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Abstract: In the current scenario of manufacturing competitiveness, it is a requirement that new
technologies are implemented in order to overcome the challenges of achieving component accuracy,
high quality, acceptable surface finish, an increase in the production rate, and enhanced product life
with a reduced environmental impact. Along with these conventional challenges, the machining of
newly developed smart materials, such as shape memory alloys, also require inputs of intelligent
machining strategies. Wire electrical discharge machining (WEDM) is one of the non-traditional
machining methods which is independent of the mechanical properties of the work sample and is
best suited for machining nitinol shape memory alloys. Nano powder-mixed dielectric fluid for
the WEDM process is one of the ways of improving the process capabilities. In the current study,
Taguchi’s L16 orthogonal array was implemented to perform the experiments. Current, pulse-on time,
pulse-off time, and nano-graphene powder concentration were selected as input process parameters,
with material removal rate (MRR) and surface roughness (SR) as output machining characteristics for
investigations. The heat transfer search (HTS) algorithm was implemented for obtaining optimal
combinations of input parameters for MRR and SR. Single objective optimization showed a maximum
MRR of 1.55 mm3/s, and minimum SR of 2.68 µm. The Pareto curve was generated which gives the
optimal non-dominant solutions.

Keywords: nano-graphene powder; nitinol; shape memory alloy; WEDM; HTS algorithm

1. Introduction

Shape memory alloys (SMAs) have started to become popular due to their unique
ability of memorizing or regaining the original shape from the plastic deformed condition
by means of heating or magnetic or mechanical loading. In 1932, SMA was first discovered
Au-Cd by Arne Ölander [1]. Later on in 1941, Vernon and Vernon [2] described his
polymeric dental material with the term “shape memory”. SMAs such as Fe-Mn-Si, Cu-Al-
Ni, Co-Al, Zr-Cu, Cu-Zn, and Cu-Sn are some of the types of copper-based and iron-based
SMAs, but poor thermo-mechanic performance, impracticability, and instability of these
SMAs has restricted their applications in certain areas [3]. However, nickel-titanium based
SMAs are more suitable for most of the applications, such as automotive sensors, air
conditioning vents, structural elements, electronic cable connectors, valves, aerospace,
actuators, oil industries, automobile, and robotics and MEMS devices [4,5]. These smart
materials possess the main characteristic of Superelasticity (SE) and shape memory effect
(SME) [6–8]. In addition to Pseudoelasticity and SME, nitinol is considered as an ideal
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material for biomedical applications owing to their properties such as biocompatibility,
corrosion resistance, and wear resistance [9,10]. Machining of these newly developed
smart materials require inputs of intelligent machining strategies. Conventional machining
techniques for nitinol SMA possess several challenges such as formation of burr, poor chip
breaking, high tool wear, and corrosion resistance [11,12]. This is due to high chemical
reactivity, high toughness, high hardness, high ductility, and low strain hardening effect
of nitinol SMA [13,14]. Wire electrical discharge machining (WEDM) is one of the non-
traditional machining methods which is independent on mechanical properties of work
sample, is best suited to overcome these defects [15]. All conductive materials can be
machined through WEDM process. Non-contact operation of WEDM process between
tool (wire) and workpiece significantly eliminates the problems of conventional machining
process such as chatter, stress, and vibration [16]. WEDM process consists of multiple
process variables which should be controlled to acquire great surface. Along with the
better surface integrity, higher productivity is also key requirement of any industry that
can be obtained by increasing MRR and simultaneously decreasing SR. Nano powder-
mixed dielectric fluid for WEDM process is one of the ways of improving the process
capabilities and achieving both the objectives simultaneously. The sparking frequency and
thermal conductivity increases after adding powder concentration in dielectric fluid. It
further increases the rate of erosion from work material [17]. Thus, this higher erosion rate
also increases MRR. Insulating strength of dielectric fluid decreases after adding powder
concentration in dielectric fluid. It further increases the inter-electrode gap condition [18].
Thus, this increase in inter-electrode gap condition improves the performance by obtaining
superior surface finish. This realization leads to the initiation studies of Nano powder-
mixed WEDM (NPMWEDM) of nitinol SMA.

WEDM technique consists of multiple input parameters and output responses. For
multiple responses, conflicting situations arises between the selected responses. For ex-
ample, current increases MRR considerably and, simultaneously, SR as well, which is
not desirable. One approach to find solution for multi-objective optimization involving
conflicting objectives is to convert them into a single-objective optimization by assigning
weights to each objective function. However, the weighted approach cannot be considered
as a global solution as the selection of the weights assigned to the objective function is
dependent on designers and application, and it is susceptive to variations. In order to
counter this, it has been proposed to probe a set of solutions rather than a single set which
suffices the objective function. Moreover, these sets of solutions are non-dominated by
other solutions and can hence be termed as non-dominated solutions. This non-dominated
set of solutions is termed as the Pareto front. These fronts are basically a trade-off between
two conflicting objectives. Such problems can be solved by using meta-heuristics-based
optimization techniques. Researchers have developed various efficient advanced optimiza-
tion techniques which have shown their effectiveness in optimizing process parameters
for EDM processes. Heat transfer search (HTS) is one of such algorithm which is found
to be easy to implement [19]. HTS algorithm was found to be useful for solving complex
problems by finding global optimal solution [20,21].

