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Abstract: The shear and particle crushing characteristics of the failure plane (or shear surface) in
catastrophic mass movements are examined with a ring shear apparatus, which is generally employed
owing to its suitability for large deformations. Based on results of previous experiments on waste
materials from abandoned mine deposits, we employed a simple numerical model based on ring
shear testing using the particle flow code (PFC2D). We examined drainage, normal stress, and
shear velocity dependent shear characteristics of landslide materials. For shear velocities of 0.1 and
100 mm/s and normal stress (NS) of 25 kPa, the numerical results are in good agreement with those
obtained from experimental results. The difference between the experimental and numerical results
of the residual shear stress was approximately 0.4 kPa for NS equal to 25 kPa and 0.9 kPa for NS equal
to 100 kPa for both drained and undrained condition. In addition, we examined particle crushing
effect during shearing using the frictional work concept in PFC. We calculated the work done by
friction at both peak and residual shear stresses, and then used the results as crushing criteria in
the numerical analysis. The frictional work at peak and the residual shear stresses was ranged from
303 kPa·s to 2579 kPa·s for given drainage and normal stress conditions. These results showed that
clump particles were partially crushed at peak shear stress, and further particle crushing with respect
to the production of finer in shearing was recorded at residual shear stress at the shearing plane.

Keywords: residual shear stress; particle crushing; ring shear test; particle flow code (PFC2D);
frictional work

1. Introduction

Erosion and rainfall-induced mass movements could result in significant life loss
and property damage in urban areas. After slope failure initiation, spreading mass move-
ments are strongly related to the frictional characteristics of the movement stages. In
particular, evaluation of residual shear stress is crucial when a significant propagation
of mass movements is expected after the onset of slope failure. For the safety of ecosys-
tems, rapid downward moving masses involving soil, rock, water or their combinations
have been intensively studied [1–5]. Evaluating failure and post-failure processes of rapid
landslides requires in-depth knowledge of various scientific disciplines, such as geomor-
phology, geomechanics, hydraulics, and rheology, to predict, prevent, and stabilize the
mass movements. Moreover, shear stress is an important mechanical parameters necessary
to understand the landslide mobilization. Various shear tests have been conducted to
investigate shearing characteristics of geomaterials [6–18]. The shear strength of granular
materials is still challenging to determine using both experimental and numerical methods.

Bagherzadeh-Khalkhali and Mirghasemi [6] have investigated the direct shear strength
of coarse-grained soils using experimental and numerical analysis under different normal
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stresses. They found that the characteristics of coarse-grained soil varied from strain-
hardening to softening at the shearing duration as the normal stress increased, and the
internal friction angle decreased with stress level increase. Cabalar et al. [7] have performed
triaxial and cyclic tests to assess the strength of different sands, considering the effects of the
particle shapes. They found that crush stone sands extracted from the northern region of
Cyprus show a significantly higher strength than sands obtained from Gaziantep because of
their different shapes of sand particles. They have also claimed that the degrees of sphericity
and roundness of the particles increase the strength of sand and can reduce its volumetric
strain. The above-mentioned experimental tests exhibit limitations in evaluating the overall
shear characteristics of diverse mass movements. The most extensively used shear tests
are the direct shear, triaxial shear, and ring shear tests; each of these has advantages and
limitations. In contrast to other shear tests, the ring shear test can measure shear stress for
large displacement [18]. In addition, it is performed with advanced equipment capable
of controlling the consolidation, drainage, and shearing speed under static and dynamic
conditions. Numerical analysis is often used as a way to overcome the limitations of
laboratory experiments.

Lobo-Guerrero and Vallejo [19] proposed a discrete element method to simulate the
evolution of sugar particle crushing subjected to ring shear testing; they used the Particle
Flow Code in two dimensions (PFC2D). The periodic movement of particles in the ring
shear apparatus was simulated with two parallel periodic boundaries and two saw-toothed
standard boundaries; these were made with several edges to model the shearing surface.
They found that the residual coefficient of the sugar materials was maintained constant in
spite of the particles being crushed. However, erroneous stress computations can occur
when combining periodic space boundaries and standard boundaries because the periodic
space is not compatible with the standard boundary in PFC [20]. Moreover, the roughened
shearing surface with multiples edges negatively affects the particle response and the
stress calculation, especially for particles distributed in the corners. In addition, neither
the periodic space nor the standard boundary method take into account the interactions
between machine components and particles.

