers. Till now, nearly 20 new titanium alloys have been successfully
developed. They are called new β-type titanium alloys. The reason is that the elements molybdenum,
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thallium, niobium and so on, are stable elements of β-phase. The tensile properties are listed in Table 1.
Ti3Zr2Sn3Mo25Nb (TLM) is one of these materials, and it has a low elastic modulus of approximately
45 GPa. So it is anticipated that TLM will play a role in the future.

Table 1. Mechanical properties of some titanium alloys for biomedical use.

Material σ0.2 (MPa) σb (MPa) δ (%) Ψ (%) Elastic Modulus (GPa)

Pure Ti [4] 170–485 240–550 15–24 25–30 ≈103
Ti6Al4V(annealed) [5] 820–870 900–930 6–10 20–25 110–114

Ti6Al7Nb [6] 880–950 900–1050 8–15 25–45 114
Ti13Nb13Zr(aged) [7] 830–910 970–1040 10–16 27–53 79–84
Ti15Mo(annealed) [8] 511 874 21 82 78

Ti12Mo6Zr2Fe(annealed) [9] 1000–1060 1060–1100 18–22 64–73 74–85
TLM(aged) 610–950 685–1050 17–23 70–71 45–81

Ti24Nb4Zr7.9Sn(aged) [10] 800–1100 850–1150 15 —— 42–82

Titanium and its alloys have been qualified in many fields, including space engineering, ocean
engineering and biomedical engineering. However, high friction coefficient, poor wear resistance
and low hardness limit its application [11]. For many aerospace components, shot peening is a
standard finishing process, because of the compressive residual stress and strain-hardening induced
by this treatment [12]. The rising of surface distortion and roughness is detrimental to the durability.
To improve the fatigue strength of titanium alloys, other surface modification methods are tried by
means of self nanocrystallization.

Surface self nanocrystallization (SSN) by mechanical process transforms the surface coarse grains
of a bulk material into nano-sized grains by severe plastic deformation (SPD). These mechanical
processes include surface mechanical attrition treatment (SMAT) [13], ultrasonic shot peening [14],
laser shock peening [15], ultrasonic surface rolling processing [16], ultrasonic nanocrystal surface
modification (UNSM) [17] and ultrasonic cold forging technology [18] In summary, the high energy of
ultrasonic, laser and squeezing causes severe plastic deformation. It is reported that the mechanical
properties can be improved by these methods [12–18].

In general, fatigue cracks usually initiate from the surface and subsurface. Most failures are
sensitive to the micro-structures and the topography of the surface. So that, optimizing the surface of
metals might enhance their overall performance. The grain refinement mechanisms of metals have
been widely studied by researchers, including copper, steel, aluminum alloy, titanium alloy and so on.
The reason nanostructured surface layers are generated from coarse-grains involves the dislocations,
twinning and the development of grain boundaries with high angle misorientation [19]. It is accepted
that the lattice structure and the stacking fault energy (SFE) decides the plastic deformation behavior
and the dislocation in metals and alloys.

In the present work, a nanostructured surface layer was achieved by means of ultrasonic
impact on TLM titanium alloy, which was processed with three different numbers of impacts
per mm2. The micro-hardness, residual stress, grain size and crystal orientation were measured.
The effect of ultrasonic impact on the rotating-bending fatigue behavior of TLM was also investigated.
The stress intensity factor based on fish-eye model is calculated to analyze the mechanism of its
fatigue characteristic.

2. Experimental Procedures

The test specimen in this investigation was a β-phase titanium alloy TLM titanium alloy shaft
with the following chemical composition (mass %): Mo-3.1, Zr-3.07, Sn-2.09, Nb-24.8, C-0.015, O-0.16,
N- <0.008, H-0.003 and balance Ti. All the specimens were treated with solid solution-aging (750 ◦C/30
m + 510 ◦C/4 h + furnace cooling). The mechanical properties of TLM are listed in Table 2. The tensile
test was operated by a universal mechanical tester (CRIMS-DNS400, China Sinotest Sci. & Tech. Co.
Ltd., Nantong, China).
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Table 2. The mechanical properties of TLM titanium alloy.