Recently, powder-mixed dielectric fluid has turned out to be popular among the
researchers to obtain optimum parametric setting for multiple objectives such as MRR
and SR. Different powders such Si, W, Al, SiC, Cr, Ti, CNT, Al2O3, Gr/C, Mo, and Cu
have been used by researchers which has been diluted with dielectric fluid for EDM
process [18,22]. Important powder characteristics such as size of powder, concentration,
thermal and electrical conductivity, and powder density have significant effect in process.
Sahu and Mandal [23] studied the significance of graphite and alumina PMEDM process
on surface integrity of nimonic 263 superalloy. Results shows improvement in surface
defects for graphite powder mixed EDM process in comparison with other variants. MRR
has been improved by 35% and machined surface shows reduction in micro-cracks by
using graphite PMEDM process. Surekha et al. [24] studied the significance of aluminum
PMEDM process on MRR and TWR of EN-19 alloy steel. Jeswani [25] explored the influence
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of 10 µm graphite powder for EDM process and his results shows an increased MRR by
60% and decreased TWR by 30%. Anil Kumar et al. [26] optimized silicon PMEDM process
parameters of EN-24 tool steel. Results show that current, powder concentration, and
pulse on time were observed to be the significant parameters of process. Sivaprakasam
et al. [27] analyzed optimization of Nano-graphite PMEDM process of Inconel 718. Powder
concentration of 0.5 g/L was found to be optimum for obtaining higher MRR and better
surface finish. Mathapathi et al. [28] conducted their experiments with for graphite and
Cr powder mixed with dielectric fluid. Experimental results showed increase in MRR
value as powder concentration increases. MRR was also found to be largely influenced by
peak current. Rathi et al. [29] examined the significance of various powders like graphite,
aluminum oxide, and silicon to be mixed with dielectric fluid. Pulse-on time, Current, and
duty cycle were considered as other input process parameters with the output machining
characteristics of MRR and TWR. Bhiksha et al. [30] implemented Taguchi’s orthogonal
array design to perform experiments in analyzing the significance of graphite PMEDM
on MRR and SR. Results found that powder concentration and current mainly influences
both objectives. Past studies on Nitinol SMA has shown retention of shape memory effect
even after WEDM machining using Molybdenum wire as tool material [8,20]. Hence,
the current study focuses more on the effect of Nano-graphene powder concentration
on WEDM process parameters of Nitinol SMA and the parametric optimization of the
selected responses. From the past literature, the effect of Nano-graphene powder mixed
with dielectric fluid has not been explored properly for multi-objective optimization of
machining variables of WEDM process. However, to the best of our knowledge, multi-
objective optimization of NPMWEDM process parameters for Nitinol SMA has not yet
been reported.

In the current study, current, pulse-on time, pulse-off time, and powder concentration
has been identified as important machining variables while MRR and SR as the output pa-
rameters for PMWEDM process of Ni55.8Ti SMA. In the present study, Taguchi’s 4 level L16
orthogonal arrays have been used to perform the experiments. Adequacy and significance
of process parameters was tested by ANOVA for each response variable. Mathematical
models generated from regression analysis have been used for simultaneous optimization
of output variables. In current study, advanced parameterless evolutionary HTS algo-
rithm has been used to perform simultaneous optimization of response variables and case
studies consisting of industrial requirements. Pareto curves have been generated using
HTS algorithm which gives multiple optimal solution points. A validation study has been
conducted to verify obtained results from algorithm. Lastly, investigation of machined
surface was carried out using Scanning Electron Microscopy (SEM) to understand the effect
of NPMWEDM process.

2. Synthesis of Nano-Graphene Powder
2.1. Reagents and Instrumentation

Natural graphite powder, 1, 2 Dichlorobenzene (DCB) and Ethyl alcohol (99.9%, v/v),
was purchased from Sigma Aldrich Inc. All chemical reagents were analytical grade and
used without further purification. The required equipment mainly included a Transmission
electron microscope (TEM) (JEOL 2100, Tokyo, Japan), Field Emission-Scanning Electron
Microscope (FESEM) (Zeiss Ultra 55, Bangalore, India), and Raman spectrometer (Renishaw
in via Raman Microscope, Pune, India).

2.2. Synthesis of Graphene Using Carbon Source

In the process, 5 g of natural graphite was mixed with 1, 2 Dichlorobenzene (DCB) in
a flask of 500 mL. The mixture was divided into 10 mL container and was ultrasonicated
for 10 h. To avoid the heating and evaporation of the water due to heating, the water
was changed frequently. After sonication, the sample was left unaltered for 48 h. Grey
shade color dispersion was observed for the sample. Further, the colloidal dispersion was
centrifuged at 5000 rpm for 15 min. Heavy lumps of non-reacted graphite lumps settled
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down and the dispersion is left with graphene sheet as a supernatant. The homogeneous
dispersion was separated out in a separate vial and was again dispersed in ethanol solution.
The above process was repeated 3–4 time; the finally centrifuged sample was filtered
and dried in the vacuum (DP analytical, Gujarat, India) furnace to remove excess ethanol
and DCB. The sonicated graphene sheets did not settle down even after few months and
the morphological and structural properties were characterized using TEM, FESEM, and
Raman spectrometer.

