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Abstract: Four new non-symmetrical derivatives based on central naphthalene moiety, 4-((4–(alkoxy)
phenyl) diazenyl)naphthalen–1–yl 4–substitutedbenzoate (In/x), were prepared, and their properties
were investigated experimentally and theoretically. The synthesized materials bear two wing groups:
an alkoxy chain of differing proportionate length (n = 6 and 16 carbons) and one terminal attached
to a polar group, X. Their molecular structures were elucidated via elemental analyses and FT-IR
and NMR spectroscopy. Differential scanning calorimetry (DSC) and polarized optical microscopy
(POM) were carried out to evaluate their mesomorphic properties. The results of the experimental
investigations revealed that all the synthesized analogues possess only an enantiotropic nematic
(N) mesophase with a high thermal stability and broad range. Density functional theory (DFT)
calculations were in accordance with the experimental investigations and revealed that all prepared
materials are to be linear and planar. Moreover, the rigidity of the molecule increased when an
extra fused ring was inserted into the center of the structural shape, so its thermal and geometrical
parameters were affected. Energy gap predictions confirmed that the I16/c derivative is more reactive
than other compounds.

Keywords: fused ring; azo/ester; mesomorphic properties; liquid crystals materials; optimized
structures; DFT; thermal parameters

1. Introduction

Calamitic liquid crystals (LCs) are widely used in LC displays and optical systems
because of the suitability of their anisotropic properties [1–3]. However, their thermal and
optical properties, though, can be adjusted by modifying the molecular geometries of the
mesogenic compounds. Therefore, to develop a new LC material, the correlation between
the geometry of its mesogenic part and its mesomorphic properties should be understood.
Several calamitic azo/ester LC derivatives have been investigated and evaluated based
on their optical properties [4,5]. From these geometrical investigations, one can determine
the ester orientation within the rigid portion, the location of azo/ester linkages, lateral
groups, and the terminal flexible–chain length [6–13]. A rigid shape creates azobenzene
molecules, which are essential for exhibiting mesomorphic phenomena [14,15]. Moreover,
their properties may lead to molecular mobility in terms of response to light or heat, thus
offering many opportunities for photonic application [16–21].

It was found that the insertion of a lateral group on the aromatic ring of the mesogenic
part influenced the mesophasic transition temperature range of the smectic phases [22–24]
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and increased spontaneous polarization [25]. The existence of mesophases near room
temperature is very important for potential applications; consequently, lateral moieties are
incorporated into the molecular architecture to lower the melting temperature [26]. On the
other hand, polar terminal substituents and linking moieties were both important factors
for the designed compounds, in terms of the formation, kind, thermal stability, and range
of the observed mesophase [5,12,27–40].

Simulations of computational calculations for the molecular-shaped parameters of-
fered interesting correlations between the experimental findings and theoretical predic-
tions [41–52].

Recently, many homologous series have been documented based on naphthalene-core
LCs [53–57]. In our previous study [45], a homologous series of (E)-4-(4-(hexyloxyphenyl
diazenylnaphthalene-1-yl-4′-alkoxybenzoate was synthesized and its mesomorphic prop-
erties evaluated. The recently documented series were found to exhibit an enantiotropic
nematic (N) mesophase. Moreover, our research lab has focused its attention on the com-
putational investigations of newly, synthesized liquid crystalline materials to correlate
their mesomorphic behavior with the theoretical calculations. The geometrical structure
of LCs plays an essential role on the thermal stability and formation of their mesophases.
Additionally, it has been found that the addition of extra fused ring in the mesogeic portion
of the molecule results a new geometrical property and nematic mesophase predominant
observed [45]. Further, the length of alkoxy terminal chains has essential role in the for-
mation, stability, kind, and mesomorphic range of LC derivatives. In this investigation,
we extended our studies to evaluate the effect of additional terminal polar substituents
having a different polarities and sizes. The aim was to synthesize new derivatives based on
a central naphthalene group (In/x) bearing two terminals (the alkoxy proportion group and
a terminal attached to a polar substituent (X), Scheme 1) to investigate their mesomorphic
properties via experimental and theoretical approaches.
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2. Experiment
Synthesis