A more accurate and efficient evaluation of the ring shear characteristics of highly
mobile landslide materials using the PFC2D is needed. To simulate the ring shear test,
we used a general boundary, which is crucial and useful for simulating the interactions
between granular materials and machine components. We modeled the particle crushing
using the clump method and the frictional work technique from PFC2D. The numerical
results validated the results obtained from the ring shear experiments. The shear stress
was calculated considering four different shearing velocities (0.01, 0.1, 1, and 100 mm/s),
drainage condition, and normal stresses varying from 20 to 150 kPa. The discrete element
method in PFC2D requires contact models involving micromechanical properties of the
granular materials. Material mechanical properties obtained experimentally are taken as
macromechanical properties and are computed using the micromechanical properties by
trial-and-error in PFC2D [20]. The obtained microproperties can be utilized to design the
shear behaviors of the waste materials in landslide hazards using PFC.

2. Materials and Methods
2.1. Materials

The waste materials were sourced from Busan Metropolitan city, Korea. They are
taken from Imgi mine deposits, where the landslide occurs due to intense rainfall [21–23].
The landslide materials are mainly contained sub-graded and angular grains composed of
pyrite, kaolinite, sericite, pyrophyllite, and quartz. The sample used for laboratory shear
ring testing was composed of 35% gravel, 63% sand, and 2% other fine materials (i.e., fine
particles that are more than 50% of soil passes 0.075 mm sieve). Thus, the soil sample can be
considered as coarse-grained sediments. Porosity, the ratio of volume of voids to the total
volume of the soil, is approximately 40%. These waste materials are categorized as gravelly
sandy soils. Their mean diameter, effective grain size, and the uniformity coefficient are
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1.5 mm, 0.3 mm, and 5 mm, respectively. The materials used are very similar to typical
landslide materials encountered in Korea. Table 1 summarizes the geotechnical properties
of the materials used. This work focuses more on the numerical analysis; more details
about sample preparation and material properties can be found in [21].

Table 1. Physical properties of waste materials.

Specific
Gravity

Water Content
(%)

Total Unit Weight
(t/m3)

Dry Unit Weight
(t/m3)

Liquid Limit
(%)

Porosity
(%) USCS

2.63 6.9 1.7 1.59 24.5 39.5 SM

2.2. Experimental Program

The ring shear test is suitable for investigating the shear characteristics of landslides
because it offers several advantages and permits the measurement of shear at large dis-
placement; it can also be used to investigate the mechanical characteristics of sliding
surfaces due to large shear displacements [14]. We performed laboratory ring shear testing
with a ring shear apparatus designed at the Korea Institute of Geoscience and Mineral
Resources (KIGAM). This machine can quantitatively simulate the consolidation, drainage,
and shear velocity in static and dynamic loading conditions. The outer and inner diameters
and the height of the shear box of the KIGAM ring shear apparatus were 250, 110, and
75 mm, respectively. The shear box consists of an upper and a lower boxes, as shown in
Figure 1. During the ring shear test, the upper box is fixed and the lower one rotates. The
shear surface is clearly visible after testing (Figure 1b). Landslides may occur in a diverse
shape and size. Normal stress can be considered based on the soil thickness where the
shear surface observes. Shear velocity is important in determining the shear strength with
respect to the landslide movement rate. There are numerous types of landslides, which
are ranged from very slow to very rapid speed. Drainage is one of important conditions
in the landslide initiation, because it is directly related to the generation of pore water
pressure in shear surface (or landslide movement). Drained condition can be applied for
no pore water pressure condition; thus, it can be used to reproduce very slow landslides,
such as a creep motion of clay-rich landslides (e.g., a few centimeter per year). In the
experimental program, the valve located in the ring shear box is open; thus, the water
can freely move during shearing. No pore water pressure occurs. However, undrained
condition is specifically used for a relatively rapid landslide occurrence (e.g., higher than
1.8 m/hr). The same boundary conditions are used in the numerical analysis, as detailed in
the next section. We experimentally measured the normal stresses, vertical displacement
from a linear variable differential transformer, pore pressure, and torques. The parameters
considered in the experimental tests are: normal stress, drainage condition, and shear
velocity, as presented in Table 2. Details on the laboratory experiments are found in [21].

Table 2. Experimental parameters.