Heat Treatment σ0.2/MPa σb/MPa Elongation/% Reduction of Area/%

Solution and aging 567 721 19.5 71

The principle of the ultrasonic impact process uses ultrasonic vibratory energy at a frequency
of 30 kHz, and tens of thousands of strikes per mm2 are applied to the material surface as constant
pressure [20]. These strikes generate severe plastic deformation on the surface and induce a crystal
refined surface layer till nano-sized. Compared with UNSM which is introduced by Pyun [21], the main
difference is that the surface is processed without static load here. The ball tip has a diameter of
8.00 mm which is bigger than the one used in UNSM. It is made of cobalt with a tungsten carbide
coating. The vibration amplitude was 30 µm. The numbers of vibration strike are 24,000 times/mm2,
36,000 times/mm2 and 48,000 times/mm2, respectively. Four groups of specimens, referred to as
untreated, UI-24000, UI-36000 and UI-48000, were prepared.

Cross-sectional observations of the core area was performed with a scanning electron microscope
(S-3400N, Hitachi, Nantong, China). After polishing, the specimens were finally etched in Kroll’s
reagent (HNO3:HF:H2O = 3:6:90, vol%). Transmission electron microscopy (TEM) investigations were
carried out with a FEI Tecnai G2 F20 S-TWIN. The specimen for TEM was prepared by focused ion beam
(FEI Helios Nanolab 600i), to a depth of 0.5 µm. The orientation, length and density were characterized
by electron backscatter diffraction (EBSD, Leica EM RES 102). The surface of the specimen was fine
polished with argon ion.

The microhardness was measured with a Vickers hardness tester (CMM-20E, Changfang, Chengdu,
China) with a load of 50 g and duration of 20 s. The hardness test was performed along three lines.
X-ray diffraction (XRD) was used to measure the residual stress using Rigaku X’pert pro MPD. The Cu
Kα radiation (λ = 1.54184 Å) was used, and the diffraction lattice plane (213) was examined within a
range 2θ of 113◦ to 116◦.

To investigate the effect of the nanostructured surface layer on the fatigue behavior of TLM,
rotating-bending fatigue test on the four groups of samples (untreated, UI-24000, UI-36000 and
UI-48000) were conducted at ambient temperature using an Ono fatigue test machine (Shimadzu,
Fukuoka, Japan). The load is applied as four point bending. The frequency was 50 Hz. The dimensions
of the fatigue sample are illustrated in Figure 1. The fracture surfaces were examined using a scanning
electron microscope (GeminiSEM 300, Zeiss). Energy-dispersive X-ray spectroscopy (EDX) was also
used to detect the composition of any inclusions which induced the inner crack initiation with it.Materials 2020, 13, 2107 4 of 17 
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titanium alloy. It is introduced that the dynamic load of ultrasonic strikes is about two times that of 
static load [23], severe plastic deformation layers are usually shown with rheological trend. 
However, the legible strain flow was not observed because static load was not introduced here. It is 
reported that twinning exists in α-titanium because of the low hexagonal symmetry [24]. Hexagonal 
close packed (hcp) α-phase has an SFE higher than 300 mJ/m2, body centered cubic (bcc) β-phase 
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refining in TLM titanium alloy is mainly dislocation motion. Because of the large amount of 
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3. Results and Discussion

3.1. Observation of the Severe Plastic Deformation Layer

The microstructure characterizations of the SPD layers are usually described by means of TEM.
Furthermore, it is generally accepted that nanocrystals can be obtained with the ultrasonic surface
strikes [22]. The microstructural changes of the TLM titanium alloy surface are shown in Figure 2.
It indicates that high density dislocations and dislocation cells are generated by ultrasonic strikes.
Dislocation cells are large and have thin walls composed of tangled dislocations. Continuous slip
band are observed on the β-phase crystal obviously. In Figure 2a, it shows that an amorphous region
is formed underneath the surface and the grains are refined to nanometer scales. The average size
is about 30 nm. According to Figure 3, the original grain size of the base material is approximately
50 µm, the microstructures are observed as isometric crystals. It is demonstrated that the parameter
combinations without static load are enough to generate nanograins in the surface of the TLM titanium
alloy. It is introduced that the dynamic load of ultrasonic strikes is about two times that of static
load [23], severe plastic deformation layers are usually shown with rheological trend. However,
the legible strain flow was not observed because static load was not introduced here. It is reported that
twinning exists in α-titanium because of the low hexagonal symmetry [24]. Hexagonal close packed
(hcp) α-phase has an SFE higher than 300 mJ/m2, body centered cubic (bcc) β-phase theoretically has
12 slip directions. Thus, for this β-type TLM titanium alloy, the mechanism of grain refining in TLM
titanium alloy is mainly dislocation motion. Because of the large amount of nanocrystals, the SAED
pattern of the SPD layer is nearly concentric annulus instead of an hcp or bcc lattice.