The liquid crystalline compounds In/x were synthesized according to the following
Scheme 2.
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The synthetic and characterization details are described in the Supplementary Materials.
4-((4-(hexyloxy)phenyl)diazenyl)naphthalen-1-yl 4-methoxybenzoate, I6/a
Yield: 96.3%; mp 129.0 ◦C, FTIR (ύ, cm−1): 2960, 2830 (CH2 stretching), 1725 (C=O),

1602 (N=N), 1160 (C−OEster), 1080 (C–OAlkoxy). 1H NMR, Figure 1, (500 MHz, (CD3)2SO)
δ 8.93–8.91 (m, 1H, Naph–H), 8.21 (d, J = 8.9 Hz, 2H, Naph–H), 8.02 (d, J = 9.0 Hz, 2H,
Naph–H), 7.93 (d, J = 7.8 Hz, 1H, Ar–H), 7.82 (d, J = 8.2 Hz, 1H, Ar–H), 7.75 (ddd, J = 8.4,
6.8, 1.2 Hz, 1H, Ar–H), 7.69–7.65 (m, 1H, Ar–H), 7.57 (d, J = 6.6 Hz, 1H, Ar–H), 7.19–7.13 (m,
4H, Ar–H), 4.10–4.05 (m, 2H, OCH2), 3.87 (s, 3H, OCH3), 1.78–1.65 (m, 2H, CH2), 1.47–1.35
(m, 2H, CH2), 1.34–1.23 (m, 4H, 2CH2), 0.85 (t, J = 7.1 Hz, 3H, CH3). Elemental Analysis
calc. (found): C, 74.67 (74.65); H, 6.27 (6.24); N, 5.81 (5.80).
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4-((4-(hexadecyloxy)phenyl)diazenyl)naphthalen-1-yl 4-methoxybenzoate, I16/a
Yield: 91.2%; mp 87.0 ◦C, FTIR (ύ, cm−1): 2935, 2845 (CH2 stretching), 1735 (C=O),

1590 (N=N), 1162 (C−OEster), 1080 (C–OAlkoxy). 1H NMR (500 MHz, (CD3)2SO) δ 8.95–8.92
(m, 1H, Naph–H), 8.23 (d, J = 8.9 Hz, 2H, Naph–H), 8.00 (d, J = 9.0 Hz, 2H, Naph–H), 7.90
(m, 1H, Ar–H), 7.82 (d, J = 8.2 Hz, 1H, Ar–H), 7.75 (m, 1H, Ar–H), 7.69–7.65 (m, 1H, Ar–H),
7.57 (d, J = 6.6 Hz, 1H, Ar–H), 7.19–7.13 (m, 4H, Ar–H), 4.10 (t, J = 7.7 Hz, 2H), 3.85 (s, 3H),
1.77–1.65 (m, 6H), 1.60–1.54 (m, 4H), 1.49–1.33 (m, 4H), 1.26–1.15 (m, 6H), 1.11–0.94 (m,
8H), 0.77–0.67 (m, 3H). Elemental Analysis calc. (found): C, 77.14 (77.13); H, 8.09 (8.08); N,
4.50 (4.47).