Test Condition Velocity (mm/s) Normal Stress (kPa)

Drained 0.01
0.1
1

100

20

40

60

Undrained

80

100

150
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Figure 1. Schematical illustration of the ring shear box and shear surface after testing: (a) configuration of ring shear box
and (b) observation of shear surface after testing.

3. Numerical Model

3.1. Discrete Element Method Description in PFC2D and the Clump Method

The particle flow code (PFC2D) developed by Cundall is a discrete-element-method
(DEM)-based software designed to simulate the movement and interaction of stressed
granular assemblies. Cundall and his colleagues [24–26] are among the frontier researchers
to apply the discrete element method to the movement of granular assemblies. The
granular assembly consists of different particles that displace independent of one another,
and the interaction between particles occurs only at contact points or interfaces. The
PFC assumptions are as follows: the particles are considered rigid bodies; a soft-contact
approach characterizes the particles at contact points, where they are permitted to overlap;
the contact between particles can be defined by bonds; the shape of particles is either
circular or spherical, with unit thickness; the overlap magnitude is related to the force of
contact by the force–displacement law [20]; the overlap is small compared to the particle
size. It denotes the relative contact displacement in the normal direction. The overlap
equation is given by:

Un =

{
R[A] + R[B] − d (particle− particle contact)

R[b] − d (patricle− boundary contact)
(1)

where R[A] and R[B] are the radii of particles in contact. R[b] and d are the radius of a particle
in contact with a wall (boundary) and the distance between particles centers, respectively.

In addition, the calculation process involves applying alternatively a force–displacement
formulation at contact points and the Newton’s second law to the rigid bodies. Thus, the
motion of each rigid body due to contact and forces applied on it is determined by New-
ton’s second law; further, the update of contact forces computed from the relative motion
at each contact is governed by the force–displacement law. This law is applied for both
particle–particle and particle–wall (i.e., model boundary) contacts. The computational
scheme is a time stepping algorithm that consists of applying repeatedly the law of motion
to each particle, a force-displacement law to each contact, and a constant updating of wall
positions as shown in Figure 2. A detailed description of the DEM in PFC can be found
in [27].
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Figure 2. Discrete Element Method (DEM) computational scheme in PFC2D.

In the past decades, the particles generated for any granular assembly were simply
circular or spherical; however, with the modern DEM, one can create a general particle
shape using two or more circular or spherical particles [28–30]. The process of creating a
particle of any shape is termed the clump or clustering method [27]. The particle created
in the granular assembly may be a two-, three-, or four-particle clump, depending on the
number of the particles forming it. For example, to simulate a granular assembly containing
triangular or square particles or grains of a more natural shape, one only needs to combine
few predefined simple particles to create the intended particle shape. The creation of
triangular or square-shaped particles is illustrated in Figure 3a,b. The contact model is
defined only between clump particles. The contact stiffness model, slip and separation
model, and bonding model are the three different contact models provided by the PFC. The
bonding models are classified into two types: contact bond models can simply produce a
force and parallel bond models that can produce both a force and a moment. Herein, we
employed the parallel bond as a cementation material between clump particles because it
provides efficiently rotational movement of the particles in the granular system.
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Figure 3. Illustration of clump formation: (a) Triangular particle made from nine overlapping circular
particles and (b) Square particle made from 15 overlapping circular particles.

3.2. Simulation Procedure

As it is extremely difficult to measure micromechanical properties of soil and rock
materials in laboratory experimentation, in which only the macromechanical properties of
materials can be measured, the micromechanical properties of synthetic materials in PFC2D

can be used to obtain the macromechanical properties of granular materials by the trial-
and-error method [20]. Although the DEM simulation cannot take into account as many
particles as used in an experimental sample, it does guarantee a good approximation [20].
PFC2D version 4.0 supports up to 100,000 particles for one granular assembly. In this study,
to reduce the computational time, 6830 particles were used to simulate the ring shear test.
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We performed ring shear simulation to investigate the normal stress and shear velocity
effects on the shear stress. The clump method, as demonstrated in the particle flow code
PFC2D, was used to generate the granular systems (Figure 4). The clump particles were
created with five circular particles (Figure 4a) and random size distribution in the assembly.
The particle cementation material that bonded the clump particles was set to parallel bond
(Figure 4b,c). Since there is no fluid connection at the contact between touching particles in
PFC2D, both drained and undrained conditions were simulated using the parallel bond
between clump-particles and the calibration process may be used to obtain the macro-
properties [20]. The micromechanical properties of the Lac du Bonnet material [20] were
used to simulate the waste materials. Table 3 presents the materials properties of the clump
particle assembly system. Different normal stresses were installed in the assembly using
the initial stress installation procedure. After normal stress installation, a ring-shaped
boundary was created using a general wall mechanism (Figure 4d). The top section of the
ring shear box was assumed to simulate the 3D ring shear experiment. The ring shear box
was rotated by applying to the outer boundary rotational velocities (i.e., 0.01, 0.1, 1, and
100 mm/s).