3.2. EBSD Analysis

After a scanning from surface to the depth of 30 µm with a small step width of 0.035 µm, it was
clear that crystals begin to be continuously distinguished by EBSD up to 20 µm. This means that
the depth of nanocrystal layers are not more than 20 µm. The misorientation of the boundary is
characterized by values of 2◦ to 60◦. Figure 4a shows the area examined by EBSD, which is a square with
a depth to center of 100 µm. Figure 4b shows the unique grain color map with the inverse pole figure.
Each grain is assigned a color to distinguish it from neighboring grains. Because this square starts
from the depth of 25 µm only a small quantity of grains with the size of less than 10 µm are observed.
The average size of the grains on the right side, are larger than those on the left. The pink spots indicate
that dislocation glide happens in that position. Figure 4c shows the inverse pole figure analysis and
the change in color in each grain corresponds to that in crystal orientation. For the plasticity induced
by tensile testing in the beta-titanium alloy, twinning is observed as the main reason [25]. The primary
causes of severe plastic deformation of TLM are the dislocation motion and a little of the lattice rotation.
From the orientation information, it can be seen that there is obvious preferred orientation in the grains.
The c axis of grain is mainly in Y direction.
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Figure 2. TEM observation of TLM with ultrasonic surface impact: (a) TEM sample prepared by FIB; 
(b) image and diffraction pattern; (c) dislocation walls. 

Figure 2. TEM observation of TLM with ultrasonic surface impact: (a) TEM sample prepared by FIB;
(b) image and diffraction pattern; (c) dislocation walls.
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3.3. Micro Vickers Hardness Distrubution

The average hardness along the depth from the surface to 400 µm is depicted in Figure 5. Where,
the hardness was measured perpendicular to the cross-sectional while it was tested vertical to the
surface. It is about 238 HV of the untreated TLM base material. The micro-hardness of UI-24000,
UI-36000 and UI-48000 is 288 HV (about 21% improvement), 294 HV and 291 HV, respectively.
The hardness after surface impact rapidly decreases to 200 µm and then decreases gradually to the
core. It is well known that the hardness and the yield stress relate to the grain size according to
the Hall–Petch theory. It is reported that the subgrain size will not change while the dislocation
multiplication rate is balanced [19,26]. At this time, the maximum surface hardness will not increase
any more. In this paper, each point is subjected to the ultrasonic impacts for two seconds without static
load. The surface hardness would be anticipated to be more if the strike number per unit was bigger
and the static pressure was adopted.
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3.4. Residual Stress

It is well known that high compressive residual stress can be induced by means of ultrasonic
impact [27,28]. The surface residual stress of untreated specimens is a tensile stress of 12.05 MPa.
For the TLM specimens subjected to ultrasonic surface impact, the residual stresses below the depth
of 20 µm were measured. Table 3 lists the residual stress measurement results. It is observed that
compressive residual stress is induced at the surface of the TLM specimens. As the strike number
per unit increases, the value increases synchronously. The compressive residual stress of UI-24000,
UI-36000 and UI-48000 are 247.84 MPa, 273.60 MPa and 288.52 MPa, respectively. The stress values here
are less than that of materials treated by UNSM with static load, such as SCM 435 [29]. Compressive
residual stress is an important factor for increasing the fatigue resistance. It effects the position and the
shape of inner crack initiation. It is reported that the high compressive residual stress of TC4 which is
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treated by UNSM rapidly decreases from the depth of 50 µm to 200 µm [5]. Thus, cracks are initiated
easily in this zone without the nanograins and the compressive residual stress.
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Table 3. Residual stress of TLM titanium alloy.