3. Materials and Methods

The Concord make DK7732 WEDM machine (Concord Limited, Bangalore, India)
was used to perform the experiments of nitinol SMA. Nitinol rod of diameter 6 mm was
procured from SMA wires, India and it is used as work material during WEDM process.
Figure 1 show the experimental setup used in present study. Nano-graphene powder
mixed dielectric fluid was sprayed through nozzles in the machined zone. Tool electrode
(molybdenum wire) was selected which has a diameter of 0.18 mm. Table 1 shows the
chemical composition of Nitinol SMA. Nano graphene powder was mixed with dielectric
fluid in different concentrations while conducting the experiments. Selected levels of
input process parameters (current, Ton, Toff, and powder concentration) were shown in
Table 2. Input parameters along with their range were selected based on past literature and
preliminary experimental trials. Taguchi’s 4 level L16 orthogonal arrays for 4 factors were
used to design the experimental matrix, as shown in Table 3. Taguchi’s DOE approach
has many benefits which make it favorable, particularly for experimental scientists. The
main advantage of this technique is the reduction in the required number of experimental
trials which incur cost, time, and resources for the investigation of significance of selected
input variables parameters on output variables. Several input parameters of EDM based
processes have been selected by different researchers. Taguchi method enables a large
number of process parameters to be considered, and their effects on selected responses of
the process to be analyzed.
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Table 1. Chemical composition (wt.%) of Nitinol.

Element Ti Ni Co Cu Cr Fe Nb C H O N

wt (%) Balance 55.78 0.005 0.005 0.005 0.012 0.005 0.039 0.001 0.0344 0.001

Table 2. Nano-Powder Mixed WEDM conditions.

Working Condition Description

Current (A) 1, 2, 3, 4
Pulse on time (µs) 30, 40, 50, 60
Pulse off time (µs) 10, 14, 18, 22

Powder concentration (g/L) 0.25, 0.50, 0.75, 1
Graphene nano powder-size (nm) 300–500

Powder Graphite
Wire Molybdenum

Table 3. Taguchi’s DOE with the measured values for MRR and SR.

Run Current
(A)

Ton
(µs)

Toff
(µs)

Powder Conc.
(g/L)

MRR
(mm3/s)

SR
(µm)

1 1 30 10 0.25 0.1891 4.33
2 1 40 14 0.5 0.3293 4.88
3 1 50 18 0.75 0.4135 5.16
4 1 60 22 1 0.4184 4.98
5 2 30 14 0.75 0.2155 4.22
6 2 40 10 1 0.4502 5.11
7 2 50 22 0.25 0.2596 4.99
8 2 60 18 0.5 0.5472 6.02
9 3 30 18 1 0.2294 4.12

10 3 40 22 0.75 0.3147 4.8
11 3 50 10 0.5 0.5557 5.97
12 3 60 14 0.25 0.4940 6.3
13 4 30 22 0.5 0.2142 4.17
14 4 40 18 0.25 0.3592 5.7
15 4 50 14 1 0.6240 6.04
16 4 60 10 0.75 0.7410 6.52

To determine MRR, difference between weight of work sample before and after the
machining was measured. MRR was measured in mm3/s as per the equation:

MRR =
∆W∗1000

ρ ∗ t
(1)

where, ∆W = mass difference of workpiece between before and after the machining,
t = machining time to cut work sample in second,
ρ = density of workpiece (Nitinol SMA), 6.5 g/cm3

Mitutoyo make Surftest SJ-410 model surface roughness tester was used to evaluate
SR of work material after machining, and the average of four values was considered as
final SR value. Evaluation length of work surface and the cutoff length (λc) were selected
as 5 mm and 0.8 mm, respectively. SR of the machined sample was recorded by measuring
the arithmetic average-roughness (Ra) value. Scanning electron microscopy (SEM) has
been used to investigate the surface morphology of the machined surface for conventional
WEDM and NPMWEDM process.
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4. Results and Discussions
4.1. Nano-Graphene Powder