Materials 2021, 14, x FOR PEER REVIEW 6 of 15 
 

 

We performed ring shear simulation to investigate the normal stress and shear ve-

locity effects on the shear stress. The clump method, as demonstrated in the particle flow 

code PFC2D, was used to generate the granular systems (Figure 4). The clump particles 

were created with five circular particles (Figure 4a) and random size distribution in the 

assembly. The particle cementation material that bonded the clump particles was set to 

parallel bond (Figure 4b,c). Since there is no fluid connection at the contact between touch-

ing particles in PFC2D, both drained and undrained conditions were simulated using the 

parallel bond between clump-particles and the calibration process may be used to obtain 

the macro-properties [20]. The micromechanical properties of the Lac du Bonnet material 

[20] were used to simulate the waste materials. Table 3 presents the materials properties 

of the clump particle assembly system. Different normal stresses were installed in the as-

sembly using the initial stress installation procedure. After normal stress installation, a 

ring-shaped boundary was created using a general wall mechanism (Figure 4d). The top 

section of the ring shear box was assumed to simulate the 3D ring shear experiment. The 

ring shear box was rotated by applying to the outer boundary rotational velocities (i.e., 

0.01, 0.1, 1, and 100 mm/s). 

Our results showed that the shear stress increases when the normal stress and shear 

velocity increase. The shear angular velocity creates a centrifugal force on the particles. 

The materials are tested under normal stress of 20, 40, 60, 80, 100, and 150 kPa. The mate-

rial was generated in the ring-shaped vessel in order to produce an isotropic and well-

connected granular assembly at a specified normal stress. To perform an accurate ring 

shear simulation, the clump particle assembly was created using with the material genesis 

procedure [20]. 

 

Figure 4. Clump particles and assembly: (a) clump particle, (b) parallel bond idealization between 

particles, (c) parallel bond connection between clump particles and (d) clump particles in ring 

shear box. 

Table 3. Synthetic material properties. 

Clump Particle Cementing Material (Parallel Bond) 

Bulk density 1700 kg/m3 

Rmax/Rmin 1 = 5.0 

Modulus of elasticity = 6.1 MPa 

Normal to shear stiffness ratio = 2.5 

Friction coefficient = 0.5 

Bond-radius = 1 

Modulus of elasticity = 6.1 MPa 

Normal to shear stiffness ratio = 2.5 

Normal strength = Shear strength = mean ± std.dev = 162 ± 37 MPa 

1 Rmax = clump particle maximum radius, Rmin = clump particle minimum radius, and std.dev = standard deviation. 
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Table 3. Synthetic material properties.

Clump Particle Cementing Material (Parallel Bond)

Bulk density 1700 kg/m3

Rmax/Rmin
1 = 5.0

Modulus of elasticity = 6.1 MPa
Normal to shear stiffness ratio = 2.5

Friction coefficient = 0.5

Bond-radius = 1
Modulus of elasticity = 6.1 MPa

Normal to shear stiffness ratio = 2.5
Normal strength = Shear strength = mean ± std.dev = 162 ± 37 MPa

1 Rmax = clump particle maximum radius, Rmin = clump particle minimum radius, and std.dev = standard deviation.

Our results showed that the shear stress increases when the normal stress and shear
velocity increase. The shear angular velocity creates a centrifugal force on the particles.
The materials are tested under normal stress of 20, 40, 60, 80, 100, and 150 kPa. The
material was generated in the ring-shaped vessel in order to produce an isotropic and
well-connected granular assembly at a specified normal stress. To perform an accurate ring
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shear simulation, the clump particle assembly was created using with the material genesis
procedure [20].

