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Abstract: The attenuation of stress waves due to the local resonance is numerically studied using the
finite element method (FEM) in this work. The natural frequency of a representative composite unit
embedded with coated particles is analyzed and the major factors that influence the natural frequency
are examined. Local resonance is inspired when the frequency of the incident stress wave is close
to the natural frequency of the particles in the composite. Significant reduction in the amplitude
of the stress is obtained when the local resonance occurs, because a large amount of the incident
energy is converted to the kinetic energy of the particles, which is rapidly dissipated through the
strong oscillations of those particles. It is also observed that the attenuation for the incident stress
waves with a range of frequencies can be achieved by using the particles with various local natural
frequencies in a composite.

Keywords: local resonance; stress wave; attenuation; particulate composite

1. Introduction

Energy localization is an effective approach to attenuate stress waves. By designing the
microstructures in a material, a large amount of energy of the incident stress waves can be
locally trapped in some specific parts of the material, and the energy stream that propagates
forward is reduced, leading to a reduction in the amplitude of the stress wave. Local
deformation, motion, or failure of the material may cause energy localization [1]. Achieving
the stress wave attenuation by promoting the local resonance of the microstructures of
the composite is of great interests for the development of high-performance protection
composite materials.

Concept of local resonance is widely used in the research on photonic crystals [2,3].
Liu et al. [4] fabricated sonic crystals, based on the idea of localized resonant, the structure
cell consists of the high-density solid core and elastic soft coating. The material preforms
negative modulus at a certain frequency range. Such materials with negative elastic
modulus belong to metamaterials [5], which have physical properties that the natural
materials do not possess due to special artificial design. It is found that the sonic crystals
with local resonance structure have strong attenuation band gaps to the specific frequency
of sound wave [6]. Thus, the acoustic waves of some particular frequencies are unable to
propagate through the sonic crystals. Dupont et al. [7] presented a cubic array of thick
spherical shells with holes in air, and observed a low frequency stop band of the acoustic
wave.

The phenomenon of band gap and the design of metamaterials also exist in mechanical
materials [8,9]. Li and Wang [10] proposed a two-dimensional mechanical system con-
taining one rigid body and several springs around it as an elastic metamaterial exhibiting
both negative mass and negative modulus under specific frequencies. The local resonance
mechanism is also used for elastic wave absorption [11], vibration suppression [12], and
cloaking [13]. Mitchell et al. [14] proposed a type of concrete called metaconcrete for the
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attenuation of elastic waves induced by dynamic excitation. Kettenbeil and Ravichan-
dran [15] carried out experimental investigation of the dynamic behavior of metaconcrete,
and found that the locally resonant metamaterial can attenuate the applied stress waves
at the inclusion’s eigenfrequencies. Nouh et al. [16] presented metamaterial plates with
built-in local resonances consisting of a viscoelastic membrane and a small mass, and the
plates are effective in attenuating and filtering low-frequency structural vibration.

The present work is performed based on the previous work for a deeper understanding
of the mechanism of the stress wave attenuation by the addition of solid particles in a
composite: a two-dimensional composite model with coated particles is setup in the
finite element method (FEM) simulations and the effects of the properties of particles
and coatings on the attenuation of stress wave are explored. The frequency of the stress
wave in this paper is in the order of MHz, which is much larger than that in the previous
studies (e.g., kHz). In addition, a novel study is performed on the composite that can
simultaneously attenuate a combination of stress waves of different frequencies.

This paper is organized as follows: the natural frequency of the composite and its
influence factors are discussed at first, and some theoretical and numerical work are
introduced in Section 2; the stress wave propagation in the composite is simulated, and
the stress wave attenuation effect of the material is verified in Section 3; the design of
multi-frequency attenuation material is discussed in Section 4. The conclusions are drawn
in Section 5.

2. Natural Frequency of the Particulate Composite
2.1. Theoretical Model

Figure 1 shows an illustration of a two-dimensional (2D) model of a unit cell embedded
with a coated particle. In the theoretical analysis, the matrix and the particle are assumed
to be rigid and the annular coating is treated as a deformable material with negligible
mass. The elastic support of the coating to the particle is simplified as four uniformly
distributed springs with the stiffness of k0. The stiffness of the coating depends on the
Young’s modulus and thickness. The masses of the matrix and the particle are mm and mp,
respectively. A load of F is exerted on the left-hand side boundary and the other boundaries
are load-free with no constrained displacements. In the process, the displacements in the
horizontal direction of the matrix and particle are denoted as um and up, respectively.
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Figure 1. Vibrator model of a coated particle embedded in a matrix.
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Supposing F = F0eiωt,
(
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up

)
=
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up0

)
eiωt, then,
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(
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0
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(2)

which gives
um0
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2k0 − mpω2
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(
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)
− 4k2

0
(3)

up0

F0
=

2k0

(2k0 − mmω2)
(
2k0 − mpω2

)
− 4k2

0
. (4)

The idea for the optimal design of stress wave attenuation is to allow the particles to
absorb as much energy as possible, and meanwhile the movement and the kinetic energy
of the matrix are minimized.