4-((4-(hexadecyloxy)phenyl)diazenyl)naphthalen-1-yl 4-chlorobenzoate, I16/c
Yield: 92.7%; mp 107.0 ◦C, FTIR (ύ, cm−1): 2944, 2848 (CH2 stretching), 1725 (C = O),

1595 (N = N), 1162 (C−OEster), 1080 (C–OAlkoxy). 1H NMR (500 MHz, (CD3)2SO) δ 8.90 (m,
1H, Naph–H), 8.23 (m, 2H, Naph–H), 8.00 (m, 2H, Naph–H), 7.90 (m, 1H, Ar–H), 7.85 (d,
J = 8.1 Hz, 1H, Ar–H), 7.78(m, 1H, Ar–H), 7.68–7.63 (m, 1H, Ar–H), 7.57 (m, 1H, Ar–H),
7.18–7.10 (m, 4H, Ar–H), 4.12 (t, 2H), 1.77–1.53 (m, 6H), 1.49–1.32 (m, 4H), 1.29–1.17 (m,
4H), 1.09–0.97 (m, 8H), 0.91 (m, 6H), 0.74 (m, 3H). Elemental Analysis calc. (found): C,
74.68 (74.66); H, 7.55 (7.54); Cl, 5.65 (5.63); N, 4.47 (4.45).

4-((4-(hexyloxy)phenyl)diazenyl)naphthalen-1-yl 4-fluorobenzoate I6/b
Yield: 93.0%; mp 114.0 ◦C, FTIR (ύ, cm−1): 2950, 2846 (CH2 stretching), 1726 (C=O),

1592 (N=N), 1158 (C−OEster), 1074 (C–OAlkoxy). Elemental Analysis calc. (found): C, 74.02
(74.02); H, 5.78 (5.75); F, 4.04 (4.03); N, 5.95 (5.94).

3. Results and Discussion
3.1. Mesomorphic and Optical Behaviour

The mesomorphic and optical characteristics of the present azo/ester derivatives,
(In/x) were investigated by differential scanning calorimetry (DSC) and polarized opti-
cal microscopy (POM). Figure 2 shows an example of the DSC thermograms of 4-((4-
(alkoxy)phenyl)diazenyl)naphthalen-1-yl 4-methoxybenzoate (I6/a) for the heating and
cooling cycles. The N–mesophase schlieren textures observed under POM for the ana-
logues I16/c are shown in Figure 3. The mesophase transition temperatures and their
associated enthalpies were determined by DSC and are presented in Table 1. All designed
derivatives, bearing the central naphthyl moiety, exhibited two transition heating and
cooling peaks on DSC thermogram scans. These were ascribed to a Cr-to-N mesophase and
an N-to-isotropic liquid transition upon heating and during cooling, which were reversed
on cooling from isotropic liquid –N and N–Cr phases. The DSC results agreement with the
mesophase textures identified by POM measurements. The transition temperatures derived
from the DSC measurements of synthesized compounds are graphically represented in
Figure 4. Table 1 and Figure 4 reveal that all the prepared laterally substituted compounds
(In/x) possessed a purely wide enantiotropic N mesophase. The derivative with the shortest
terminal chain (I6/a), having an electron donating group, displayed the highest thermal
N stability at 199.6 ◦C and the broadest nematic range at 70.4 ◦C. In contrast, the longer
analogue, I16/a, possessed the lowest nematic stability and range at 119.7 and 32.7 ◦C,
respectively. For an electron-withdrawing group, the compound I6/b (X = F) showed a ne-
matogenic range at 40.0 ◦C and N stability near 154.1 ◦C. Meanwhile, the longest terminal
chain length analogue (I16/c, X = Cl) exhibited nematic thermal stability near 158.4 ◦C with
a N mesophase range at 51.3 ◦C. The mesomorphic stability of the materials was enhanced
by an incremental rise in the polarity or polarizability of the mesogenic core of the com-
pound. Thus, the electron-donating (CH3O) and electron-withdrawing (F and Cl) groups
influenced the mesophase thermal stability and displayed a purely nematic mesophase.
Moreover, it was documented in [43,58] that the stability of a formed mesophase and its
type are mainly dependent upon the molecular dipole moment of the mesogenic core of
the compound. This, in turn, depends on the attached terminal polar substituent and the
steric one, which vary according to the location and size of the group. Thus, the insertion
of a terminal polar substituent having a different volume and polarity into an azo/ester
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system that has terminal alkoxy chains of proportionate length, affected the mesophase
transition phenomena, which depended on the location and mesomeric function of the se-
lected substituent (i.e., donating (CH3O) or withdrawing (F and Cl moieties). Furthermore,
the introduction of terminals into an LC material will have two opposing effects: first, it
will decrease the phase stability due to the steric effect of the terminal substituent [59–63];
secondly, the molecular anisotropy will increase or decrease depending on the polarizing
effect of the substituent. The dipole moment of the whole compound depends mainly
on the position and polarity of the attached lateral and terminal groups. In addition, the
terminal and lateral moieties played an essential role in the observed melting temperatures
of the synthesized derivatives. Table 1 and Figure 4 show the decrease in the nematic range
and stability of the laterally substituted derivatives in the following order: I6/a > I16/c >
I6/b > I16/a.
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Table 1. Mesomorphic transition temperatures (T, ◦C), enthalpy (∆H, kJ/mole) of transition, normalized en-
tropy(∆SNematic–Iso/R) of transition, and N temperature range, ∆T, for compounds In/x.