4. Results and Discussions

We employed a series of numerical models to investigate the effects of the normal
stress and shear velocity on the shear stress. The microproperties designed in PFC enable
the simulation of the macromechanical properties obtained from laboratory experiments
using a trial-and-error procedure. The three main macroproperties considered in this
study are the modulus of elasticity, peak stress, and residual stress. After the materials
were generated according to the material genesis procedure, using the micromechanical
properties listed in Table 3, we repeatedly conducted numerical ring shear tests. Then, the
resulting numerical values were directly compared to the experimental results by matching
macromechanical properties. To reproduce the relevant behaviors of the waste materials,
we determined the appropriate microproperties by a calibration process in which the
response of the synthetic material is compared directly with the measured response of the
waste materials. The results obtained experimentally were compared to those obtained
by numerical simulations. Based on the research findings, the followings are highlighted:
(a) shearing time, (b) shear velocity, (c) normal stress, and (d) crushing phenomenon
during shearing.

4.1. Shear Stress and Shearing Time

We compared the experimental and numerical results for shear stress characteristics
during a period of 300 s in the ring shear system for given drainage and normal stress
conditions. To examine the effect of drainage and normal stress on the shear stress, we
plotted shear stress vs. shearing time curves at a shear velocity of 0.1 mm/s; the normal
stress was constant during each test (Figure 5). There is a clear peak value in shear stress–
time relationships regardless of drainage condition. For a normal stress of 25 kPa, the
experimental and numerical evaluations revealed a slope difference of 0.81 and 0.28 kPa/s
in drained and undrained conditions, respectively; while for a normal stress of 100 kPa, the
slope difference between the experimental and numerical curves was 0.56 and 0.39 kPa/s in
drained and undrained condition, respectively. In addition, under the undrained condition,
numerical and experimental results showed the similar peak stress values of 10.1 and
13.7 kPa at normal stress of 25 and 100 kPa, respectively; a peak stress difference of 0.3 kPa
was obtained under the drained condition for both 25 and 100 kPa normal stresses. These
results show that the experimental and numerical results for both drained and undrained
condition are in good agreement.

A sudden drop of the shear stress appeared for both the experimental and numerical
curves after the peak shear stress was found. Regardless of the normal stress level and
drainage conditions, the materials evaluated here presented a strain-softening behavior
(Figure 5). For a normal stress of 25 kPa, the calculated and experimental times at which
the peak stress was reached differed by 1.1 s for the undrained condition, and 8.5 s for
the drained condition. For a normal stress of 100 kPa, the calculated and measured time
needed to reach the peak stress differed by 5.7 s for the undrained condition, and 0.9 s for
the drained condition. These differences might be due to the difference in the time step
scheme used for the calculation of the shear stress in PFC2D [20].

Furthermore, Figure 5 illustrates the residual shear stress induced by the resistance
of the clump particles after the drop in peak shear stress. This resistance is due to inter-
particle friction and inter-locking effect between clump particles. Thus, numerical analysis
is an efficient way to explain particle rearrangement with respect to the reduction in shear
strength. Stabilization is reached for 150–300 s for both drained and undrained conditions
with various normal stresses. The shape of the clump particles is also crucial to create some
resistance after the drop in peak stress. We assumed that the residual shear stress was the
shear stress measured during the stabilization period that followed the sudden drop in
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peak shear stress. In the granular assembly, a progressive clump particle crushing occurred
after the drop in peak shear stress.
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For a normal stress of 25 kPa, the difference in residual shear stress between the exper-
imental and numerical analyses was 0.4 kPa for both the drained and undrained conditions
(Figure 5a,b). For a normal stress of 100 kPa, the residual shear stress obtained experimen-
tally and numerically differed by 0.7 kPa and 0.9 kPa for drained and undrained conditions,
respectively (Figure 5c,d). As a result, the larger the normal stress, the larger the difference.
These results show that the residual shear stress values we obtained experimentally and
numerically were in good agreement.