Processing Method Untreated UI-24000 UI-36000 UI-48000

Residual stress (MPa) +12.05 −247.84 −273.60 −288.52

3.5. Tensile Properties

Figure 6 shows a tensile stress-strain curve for TLM titanium alloy before and after ultrasonic
surface impact treatment. Because the differentiation of four tensile curves is tiny, only the curves
of untreated and UI-48000 are given. The sample of UI-48000 has a nanostructured surface layer.
As mentioned above, the thickness of this layer is less than 20 µm. Both the samples have the same
geometry. The yield strength increases by 3.17%, while the ultimate tensile stress is increased by
about 2.36% (from 721 MPa to 738 MPa). It is reported that the tensile stress of 316 L stainless steel
is increased by about 13%, while the yield strength increases from 280 MPa to 550 MPa after SMAT.
The reason is the phase transformation of martensite [23].

Elastic modulus E is a parameter which concerns the cohesion of atoms. It is defined as the slope
of its stress-strain curve in the elastic deformation region. Elastic modulus of nanocrystalline Fe, Cu,
Ni and Cu-Ni alloys are lower because of a relatively large volume of pores [30]. From the partial
enlarged detail, it can be seen that the elastic modulus of TLM titanium alloy has a minor decrease.
Even though the base material gives the most contribution of tensile property, the changes of the
mechanical parameters are certainly linked to the grain refinement.

3.6. Fatigue Characteristics

The fatigue characteristics of the TLM titanium alloy subjected to ultrasonic surface impact are
shown in Figure 7. Specimens that did not encounter failure are shown as run-outs. Inner cracks are
marked with vertical bars. After the ultrasonic surface impact process, most cracks transform into inner
cracks while the fatigue lives are longer than 106 cycles. Contrastingly, cracks initiate at the surface to
all the un-treated specimens. From the S-N curves, it is evident that ultrasonic strikes improve the 107

cycles fatigue strength of TLM. The fatigue strength of UI-24000, UI-36000 and UI-48000 are increased
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by 13.1%, 15.8% and 23.7%, respectively. Table 4 lists the enhancement of the strength and fatigue limit
by ultrasonic surface impact. After surface strengthening by ultrasonic impact, the fatigue performance
of bending fatigue specimens was improved and the 107 cycles fatigue strength of treated specimens
was within 0.50 to 0.65 σb. The fatigue data of TLM confirms this data. For some austenite stainless
steels with the phase transformation of martensite, the fatigue strength will be further improved [31].
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Table 4. Enhancement of rotating-bending fatigue limit by ultrasonic surface impact.

Material Heat Treatment
Yield Strength
σ0.2 (MPa)

Tensile Strength σb
(MPa)

Fatigue Limit at 107 Cycles (MPa)

Before After

S45C [32] Annealed 490 690 300 400
SUS304 [31] Hot rolling 205 520 280 520
SCM435 [29] 770 ◦C × 3 h + 680 ◦C × 10 h 836 991 500 650

ATI 718 plus alloy [27] 788 ◦C × 8 h + 704 ◦C × 8 h 1200 - 740 850
Inconel 718 alloy [33] Annealed 954 ◦C × 30 m 829 1117 - ≈700

A6061 [34] T6 276 310 130 180

Figures 8 and 9 are the SEM micrographs of the fatigue fracture surface of TLM titanium alloy with
fatigue lives of more than 106 cycles. Some internal cracks are investigated in this test. All the cracks
initiate from the surface of S45C specimens after UNSM which are subjected to a rotating-bending
fatigue test [32]. Maximum normal stress in bending is on the surface. Comparing the surface
topography of UNSM and which is applied here (as reported by Ao [20]), finer strike tip will cause
microcracks easier. The surface integrity influences the fracture crack behavior. To surface self
nanocrystallized (SSN) specimen, a nano-structured layer is achieved on the surface. Deeper down
there is a refined structured layer consisting of submicrometer-sized crystallites separated by either
grain boundaries or sub-boundaries [19]. Then a deformed coarse grain layer forms at a certain depth.
In the zone of both the refined structured layer and the deformed coarse grain layer, the lattice distortion
and the crystal slip have not balanced to the saturated state. Noticeably, the inner crack cores are at this
zone [35]. In addition, the compressed residual stress decreases quickly, the hardness is closed to the
core and plasticity and tenacity are weakened in this area [5]. Therefore, indented slip traces of crystals
are obvious in the crack initiation. The crystal slip is the main way of the growth of microcracks in the
crack initiation zone. It is considered that the facet zone has many small facets due to the slips. Crack
cores are usually formed at the junction of crystals instead of inclusions. Thus, it is deduced that the
triple grain boundary junction shall be the initiation of the inner fatigue crack as illustrated in Figure 10.
For the rotating-bending fatigue test, the maximum normal stress is at the surface. The cracks of all the
untreated specimens are generated at the surface. Thus, the crack initiation mechanism is transformed
with the application of ultrasonic surface impact. Nanograins prevent the initiation of surface crack.
Microcracks which are generated by the plastic overflow after ultrasonic surface strike are observed to
be surface defects [5]. Because of the surface maximum bending normal stress and the surface micro
defects, some specimens have surface crack initiation with a fatigue life of more than 106 cycles.