Compound. X TCrystal–Nematic ∆HCrystal–Nematic TNematic–Iso ∆HNematic–Iso ∆SNematic–Iso/R ∆T

I6/a –OCH3 129.2 45.78 199.6 1.93 0.49 70.4

I6/b –F 114.1 39.35 154.1 1.19 0.34 40.0

I16/a –OCH3 87.00 36.38 119.7 2.36 0.72 32.7

I16/c –Cl 107.1 36.96 158.4 2.30 0.64 51.3

Iso denotes isotropic liquid phase.
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Figure 4. DSC transitions of the derivatives, In/x.

Table 1 also shows the normalized entropy changes, ∆S/R, in the investigated deriva-
tives (In/x). The data revealed that the N–I transition entropy changes showed relatively
lower values. The estimated entropy changes values are independent on alkoxy chain
length [64,65]. Additionally, these results were agreement with previous reports [66–68].
The stereo configurations of the central naphthalene moiety and terminal polar groups
played an important role in the predicted thermal parameters, which will be discussed in
the computational section. Moreover, the thermal cis/trans isomerization of the azo group
was an essential factor in the lower entropy changes observed, as documented in previous
studies [65,69–71]. Moreover, due to their nematic nature, of the mesophase, they exhibited
the lowest order mesophase.

3.2. Comparison of the Investigated Derivatives (In/x) with Previously Prepared Series

The location of lateral substitution strongly affects the mesomorphic behavior of LC
materials. To evaluate the effect of the extra fused ring on the mesomorphic behavior on
the mesogenic core of the molecule, an initial comparison is made between the derivatives
(In/x) and their corresponding laterally neat homologues bearing the central benzene ring
(IIn/x, Scheme 3) [58]. The homologues series IIn/x exhibiting dimorphic phases (SmA
and N) depending on the length of terminal chain (n). The comparison indicated that the
incorporation of the extra fused ring in the central core disrupted smectic A molecular
packing and gave only resulted in the N mesophase. A second comparison is then made
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between the present compounds (In/x) and their corresponding isomers bearing the central
benzene ring (IIIx/n, Scheme 3) [57]. The homologues IIIx/n series were observed to have
nematognic phases with higher thermal stabilities than the present investigated series
In/x. The results revealed that the positional exchange of azo/ester linkages decreased the
thermal stability of the formed mesophases.

Materials 2021, 14, x FOR PEER REVIEW 8 of 13 

8 

 

 

IIn/x    where    n = length of terminal chain;   x = terminal substituent 

 

IIIx/n    where    n = length of terminal chain;   x = terminal substituent 

Scheme 3. Molecular structures of series IIn/x and IIIx/n. 