The sonication technique creates a stress on the natural graphite flakes, which is
transferred over the sp2 hybridized carbons present in the graphene layers and weakens
the bond (van der Waals force) between the graphene layers which binds them as the stacks
layers. The solvent dichlorobenzene helps in the development of sono-polymer, which act
as an adhesive over and between the graphite layers. With increase in the time, polymer
adhesion enhances and its binds over and within the graphite layers, which increases
the distance between the layers. Thus, it leads to the synthesis of few layers of graphene
by simple solvent-based sonication technique. The morphology of such graphene sheets
were examined under FE-SEM and TEM as shown in Figure 2a,b. A 2D sheet structure of
the exfoliated layers was observed with as sheet length of 400–600 nm. Further, Raman
spectroscopy was performed to understand the structure properties and determine the
number of graphene layers as shown in Figure 2c. The key Raman peaks D, G and 2D
bands of graphene and graphite appeared at 1585 cm−1, 2710 cm−1 and 1354 cm−1, and
1585 cm−1 and 2720 cm−1, respectively. The key features of natural graphite and graphene
is the presence 2D band. Therefore, the no. of graphene layers can be calculated from the
position and shape of the 2D band. In comparison to natural graphite, a red shift of the
2D band was observed for graphene. The Raman spectra shown in Figure 2c shows a 2D
band shape characteristic of few layer graphene sheet, along with some defects as shown
by the D band. These defects can be due to the chemical exfoliation occurring during
the sonication process [31]. Thus, the technique enables to produce large scale quality
graphene using low cost technique.

4.2. Regression Equations

The measured values of responses, MRR and SR with their respective input machining
variables were given in Table 3. The range of MRR value obtained for maximum to
minimum is from 0.7410 to 0.1891 mm3/s, respectively, as per the sixteen conducted
experiments. SR value from 4.12 to 6.52 µm was achieved. After analyzing the MRR and SR
values, the mathematical correlation was generated for MRR and SR. Regression analysis
was employed to generate mathematical relations among selected input process parameters
of WEDM process and selected output response variables. Regression equations for output
responses of MRR and SR are as shown in Equations (2) and (3):

MRR = −0.0730 + 0.0471·Current + 0.0111·Ton − 0.0143·Toff + 0.1299·Powder Conc. (2)

SR = 3.195 + 0.2522 ·Current + 0.0565·Ton − 0.0588·Toff − 0.3550·Powder Conc (3)

Investigations of significance and non-significance of input variables was conducted
by using ANOVA technique. Further, ANOVA was used for determining the percentage
contribution of each input process parameter on the selected output response variables,
for determination R-square values which signifies the data fitness, and for evaluation of
standard deviation. Degree of freedom in ANOVA refers to the maximum number of
observations in the data those are free to vary while estimating statistical parameters. DF
is calculated by subtracting the number of relations from the number of observations. In
present study, each variables considered in the equation is having 4 levels. As per the
equation of DF (i.e., N-1, N = number of levels), DF for each factor comes out to be 3 and
this calculated DF will further be used to calculate F and P statistics in ANOVA which
gives the significance and non-significance of process parameters.

4.3. Analysis of MRR

Table 4 presents statistical analysis for MRR by using ANOVA technique. F and p
value of ANOVA table gives the information about the significance/non-significance of
input variable for selected response variable. At the 95% confidence interval, the value
of P must be lower than 0.05 to signify a significant process parameter [32,33]. Table 4 of
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ANOVA for MRR shows that all the process parameters such as current, Ton, Toff, and
powder concentrations are all significant as p value for all process parameters is less than
0.05. This means, all WEDM parameters are significantly affecting MRR value. The Ton
was the most significant parameter contributing maximum 63.18%. The contributions from
other parameters were Toff 17.09%, current 12.04% and the powder concentration of 7.09%.
The error contribution was observed to negligible with 0.66%. This shows that the data
in current study can be used for future predictions with least error. R-squared and adj
R-squared values are observed to be 99.36% and 96.82%, respectively, for MRR. R-square
value of 99.36% shows that present values can be useful for predicting 99.36% of future
outcomes from this model. The selected model is considered to be best fit if difference of
less than 20% is achieved between R-squared and Adj R-squared values [34]. For MRR,
very less difference was obtained between both the values. Standard deviation of 0.0291282
has been obtained for MRR which means that maximum variation from the mean value is
0.0291282 for MRR.
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Main effect plot for MRR which displays changes in MRR with respect to changes
in input variables is presented in Figure 3. It has been observed that MRR is increased
with an increase in current and Ton. As Ton increases, it will further increase the generated
discharge energy per spark [35]. In WEDM operation, discharge energy gets converted in
thermal energy. The thermal energy then melts and vaporizes the material. So, higher the
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Ton, higher will be discharge energy and which will then increase MRR value. Whereas
an increase in current also increases discharge energy which then increases MRR value.
Figure 3 shows the reverse effect of increase in Toff on MRR. Increase in Toff increases the
time between two consecutive sparks which in turn decreases active sparks [15]. Pursuant
to the same, lower discharge energy will be obtained at higher value of Toff. So, as the
Toff increases, MRR decreases due to reduction in spark thereby reducing the discharge
energy. With the increase in Nano-powder concentration, increase in MRR was observed.
The sparking frequency and thermal conductivity increases with the addition of Nano-
powder in dielectric fluid which results in the increase of the erosion rate from the work
surface [36]. Thus, this higher erosion rate also increases MRR. Dielectric field between
wire and work material gets strengthened with the increase in Nano-powder in dielectric
fluid as Nano-powder assists in bridging gap between tool and work material [27]. This
improves deionization effect and thereby increases the rate of erosion. So, as Nano-powder
concentration increases, the MRR increases, because of increase in erosion rate.

Table 4. ANOVA for MRR.