4.2. Shear Stress and Shear Velocity

The effect of shear velocity on the shear stress is far more specific than those of drainage
and normal stresses. We examined the shear characteristics of the waste materials as a
function of shear velocity with respect to the peak and residual shear stress values. Figure 6
shows the influence of shear velocity on the peak and residual shear stress under different
drainage and normal stresses. In general, the shear stress increased with an increase of
shear velocity for all given conditions (Table 4). For a normal stress of 25 kPa under the
drained condition, for shear velocities of 0.01, 0.1, 1, and 100 mm/s, the difference in peak
shear stress between the experimental and numerical analyses was 0.1, 0.3, 0.1, and 0.7 kPa,
respectively; the residual shear stresses differed by 1, 0.4, 0.5, and 1.7 kPa, respectively. For
a normal stress of 100 kPa under the drained condition, at shear velocity of 0.01 mm/s,
the experimental value of the peak shear stress was in a similar range compared with
that obtained from numerical analysis; at shear velocities of 0.1, 1, and 100 mm/s, the
difference in peak shear stress between the experimental and numerical evaluations was
0.3, 0.2, and 0.3 kPa, respectively. It seems that shear stress is not strongly affected by low
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shear speed (i.e., 0.01 mm/s) in ring shear apparatus used. Moreover, the residual shear
stresses differed by 0.4, 0.7, 1, and 2.3 kPa at shear velocities of 0.01, 0.1, 1, and 100 mm/s,
respectively (Figure 6a,b).
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Table 4. Comparison of peak and residual shear stresses as a function of normal stress.

NS25–τp NS25–τr NS100–τp NS100–τr

Drained τ = 12.8·V0.14 τ = 10.3·V0.14 τ = 29.5·V0.17 τ = 17.3·V0.21

Undrained τ = 19.1·V0.18 τ = 12.1·V0.21 τ = 23.3·V0.17 τ = 16.2·V0.19

Note: NS = normal stress, τp = peak shear stress, τr = residual shear stress, and V = shear velocity
(mm/s).

For a normal stress of 25 kPa under the undrained condition, at a shear velocity of
0.1 mm/s, the numerical peak shear stress was similar to that obtained experimentally;
at the shear velocities of 0.01, 1, and 100 mm/s, the difference in peak shear stress values
obtained experimentally and numerically was 0.2, 0.1, and 1.8 kPa, respectively; the residual
shear stresses differed by 1.5, 0.4, 0.6, and 2.2 kPa, respectively. For a normal stress of
100 kPa under the undrained conditions, at shear velocities of 0.01, 0.1, and 1 mm/s, similar
peak shear stresses were obtained by both numerical and experimental evaluations; at a
shear velocity of 100 mm/s, the difference in peak shear stress between experiment and
numerical analysis was 0.1 kPa. The residual shear stresses differed by 1.23, 0.9, 1.9 and
3 kPa at shear velocities of 0.01, 0.1, 1, and 100 mm/s, respectively (Figure 6c,d). These
results show that the shear stress increases with a shear velocity increase. Similar results
were obtained by Fukuoka et al. [31].
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4.3. Shear Stress and Normal Stress

Figure 7 presents the influence of normal stress on shear stress under the drained
and undrained conditions, obtained by both numerical and experimental analysis. The
shearing velocity (0.1 mm/s) was employed to examine the influence of the normal stress
on the shear stress. For a normal stress of 20, 40, 60, 80, 100, and 150 kPa under the
drained condition, the values obtained for the difference in peak shear stress between the
experimental and numerical analysis were 0.2, 0.1, 0.1, 0.1, 0.3, and 0.2 kPa, respectively. At
normal stress of 80 kPa, the experimental residual shear stress was similar to that obtained
by numerical analysis; for normal stress of 20, 40, 60, 100, and 150 kPa, the residual shear
stresses differed by 0.8, 0.1, 0.1, 0.7, and 0.1 kPa, respectively.
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Under the undrained condition of the soil, the difference in peak shear stress between
the experimental and numerical analysis was 0.1, 0.1, 0.1, 0.4, 0.2, and 0.9 kPa for normal
stresses of 20, 40, 60, 80, 100, and 150 kPa, respectively. For the normal stress of 20, 40, 60,
80, and 150 kPa, the difference between the experimental and numerical residual shear
stress was 0.1, 0.6, 0.1, 0.7, and 0.1 kPa, respectively. These results show that the shear
stress increases as the normal stress increases. Similar results were found by several other
researchers [31]. These experimental and numerical results are in good agreement. In
particular, the residual shear stresses obtained from experimental and numerical analysis
are very similar one another; however, the peak shear stress under the drained condition
is gradually increasing with normal stress and has almost three times higher than the
counterpart. It may be due to the fact that there is more strong interaction between particles
under the drained condition and results in high shear resistance. Under the undrained
condition, water may pay an important role in the crushing and breakage process of
granular material. It seems that the lubrication effect of fine particles may occur under
the undrained condition. As previously mentioned, after the sudden and abrupt drop
of the peak shear stress, the post-failure of the shear characteristics was examined using
the residual shear stress. This phase is mainly characterized by the particle crushing
mechanism, which is discussed in the next section.