In Equation (3), if the external frequency of excitation satisfies

ω =

√
2k0

mp
(5)

i.e., the frequency of the excitation is equal to the natural frequency of the local particle
vibration mode, we have

um0

F0
= 0, (6)

The equivalent mass of the structure is,

Meff =
F

..
um

= − 1
ω2

(
2k0 − mmω2)(2k0 − mpω2)− 4k2

0
2k0 − mpω2 . (7)

Thus, the equivalent mass is toward infinity, indicating that the matrix does not move
under the effect of load.

It can be seen that the natural frequency of the model is mainly determined by the
stiffness of the coating, k0, and the mass of the particle, mp. This statement is verified by the
following numerical simulations, and the relations between these quantities and natural
frequency are further discussed in this work.

2.2. Numerical Model

Numerical vibrator model for natural frequency analysis is created and illustrated in
Figure 2, where L is the length of the square model, d is the diameter of the particle, and a
is the thickness of the coating.
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The FEM commercial software ABAQUS (Version 6.14) is used to perform the simula-
tions. In the numerical model, L = 200 µm, d = 50 µm, a = 10 µm. The matrix material is
based on resemble polyurea, which is a polymer with viscosity. In this work, the matrix
is considered as an elastic material for simplicity and its Young’s modulus is assigned as
the storage modulus of the resemble polyurea. The particles are glass beads. The coating
parameters are based on those of silastic, while the Young’s modulus of the coating is
adjusted to achieve various natural frequencies. The base material parameters used in the
simulations are shown in Table 1.

Table 1. Material parameters.

Material Density (kg/m3)
Young’s Modulus

(MPa) Poisson Ratio

Matrix 1070 70 0.465
Particle 2500 65,000 0.25
Coating 1300 0.118 0.469

Figure 3 shows the first six orders of the natural modes obtained by the frequency
analyses. All these six modes are local displacement modes. The first three modes represent
the motions of the particle: Mode 1 is the rotation of the particle, Modes 2 and 3 represent
the translational motion of the particle in two perpendicular directions. It is found that the
frequencies corresponding to Mode 2 and 3 are very similar. Modes 4 to 6 represent the
deformation of the coating. The translational mode of the particle is related to the vibration
of the particle, which is used to achieve the energy localization. Therefore, the translational
mode of the particle is of the great interest, and in the following, the natural frequency is
referred to as that of the Mode 2.
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2.3. Determination of the Natural Frequency

In this section, the factors that influence the natural frequency are investigated numer-
ically. According to the theoretical analyses, natural frequency depends on the mass of the
particle and the stiffness of the coating, therefore factors that are relevant to them more
likely affect the natural frequency. The effects of the particle density, particle diameter,
Young’s modulus, and thickness of the coating are considered. The simulation results are
shown in Figure 4.
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Figure 4. The effects of (a) particle density, (b) particle diameter, (c) interface Young’s modulus of the
coating, and (d) thickness of the coating on the natural frequency.

Figure 4a,b shows the influences of the particle density and diameter on the natural
frequency, respectively. The natural frequency decreases with the increase in these two
parameters, which leads to an increase in the mass of the particle.

The mass of the particle can be controlled by adjusting the density and size, and the
stiffness of the system is determined by the properties of the coating. Young’s modulus
is an important factor. As shown in Figure 4c, the increase of the modulus of coating
can increase the natural frequency. However, an important prerequisite for the model to
have local translational modes of the particle is that the modulus of the coating is much
smaller than those of the matrix and the particle. Thus, an upper limit exists for the natural
frequency as the modulus of the coating is limited.

Another way to adjust the stiffness is to change the thickness of the coating. As shown
in Figure 4d, the increase of the coating thickness decreases the natural frequency. The
coating can be analogous to the tandem springs in the thickness direction: more springs
lead to lower stiffness. Therefore, the stiffness of the coating decreases as the thickness
increases.

Based on the understanding of the effects of these factors, the natural frequency of the
composite system can be adjusted to match the frequency of the excitation.

3. Stress Wave Attenuation
3.1. FEM Model

In this section, FEM models are generated by ABAQUS (Version 6.14, SIMULIA by
Dassault Systèmes, Providence, RI, USA) to simulate the stress wave propagation in the
composite embedded with multiple coated particles. Based on the simulation results, the
stress attenuation in different materials is evaluated and the effectiveness of the use of the
local resonance mechanism to attenuate the stress wave is examined.