Source DF SS MS F P Contribution (%)

Current 3 0.048154 0.016051 18.92 0.019 12.04
Ton 3 0.252635 0.084212 99.25 0.002 63.18
Toff 3 0.068354 0.022785 26.85 0.011 17.09

Powder
Conc. 3 0.028141 0.009380 11.06 0.040 7.03

Error 3 0.002545 0.000848 0.66
Total 15 0.399831

S = 0.02912, R-Sq = 99.36%, R-Sq (Adj) = 96.82%
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Residual plot consisting of normal probability plot, fitted versus predicted pot, his-
togram plot, and time variance analysis was shown in Figure 4 for MRR. ANOVA results
are considered to be valid depending on the analysis of these plots. Normality plot verifies
that entire the residuals are on the straight line. This means all residuals are normally
distributed and proposed mode is best suited. Residual versus fitted plot indicates the ran-
dom allocation of residuals on both sided of reference line. This verifies a better statistical
analysis of ANOVA. Histogram test shows a parabolic structure which is considered to
be best solution for ANOVA and residual. This structure signifies good ANOVA results.
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No pattern was formed in the time variance plot which is the mandatory requirement of
any significant ANOVA [20]. Therefore, all four tests of residual plot signify the ANOVA
results for better future outcome of proposed model.
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4.4. Analysis of SR

Statistical analysis for SR using ANOVA technique was shown in Table 5. At the 95%
confidence interval, the value of P must be lower than 0.05 to signify a significant process
parameter for selected output variable. Table 5 of ANOVA for SR shows that process
parameters such as current, Ton, and Toff are found to be significant while powder concen-
trations is non-significant effect on SR. The Ton was observed to be the most significant
parameter contributing maximum 70.61% followed by Toff contribution of 13.66%, and
current contribution of 13.50%. The error contribution was again observed to negligible
with 0.65%. R-squared and adj R-squared values are observed to be 99.26% and 96.8%, re-
spectively, for SR. The difference between R-squared and Adj R-squared values is very less
which shows fitness of the model for selected responses. Standard deviation of 0.0141914
has been obtained for SR which means that maximum variation from the mean value is
0.141914 for SR.

Table 5. ANOVA for SR.

Source DF SS MS F P Contribution (%)

Current 3 1.28002 0.42667 21.19 0.016 13.50
Ton 3 6.68617 2.22872 110.66 0.001 70.51
Toff 3 1.29577 0.43192 21.45 0.016 13.66

Powder Conc. 3 0.15937 0.05312 2.64 0.223 1.68
Error 3 0.06042 0.02014 0.65
Total 15 9.48174

S = 0.141914, R-Sq = 99.26%, R-Sq (Adj) = 96.8%

SR of the machined surface majorly dependent on the craters size which gets formed
during the machining as material or debris gets eroded. Thermal energy which is formed
by discharge energy is the main source for the debris formation. Increase in thermal energy
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forms larger and deeper craters on the machined surface and also deteriorate the machined
surface. Pursuant to the same, machined surface becomes rough which in turn increases
SR [8,37]. Figure 5 shows the variation of SR with input process parameter. It can be
observed that current and Ton has the negative effect on surface quality of the machined
surface. An increase in Ton also increases discharge energy which increases thermal energy.
So, as Ton increases, the SR increases. At higher currents, the ionization of deionized
water takes place, which leads to high discharge and thermal energy, creating larger and
deeper craters, and increasing SR [38]. Figure 5 shows decrease in SR with increase in Toff.
Increased Toff decreases active sparks which results in decrease of the discharge energy.
Lower discharge energy means lower thermal energy, and hence, small craters are formed
which improves the SR of the machined surface. Figure 5 depicts that SR of machined
surface decreases with the increase in Nano-powder concentration. Insulating strength of
dielectric fluid decreases after adding powder concentration in dielectric fluid which in turn
increases the conditions of inter-electrode gap [18]. Thus, this increase in inter-electrode
gap condition improves the performance by obtaining superior surface finish [18]. Flushing
of debris can be significantly improved by adding electrically conductive Nano-powder
in dielectric fluid by increasing the discharge gap [39]. The addition of Nano-powder in
dielectric fluid also enhances the sparking frequency and permits the uniform flushing of
debris [40]. This results in formation of shallow craters which in turn provides the better
surface finish. So, as Nano-powder concentration increases, the SR decreases, because of
uniform sparking distribution and uniform flushing of debris. Thus, it was found that an
addition/increase of Nano-powder in dielectric fluid significantly affects both the selected
objectives of MRR and SR.
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Residual plot consisting of normal probability plot, fitted versus predicted pot, his-
togram plot, and time variance analysis was shown in Figure 6 for SR. Similar patterns as
that of MRR has been observed for all residual plots of SR. This shows that residual plot of
SR also signifies the ANOVA results for better future outcome of proposed model.
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4.5. Optimization Using HTS Algorithm

Patel and Savsani [19] proposed HTS algorithm based on the heat transfer principle
which tries to reach thermal equilibrium. By means of transferring heat between system
and surroundings, the algorithm reaches the equilibrium. For obtaining the thermal
equilibrium condition, three heat transfer phenomenon namely conduction, convection and
radiation are crucial. Transfer of heat is possible through any of these three modes of heat
transfer ‘the conduction phase’, ‘the convection phase’, and ‘the radiation phase’. Random
selection of any of the heat transfer phenomenon is selected in each generations. During
the implementation, the system selects ‘n’ number of molecules which is nothing but the
population size. Moreover, the temperature level known as design variables are selected
randomly for each generations. This procedure gets repeated for next generation and
population size gets updated by selection of suitable mode of heat transfer phenomenon.
After getting the better value of function, the solution in the HTS algorithm gets accepted
and worst solution get replaced by the elite solution in subsequent population.