3.3. Geometrical Structures and DFT Investigations 

Computational calculations were carried out for all synthesized central naphthyl 

derivatives (In/x) via the DFT method to correlate the predicted quantum chemical pa-

rameters and the experimental data. The DFT calculations were performed in the gas 
phase with a DFT/B3LYP program at a 6–311G** basis set. The prepared materials (In/x) 

displayed a mesomorphic behavior, this confirming their existence in a planar confor-

mation. Figure 5 represents the optimized geometrical structure of each compound con-

firmed to be stable by frequency calculation; no imaginary frequency was predicted for 

any member. The zero-point energy and other calculated quantum thermal parameters 

are summarized in Tables 2 and 3. It can be seen from Figure 5 that all designed com-

pounds were linear and planar. Additionally, the length of the terminal alkoxy chains 

had no significant effect on the planarity of the aromatic rings. It was found that, in [72], 

the planarity of the mesogenic cores planarity of the LC compounds was influenced by 

the mesomeric nature of the attached polar group. Hence, the conjugated π–cloud inter-

actions resulting from the terminal polar substituents offered high thermal N stability 

and range with suitable geometrical parameters in the investigated derivatives. On the 

other hand, the zero-point energy and other calculated thermodynamic parameters 

listed in Table 2 depend on the nature of terminal substituent X. They were predicted to 

increase with the increasing the electron-donating mesomeric nature. 

Table 2. Thermal parameters at 25 °C calculated using the B3LYP/6–311G ** method. 

Comp

. 

ZPE  

(Kcal/Mo

l) 

Thermal Energy 

(Kcal/Mol) 

Enthalpy  

(Kcal/Mo

l) 

Gibbs Free En-

ergy (Kcal/Mol) 

Entropy (Cal 

Mol/k) 

I6/a 339.142 359.971 360.563 294.367 222.023 

I6/b 313.606 333.312 333.905 270.090 214.037 

I16/a 518.170 547.563 548.155 460.300 294.671 

I16/c 491.790 520.310 520.903 434.582 289.519 

Scheme 3. Molecular structures of series IIn/x and IIIx/n.

3.3. Geometrical Structures and DFT Investigations

Computational calculations were carried out for all synthesized central naphthyl
derivatives (In/x) via the DFT method to correlate the predicted quantum chemical parame-
ters and the experimental data. The DFT calculations were performed in the gas phase with
a DFT/B3LYP program at a 6–311G** basis set. The prepared materials (In/x) displayed a
mesomorphic behavior, this confirming their existence in a planar conformation. Figure 5
represents the optimized geometrical structure of each compound confirmed to be stable
by frequency calculation; no imaginary frequency was predicted for any member. The
zero-point energy and other calculated quantum thermal parameters are summarized in
Tables 2 and 3. It can be seen from Figure 5 that all designed compounds were linear and
planar. Additionally, the length of the terminal alkoxy chains had no significant effect
on the planarity of the aromatic rings. It was found that, in [72], the planarity of the
mesogenic cores planarity of the LC compounds was influenced by the mesomeric nature
of the attached polar group. Hence, the conjugated π–cloud interactions resulting from
the terminal polar substituents offered high thermal N stability and range with suitable
geometrical parameters in the investigated derivatives. On the other hand, the zero-point
energy and other calculated thermodynamic parameters listed in Table 2 depend on the
nature of terminal substituent X. They were predicted to increase with the increasing the
electron-donating mesomeric nature.
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Table 2. Thermal parameters at 25 ◦C calculated using the B3LYP/6–311G ** method.

Comp. ZPE
(Kcal/Mol)

Thermal
Energy

(Kcal/Mol)

Enthalpy
(Kcal/Mol)

Gibbs Free
Energy

(Kcal/Mol)

Entropy (Cal
Mol/k)

I6/a 339.142 359.971 360.563 294.367 222.023
I6/b 313.606 333.312 333.905 270.090 214.037
I16/a 518.170 547.563 548.155 460.300 294.671
I16/c 491.790 520.310 520.903 434.582 289.519

Table 3. Total energy (H), EHOMO (ev), ELUMO (ev), ∆E (ev), dipole moment (D), ionization energy (ev), electron affinity
(ev), and polarizability (Bohr3) calculated using B3LYP/6–311G** method for the series In/x homologues.