As it is known that fish-eye-cracks are divided into three areas: inclusion area, facet area and flat
area. To most iron-based materials, the first area is the non-metallic compound inclusion in the center
of a fish-eye. It is the triple grain boundary junction of the crystal slip to TLM instead. The second is
the facet area with a rough surface, as marked in Figure 8a. The flat area is seen as a dark gray ellipse
located around the facet area. The stress intensity factor, ∆K, relevant to the facet area can be calculated
by Equations (1) and (2) [36],

∆K = 0.5σat(π
√

area)
1/2

(1)

σat = (d− 2h)σa/d (2)

where σa is the nominal stress amplitude at the surface, σat is stress amplitude at the inner crack core, d
is diameter of specimen, h is depth of the crack initiation and area is the area of each part. For the TLM
titanium alloy, the stress intensity factor calculated from the facet area ∆Kfacet is about 7.0 MPa·m1/2.
The stress intensity factor ∆Kfacet and ∆Kinclusion have different propagation mechanisms. For titanium
alloys, the non-metallic compound inclusion is not often observed. The facet area can be delimited
with the micro facets due to the slip of α-phase. From the Murakami equation, it is clear that ∆Kfacet is
close to the threshold stress intensity factor ∆Kth. Normally, ∆Kth is the value to divide the initiation
and the steady expanding of cracks according to the fatigue crack growth rate curve. The time of
crack initiation usually lasts more than 95% of the whole fatigue life. To materials with inner cracks,
Murakami considers that there is a confirmable maximum value of ∆Kfacet by multiple experiments.
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With the size of inner cracks and the stress intensity factor, the fatigue limit can be estimated by the
inversion of the above equations.Materials 2020, 13, 2107 12 of 17 
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Figure 8. Fracture surface of TLM (UI-24000, 500 MPa, 1.86 × 106 cycles): (a) Overall view of fracture
surface; (b) slip trace of crystals in the crack initiation; (c) EDX analysis of crack core.
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Figure 9. Fracture surface of TLM (UI-48000, 500 MPa, 4.97 × 106 cycles): (a) Overall view of fracture 
surface; (b) slip trace of crystals in the crack initiation. 

Figure 9. Fracture surface of TLM (UI-48000, 500 MPa, 4.97 × 106 cycles): (a) Overall view of fracture
surface; (b) slip trace of crystals in the crack initiation.
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Figure 10. Illustration of the crack at the triple grain boundary junction of the crystal slip: (a) Slips on 
three grain boundaries; (b) Slips on two grain boundaries. 
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three grain boundaries; (b) Slips on two grain boundaries.

4. Conclusions

Nanocrystals with a size of 30 nm are generated with the ultrasonic surface impacts. The primary
causes of severe plastic deformation of the TLM titanium alloy are the dislocation motion and a little of
the lattice rotation. Ultrasonic surface impact improves the micro hardness, the surface compressive
residual stress, tensile strength and the fatigue strength of TLM. Specimens which are treated with the
higher vibration strike number will have a better enhancement of mechanical properties. With the
vibration strike number of 48,000 times per unit, the rotating-bending fatigue strength of TLM at
107 cycles is 470 MPa (23.7% improvement). Fatigue cracks mainly initiate from the surface of the
specimen before the fatigue life of 106 cycles, while inner cracks appear at the boundary junction of
the crystals after the fatigue life of 106 cycles. The stress intensity factor of TLM is approximately
7.0 MPa·m1/2.
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