4.5.1. Conduction Phase

The solutions are updated in the conduction phase as per below Equations (4) and (5),

X′j,i =

 Xk,i +
(
−R2Xk,i

)
, iff

(
Xj
)
> f (Xk)

Xj,i +
(
−R2Xj,i

)
, iff

(
Xj
)
< f (Xk)

; ifg ≤
gmax
CDF

(4)

X′j,i =
{

Xk,i + (−riXk,i), iff
(
Xj
)
> f (Xk)

Xj,i +
(
−riXj,i

)
, iff

(
Xj
)
< f (Xk)

; ifg >
gmax
CDF

(5)

where, X′j,i is the updated solution; j = 1,2, . . . ,n; k is a randomly selected solution; j 6= k;
k ∈ (1, 2, . . . , n); i is a randomly selected design variable; i ∈ (1, 2, . . . , m); gmax is the
maximum number of generation specified; CDF is the conduction factor; R is the probability
variable; R ∈ {0, 0.3333}; ri ∈ {0,1} is a uniformly distributed random number.

4.5.2. Convection Phase

The solutions are updated in the convection phase as per below Equations (6) and (7),

X′j,i = Xj,i + R× (Xs − Xms × TCF) (6)
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TCF =

{
abs(R− ri), ifg ≤ gmax

COF
round(1 + ri), ifg >

gmax
COF

(7)

where, X′j,i is the updated solution; j = 1, 2, . . . , n; i = 1, 2, . . . , m. COF is the convection
factor; R is the probability variable; R ∈ {0.6666, 1}; ri ∈ {0, 1} is a uniformly distributed ran-
dom number; Xs be the temperature of the surrounding and Xms be the mean temperature
of the system; TCF is a temperature change factor.

4.5.3. Radiation Phase

The solutions are updated in the radiation phase as per below Equations (8) and (9),

X′j,i =
{

Xj,i + R×
(
Xk,i − Xj,i

)
, iff

(
Xj
)
> f (Xk)

Xj,i + R×
(
Xj,i − Xk,i

)
, iff

(
Xj
)
< f (Xk)

; ifg ≤
gmax
RDF

(8)

X′j,i =
{

Xj,i + ri ×
(
Xk,i − Xj,i

)
, iff

(
Xj
)
> f (Xk)

Xj,i + ri ×
(
Xj,i − Xk,i

)
, iff

(
Xj
)
< f (Xk)

; ifg >
gmax
RDF

(9)

where, X′j,i is the updated solution; j = 1, 2, . . . , n; i = 1, 2, . . . , m; j 6= k; k ∈ (1, 2, . . . , n)
and k is a randomly selected molecules; RDF is the radiation factor; R is the probability
variable; R ∈ {0.3333, 0.6666}; ri ∈ {0, 1} is a uniformly distributed random number.

The extreme machining limits of the used set-up were considered during the imple-
mentation of the algorithms.

Ton: 1 µs ≤ Ton ≥ 110 µs
Toff: 1 µs ≤ Ton ≥ 32 µs
Current: 1 A ≤ Current ≥ 6 A
Table 6 shows the results of single objective optimization for output responses of

MRR and SR. Single objective optimization result shows that when any one objective is
at optimal level, then the other objective is deviating from its optimal level. For example,
for maximization of MRR, SR value was obtained as 10.51 µm which is far away from
its optimal level. Pursuant to the same, for minimization of SR, MRR was obtained as
0.0001 mm3/s, which is too far from its optimal level. During single objective optimization
of MRR and SR, levels of input variables are found to be contradictory. Such situation
can be efficiently tackled by developing Pareto fronts with non-dominated optimum
solutions. Pareto fronts, in essence, present a trade-off between two conflicting objectives,
and manufacturers can select any point on the front.

Table 6. Single Objective optimization results.