4.4. Particle Crushing Characteristics

Obtaining information about the micromechanics of particle crushing in laboratory
experiments is very difficult. However, this obstacle can be overcome by simulating the
particle crushing using the discrete element method. The various shapes of particles may
be created with two or more single particles using the clump logic; the generated particles
are considered as rigid bodies. In the discrete element method, crushing of the granular
material is defined as breakage of one or more particles off the clump particle. Thus, one or
more criteria are required for implementing the particle crushing. The clump particle can
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be partially or completely broken when the crushing criteria are satisfied. For this purpose,
a user-defined function using FISH language in PFC2D was implemented.

Crushing mechanisms occur from two different mechanisms: abrasion and over-
stressing. Abrasion occurs through friction, when a particle rubs on another particle
and is progressively abraded or broken. Overstressing occurs when a crack is generated
in the clump particle, which is broken into two or more smaller particles as the crack
enlarges [19,32,33]; this crack is created by excessive application of forces including com-
pressive, tensile, and diametrical forces. In this work, we used the abrasion mechanism to
simulate the crushing of clump particles.

Previous studies have simulated crushing of particles in a system based on a single
particle crushing experimental data. In many situations, particles crushing in a granular
system may often occur simultaneously. In this study, particle crushing was modeled
using the energy dissipated by frictional sliding at contact points between particles. This
energy is termed frictional work [20]. As previously mentioned, the residual shear stress
was maintained constant owing to the frictional resistance between clump particles. The
crushing of particles occurs when the required quantity of frictional work is produced
between particles; this frictional work quantity was used to evaluate the particle crushing
process in our granular assembly. Figure 8 presents the frictional work and development
of shear zone in ring shear tests. For the laboratory experiment, the frictional energy was
assumed to be the area under the shear stress-time relationship curves after reaching the
peak shear stress (Figure 8a). A progressive development of shear zone is related to the
reduction in shear stress in landslides. It can be illustrated in ring shear box (Figure 8b).
Compared to the initial state of shearing, the shear zone is getting larger and larger during
shearing. Shearing may create the finer particles in shear zone and result in the reduction in
shear strength (i.e., strain softening behavior) during shearing. According to the previous
research findings, large particles can be concentrated in the center of ring shear box, small
particles can be accumulated mostly at the lower part of ring shear box due to the vertical
movement occurred in shearing [2,15,31]. In addition, for fine-grained sediments, the shear
surface is very thin (e.g., less than 1 mm thick), but for coarse-grained sediments, the shear
surface is larger with shearing time [2,31,34].
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For the DEM simulation, the crushing of clump particles was allowed until the re-
quired frictional energy was reached in the granular assembly system, depending on the
shearing velocity. The frictional work, W f , is computed as [27]:

W f = ∑
Nc

[
(Fs

i )(∆Ds
i )

slip
]

(2)
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where Nc, Fs
i and

(
∆Ds

i
)slip. are the number of contacts, average shear force, and increment

of the slip displacement, respectively, at the contact for the current time step. The increment
of the slip displacement produced over a time step ∆t is given by:

∆Ds
i = Vs

i ∆t (3)

where Vs
i is the relative shear motion at contact, and is calculated as:

Vs =

(
.
x[∅

2]
i − .

x[∅
1]

i

)
ti −ω

[∅2]
3

∣∣∣x[C]k − x[∅
2]

k

∣∣∣−ω
[∅1]
3

∣∣∣x[C]k − x[∅
1]

k

∣∣∣ (4)

where
.
x[∅

j ]
i and ω

[∅j ]
3 are the translational and rotational velocity of the entity ∅j, respec-

tively. These are expressed as:{
∅1, ∅2

}
=

{
{A, B} (particle − particle contact)
{b, w} (particle − boundary contact)