Comp.
Total

Energy
(Hartree)

EHOMO
(ev) EluMO (ev) ∆E (ev)

Dipole
Moment
(Debye)

IE (ev) EA (ev) Polarizability
Bohr3

I6/a −1570.995 –5.632 –2.439 3.193 1.7620 5.632 2.439 451.01
I6/b −1555.767 −5.774 −2.582 3.192 3.3197 5.774 2.582 424.69
I16/a −1963.817 –5.627 –2.439 3.188 1.6794 5.627 2.439 571.88
I16/c −2308.947 −5.791 −2.614 3.177 3.7771 5.791 2.614 561.58

Abbreviations: EHOMO denotes to the energy of the highest occupied molecular orbital, ELUMO denotes to the energy of the lowest
unoccupied molecular orbital and ∆E = ELUMO–EHOMO the orbital energy gap.
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As can be seen in Table 3, the calculated ionization potentials (IE) for the terminal
methoxy compounds (I6/a and I16/a)) have lower values, which indicate that they are more
basic than other electron-withdrawing derivatives [73]. Moreover, the predicted polariz-
ability listed in Table 3 decreased in the order of I16/a > I16/c > I6/a > I6/b, showing that the
changing values may be attributed to the aspect ratio of each molecule. As the molecular
structure aspect ratio increased, the space filling of the mesomorphic compound also in-
creased, resulting in enhanced polarizability. In general, lateral and terminal substituent
polarity, polarizability, rigidity, and the shape of the liquid crystalline molecules are es-
sential parameters for forming mesophases of specific types and thermal stabilities. The
results in Table 3 also showed that the longer terminal chain derivatives (I16/a and I16/c)
had lower values of predicted total energy (−1963.82 and −2308.95 Hartree). Thus, the
e terminal aggregation strength increased along with the length of the alkoxy chain, but
with a decrease in total thermodynamic energy. It was reported that [64,65], the terminals
of the chains always change their conformation dynamically and are randomly pointed
out within the chain-layer. The random packing of the chains results in the loss of the
two-dimensional symmetry within the chain-layer.

4. Conclusions

Four new mesomorphic derivatives based on an extra laterally fused ring in the central
of a molecule, namely 4-((4-(alkoxy)phenyl)diazenyl)naphthalen-1-yl 4-substitutedbenzoate
(In/x), were synthesized and mesomorphically investigated, as well as theoretically eval-
uated. Molecular structure elucidation was carried out by elemental analyses and FTIR
and NMR spectroscopy. Mesomorphic examinations of the prepared compounds were
measured via DSC and POM. Evaluations of the DSC and POM investigations revealed
that all the laterally substituted derivatives synthesized were enantiotropic, exhibiting a
purely nematic mesophase with high thermal stability and a broad range. The size and
mesomeric effects of different terminal polar groups (CH3O, F, Cl) participated in the
stabilization of the molecule, which achieved higher thermal N stability than the corre-
sponding previously reported molecules. Computational DFT calculations indicated that
the rigidity of the molecule increased after the extra fused ring was attached in the center
of the structural shape, thus affecting the thermal and geometrical parameters. Moreover,
the predicted energy gaps confirmed that the I16/c derivative was more reactive than the
other compounds.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14102587/s1. The synthetic and characterization details of investigated compounds.
1. Materials; 2. Synthesis of 4-((4-alkoxyphenyl)diazenyl)naphthalen-1-ol; 3. Synthesis of 4-((4-
(alkoxy)phenyl)diazenyl)naphthalen-1-yl 4-substitutedbenzoate In/x; 4. Characterization; 5. Compu-
tational Method.
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