Objective
Function

Design Variables Objective Function

Current
(A)

Pulse on Time
(µs)

Pulse off Time
(µs)

Powder Conc.
(g/L)

MRR
(mm3/s)

SR
(µm)

Maximum MRR 6 110 1 1 1.5507 10.51

Minimum SR 1 1 8 1 0.0001 2.68

Simultaneous optimization of selected output variables (MRR and SR) was carried by
implementing the multi-objective heat transfer search (MOHTS) algorithm. Non-dominant
Pareto points were generated using MOHTS algorithm. Pareto graph of MRR and SR
is shown in Figure 7. The X and Y axes of the Pareto curve stands for SR and MRR,
respectively. 10,000 evolution functions has been used to obtain the desired Pareto points.
48 feasible Pareto points were shown in Figure 7. Table 7 shows these 48 feasible Pareto
points along with the respective level of input process parameters. The conflicting nature
of the graph can be clearly observed, as increase in MRR shows negative effect on SR.
Every single Pareto point generated a distinctive solution. Pursuant to the same, operator
has a choice to select the required Pareto point as per the required values of MRR and SR.
Confirmation trials were conducted to verify the results obtained from MOHTS algorithm.
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Randomly, five experiments were selected from the obtained 48 feasible Pareto points
(experiment numbers 1, 11, 23, 40, and 48) for validation. Table 8 shows the obtained
experimental values of confirmatory trials along the predicted values of MOHTS algorithm.
Table 8 shows negligible difference between the predicted and measured value. This shows
the capability of developed model and HTS algorithm.
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Table 7. Predicted results of HTS algorithm.

Sr. No. Current
(A)

Pulse on Time
(µs)

Pulse off Time
(µs)

Powder Conc.
(g/L)

MRR
(mm3/s)

SR
(µm)

1 1 1 8 1 0.00013 2.67

2 1 1 6 1 0.02889 2.79

3 1 1 4 1 0.04363 2.95

4 1 1 2 1 0.08619 3.03

5 1 2 1 1 0.11150 3.14

6 1 6 3 1 0.12770 3.25

7 1 7 2 1 0.15313 3.37

8 1 12 3 1 0.19456 3.59

9 1 10 1 1 0.20095 3.59

10 1 14 2 1 0.23102 3.76

11 1 18 4 1 0.24660 3.87

12 1 18 1 1 0.28983 4.05

13 1 22 2 1 0.31991 4.21

14 2 23 3 1 0.36399 4.46

15 4 15 2 1 0.38370 4.57

16 4 17 2 1 0.40580 4.69

17 1 32 1 1 0.44609 4.84

18 3 29 2 1 0.49244 5.11

19 1 40 1 1 0.53524 5.29
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Table 7. Cont.

Sr. No. Current
(A)

Pulse on Time
(µs)

Pulse off Time
(µs)

Powder Conc.
(g/L)

MRR
(mm3/s)

SR
(µm)

20 2 40 3 1 0.55342 5.42

21 3 36 1 1 0.58469 5.57

22 2 45 3 1 0.60132 5.73

23 2 53 2 1 0.71254 6.22

24 1 58 1 1 0.73567 6.31

25 1 62 1 1 0.78033 6.53

26 1 65 1 1 0.81375 6.70

27 1 68 1 1 0.84708 6.87

28 2 68 2 1 0.87979 7.07

29 2 71 1 1 0.92738 7.30

30 1 78 1 1 0.95819 7.44

31 3 72 1 1 0.98581 7.60

32 2 79 1 1 1.01645 7.75

33 1 92 1 1 1.11416 8.23

34 4 81 1 1 1.13310 8.36

35 1 96 1 1 1.15895 8.46

36 2 95 1 1 1.19466 8.65

37 2 100 1 1 1.25053 8.93

38 1 107 1 1 1.28130 9.08

39 1 110 1 1 1.31493 9.25

40 3 103 2 1 1.31678 9.30

41 2 110 2 1 1.34733 9.44

42 4 103 1 1 1.37833 9.61

43 4 105 1 1 1.40027 9.72

44 4 107 1 1 1.42276 9.83

45 5 106 1 1 1.45891 10.03

46 5 108 1 1 1.48100 10.14

47 5 110 1 1 1.50357 10.26

48 6 110 1 1 1.55070 10.51

Table 8. Validation results for Pareto optimal points.

Sr. No. Current
(A)

Pulse on
Time (µs)

Pulse off
Time (µs)

Powder
Conc. (g/L)

Predicted Values by
HTS Algorithm

Experimentally
Measured Values % Deviation

MRR SR MRR SR MRR SR

1 1 1 8 1 0.00013 2.67 0.00014 2.81 3.52 4.98

11 1 18 4 1 0.24660 3.87 0.24151 4.01 2.10 3.49

23 2 53 2 1 0.71254 6.22 0.73004 6.1 2.39 1.97

40 3 103 2 1 1.31678 9.30 1.35321 9.73 2.69 4.41

48 6 110 1 1 1.55070 10.51 1.49452 10.93 3.75 3.84
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4.6. Effect of Nano-Graphene Powder on Response Variables

The effect of Nano-graphene powder concentration on selected response variables
(MRR and SR) has been studied by comparing the results obtained between with and
without the addition of Nano-graphene powder in dielectric fluid. To analyze these results,
a case study of objective function (Equation (10)) was implemented as follows:

Obj = w1·(MRR) + w2·(SR) (10)

An equal weight of 0.5 was assigned to both the response variables. The obtained val-
ues of MRR and SR for this present objective functions were 0.12187 mm3/s and 3.4945 µm,
respectively, at the corresponding input parameters of current at 1 A, Ton at 30 µs, Ton at
22 µs, and powder concentration at 1 g/L.