(5)

and ti = {−n2, n1} (n1 and n2 are the unit normal vectors).
Frictional energy is an important mechanical property of granular materials. In this

study, the frictional work–shearing time relationship is examined. Figure 9 presents the
variation in frictional work computed from the measured shear stress and time response
at a constant velocity (i.e., 0.1 mm/s) for different drainage and normal stress conditions;
D-NS25 and UD-NS25 denote the drained and undrained condition for normal stress of
25 kPa, respectively. The frictional work increases linearly with time. The frictional work
obtained at peak shear stress was 303, 190, 220, and 155 kPa·s for D-NS100, UD-NS100,
D-NS25, and UD-NS25, respectively. The frictional work at residual shear stress was 2579,
2418, 2280, and 1387 kPa·s for D-NS100, UD-NS100, D-NS25, and UD-NS25, respectively.
Interestingly, it can be seen that the frictional energy is much more sensitive under the
normal stress conditions than under the drainage conditions. Compared to the others,
there is a large difference in the frictional energy at the end of testing (i.e., 300 s) for the
normal stress of 25 kPa under the undrained condition. The total shearing time (i.e., 300 s)
can be one of the limitations in this study. Nevertheless, it is considered to be sufficient
to understand the shear and crushing characteristics of landslide materials with respect
to the initiation of slope failure. The condition of normal stress of 25 kPa indicates a
relatively shallow soil thickness. It has approximately 1 meter thick in the field. Water
moves freely through soil matrix in the drained conditions; however, in the undrained
condition, water captured in or surrounding shear zone due to water infiltration during
or after heavy rainfall event may result in a sudden reduction in shear strength and cause
high mobilization of landslide materials.

The clump particle crushing was permitted after the granular assembly systems
reached the corresponding frictional work at peak and residual shear stresses. Figure 10
shows a progressive occurrence of clump particle crushing at peak and residual shear stress.
The blue arrows in Figure 10 indicate where progressive crushing mechanism occurred in
the ring boundary; the clump particle crushing occurs mainly on the shearing surface at the
outer ring boundary. The results showed that the clump particles were partially crushed
at peak shear stress, i.e., one particle has been separated from the original clump particle
(Figure 10a). The shearing area with the peak value is approximately 5%–7% of the total
(see Figure 5). More particle crushing occurred in the residual shear stress state (Figure 10b)
due to substantial friction work, i.e., a progressive crushing continued occurring. For a
given shear displacement (or time), the number of particles is approximately 10–16 at peak
shear stress (Figure 10a), but it is approximately 15–19 at residual shear stress (Figure 10b)
when we select a specific part and look closely in the upper and lower parts of ring shear
box. The crushing or abrasion of the clump particle made of several particles at peak
shear stress progressively abraded as the frictional work increased; the crushing occurred
mainly in the vicinity of the shearing boundary because of not only the shear stress, but
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also to compressive stress and the diametrical and centrifugal forces created in the shear
ring granular assembly system. The compressive stress is mainly due to the applied
normal stress, whereas the diametrical and centrifugal forces are produced between clump
particles by the translational and rotational velocities in the granular assembly system.
Other researchers have also found that the particle crushing occurred principally on the
shearing surface [35].
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5. Conclusions

In this study, a simple ring shear numerical model was developed to investigate the
shear and particle crushing characteristics of granular materials. The peak and residual
shear stresses are strongly affected by variations of the normal stress, shear velocity, and
drainage conditions. As expected, the shear stress increases with an increase in normal
stress and shear velocity, regardless of the drainage conditions. In general, there is a
very good agreement between experimental and numerical results. For both drained and
undrained conditions, the shear stress reaches a peak value rapidly and then undergoes
a sharp drop followed by a period of variations before stabilizing (i.e., a typical strain-
softening behavior). This may be related to the occurrence of clump particle rearrangement
and crushing during shearing. Further, the differences in peak and residual shear stresses
are much larger under the drained condition rather than under the undrained condition.
In other words, it can be expected that under low normal stress and undrained condition
the soil can be mobilized much more easily than in the opposite case.

The particle crushing phenomenon in ring shear test is analyzed using DEM because
it affects directly the shear stress. Using the frictional work concept in PFC2D, a new FISH
language was implemented in PFC to simulate the clump particle crushing at both peak
and residual shear stresses. As the friction work increases monotonically, the frictional
work at residual shear stress is greater than that obtained at the peak shear stress. Therefore,
the clump particles were partially crushed at peak shear stress, i.e., one particle has been
separated from the original clump particle made of five particles; further, more crushing
occurred (and was visualized) during the residual shear stress state owing to substantial
frictional work. This explains the progressive crushing mechanism in the simulation of
the ring shear test using DEM. The crushing (or abrasion) of the clump particle made of
four particles at peak shear stress progressed as the frictional work increased. The clump
particle crushing mainly occurred in the vicinity of the outer ring boundary due to limited
shearing. In future studies, the shear and crushing characteristics over a long period of
shearing time should be investigated through three-dimensional analysis.
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