To understand the effect of Nano-graphene powder on MRR and SR, another experi-
ment was carried out without the addition of Nano-graphene powder in dielectric fluid.
The obtained results are shown in Table 9. The MRR and SR values without the addition
of Nano-graphene powder were obtained as 0.09051 mm3/s and 3.85 µm, respectively, at
input parameters of current at 1 A, Ton at 30 µs, Ton at 22 µs, and powder concentration at
0 g/L. It can be observed from Table 9 that MRR and SR of the nitinol SMA are improved by
25.73% and 9.35%, respectively, with the addition of Nano-graphene powder concentration
at 1 g/L.

Table 9. Effect of Nano-graphene powder on MRR and SR.

Condition Input Process Parameters Response Variables

With addition of Nano-graphene
powder at 1 g/L

Current = 1 A
Pulse on time = 30 µs
Pulse on time = 22 µs
Powder conc. = 1 g/L

MRR = 0.12187 mm3/s
SR = 3.4945 µm

Without Nano-graphene powder

Current = 1 A
Pulse on time = 30 µs
Pulse on time = 22 µs
Powder conc. = 0 g/L

MRR = 0.09051 mm3/s
SR = 3.85 µm

4.7. Effect of Nano-Graphene Powder on Surface Morphology of Machined Surface

Scanning electron microscopy (SEM) has been used to investigate the surface morphol-
ogy of the machined surface for conventional WEDM and NPMWEDM process. In this
study, optimum corresponding process parameters shown in Table 9 has been used for the
investigation of surface morphology of machined surface of conventional WEDM (current
at 1 A, Ton at 30 µs, Ton at 22 µs, and powder concentration at 0 g/L) and NPMWEDM
(current at 1 A, Ton at 30 µs, Ton at 22 µs, and powder concentration at 1 g/L) process.
Figures 8 and 9 shows the SEM micrographs of the machined surface at conventional
WEDM and NPMWEDM process, respectively. By examining the surface obtained in
Figure 8, it clearly shows the large presence of micro-pores, more deposition of layers,
i.e., formation of globules and the presence of micro-cracks. However, machined surface of
NPMWEDM which was obtained at same machining parameters as that of conventional
WEDM process, shows a significant improvement in the surface defects, i.e., significant
reduction in micro-pores, globules, and micro-cracks. Significant reduction in the micro-
cracks of NPMWEDM process (Figure 9) is due to the uniform sparking between the
work material and the tool [23,41]. The reason for large reduction in deposition of debris
(globules) and micro-pores of NPMWEDM process is large gap between the tool and
workpiece [42,43]. This leads to the appropriate and easy flushing of debris. This easy
removal of debris forms small ridges resulting into improved surface quality.
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5. Conclusions

In the current study, the effect of Nano-powder mixed WEDM performance of Nitinol
SMA was presented. The following important conclusions can be drawn from this work:

All the input machining parameters such as current, pulse-on time, pulse-off time,
and powder concentration have significant effect on MRR of Nano-powder mixed WEDM
process. The Ton was the most significant parameter contributing maximum 63.18%. The
contributions from other parameters were Toff 17.09%, current 12.04%, and the powder
concentration of 7.09%.

The machining parameters current, pulse-on time, and pulse-off time have significance
effect on SR of the machined surface. The Ton was observed to be the most significant
parameter contributing maximum 70.61% followed by Toff contribution of 13.66%, and
current contribution of 13.50%.

Increase in Nano-graphene powder concentration increases MRR due to higher erosion
rate and simultaneously decreases SR due to uniform sparking distribution and uniform
flushing of debris.

Generated regression models accurately predict MRR and SR values. Prediction
capabilities of these models were confirmed by R-sq values and residual plot analysis.

The HTS algorithm was found to be very effective in predicting and optimizing both
the response variables at different set of input process parameters.

A Pareto front was developed with non-dominated optimum solutions. Every single
Pareto point gives a unique solution and has a corresponding value of input process
parameter. Therefore, operator can select a suitable point by just observing their required
values of MRR and SR.

MRR and SR of the nitinol SMA were improved by 24.01% and 9.35%, respectively,
with the addition of Nano-graphene powder concentration at 1 g/L.

Surface morphology of machined surface has shown reduction in machining defects
such as micro-pores, globules, and micro-cracks with the use of NPMWEDM process.
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Nomenclature

ANOVA Analysis of variance
DCB Dichlorobenzene
DF Degree of freedom
DOE Design of Experiments
EDM Electrical Discharge Machining
FESEM Field emission scanning electron microscope
HTS Heat transfer search
MOHTS Multi-objective heat transfer search
MRR Material removal rate (mm3/s)
NPMWEDM Nano-powder mixed wire electrical discharge machining
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PMEDM Powder mixed electrical discharge machining
SEM Scanning electron microscope
SMA Shape memory alloy
SMAs Shape memory alloys
SR Surface roughness (µm)
TEM Transmission electron microscope
Ton Pulse on time (µs)
Toff Pulse off time (µs)
WEDM Wire electric discharge machine
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