The numerical model is shown in Figure 5. The dimensions of the model are 3 mm × 3 mm,
in which the coated particles are arranged in the structural grids in the center of the composite.
The diameter of each particle is 50 µm, the thickness of the coating is 8 µm, and the distance
between the centers of the particles is 200 µm in both horizontal and vertical directions. In the
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simulation, the Young’s modulus of the coating is 1.18 MPa, and other material parameters are the
same to those presented in Table 1. A uniform sinusoidal stress wave with the amplitude, p0, of
0.4 MPa is exerted on the left-hand side boundary. The displacements in the vertical direction (y
direction) of the upper and lower boundaries are restrained. The zoom-in diagram on the right in
Figure 5 shows the local mesh around the particle region. The plane strain element CPE4R is used
except the right-hand boundary, for which infinite element CINPE 4 is used in order to avoid the
influence of the reflected wave. Dynamic, explicit analysis scheme was used in the simulations.
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3.2. Results

Based on the frequency analyses discussed in Section 2.2, the natural frequency of
the coated particle cell in this model is calculated as 0.6 MHz. To match the frequency of
the incident stress wave with the natural frequency, the stress wave of 0.6 MHz is applied,
so that local resonance is expected to be inspired. The propagation process of the stress
wave is simulated, and the field of displacements at the time t = 0.8 µs is shown in Figure 6.
For a clearer observation of the movement of the particle, the coating is hidden in the
figure. As shown in the enlarged view on the right-hand side, the displacement field
within the particle is uniform, which means little deformation occurs to the particle. The
displacement of the particles is much larger than that of the matrix, and the deformation
mainly occurs in the coating. The dynamics of the system is similar to the vibrating process
of a mass-spring system, in which the coating plays a role of a flexible support and the
particle is the oscillator. The frequency of the incident wave is 0.6 MHz, equal to the natural
frequency of the coated particle. As a result, the excitation inspires the local resonance of
the particles, and a large percentage of the external work transforms to the kinetic energies
of the particles.
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Besides f = 0.6 MHz, the frequencies of f = 0.3 MHz and f = 0.9 MHz are also considered
in the simulations. The total kinetic energies of all the particles for these frequencies are
plotted in Figure 7. The maximum kinetic energy is obtained when the frequency of
the excitation is equal to that of the system, i.e., f = f 0. When resonance is inspired, the
vibration frequency of the particles is the same as the excitation and the amplitude of
vibration achieves the maximum. As the incident wave from the left-hand side boundary is
a sinusoidal wave, the total kinetic energy of the particles evolves with time in a sinusoidal
pattern accordingly.
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Figure 7. Time evolution of the total kinetic energies of the particles subject to the stress waves of
different frequencies.

For a further analysis, the blue dashed box in Figure 5 is selected as a window of
observation. Figure 8 shows the kinetic energies of the matrix, particles, and coating in
the window under the stress waves of various frequencies. It is evident that the incident
frequency of the stress wave has a significant impact on the partition of the kinetic energies
among the matrix, particles, and coating, indicating that the change of the input frequency
causes the change of the displacement and deformation modes of the composite system.
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Figure 8. Kinetic energies of matrix, particles and coating with (a) f = 0.3 MHz, (b) f = 0.6 MHz, and (c) f = 0.9 MHz.

When the incident frequency is equal to the natural frequency of the coated particle
cell, i.e., f = f 0, the kinetic energy of the particles can exceed that of the matrix, while in the
other two cases, the kinetic energy of the matrix is much larger than those of the particles
and coating. The larger proportion of kinetic energy occupied by the particles indicates
that the vibrating motion of particles is significant. These results show that the incident
stress wave can excite the local resonance of the particles when the incident frequency
is close to the natural frequency of the translational mode of the particle. The present
simulation results are consistent with the previous experimental observation by Kettenbeil
and Ravichandran [15].
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The significant difference is that when the frequency of the incident stress wave is
0.3 MHz or 0.9 MHz, the kinetic energy of particles is much less, and the motion of the
particles is very limited.

3.3. Stress Wave Attenuation Coefficient

In the above section, stress wave attenuation is analyzed from the point of view of
the kinetic energy. In this section, the stress is explored to evaluate the attenuation of the
wave. The peak value pmax of the average normal stress on the right-hand side boundary
of the observation window in Figure 5 is measured. The ratio of pmax to the amplitude
of the incident wave p0 is employed to quantify the attenuation capacity of this structure.
Lower pmax/p0 indicates a greater decrease in stress amplitude and a larger attenuation.
The simulation results are shown in Figure 9a.
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Figure 9. (a) Output stress wave value; (b) stress attenuation coefficient.

In order to evaluate the attenuation property of the material, an attenuation coefficient
is defined as

α =
ln(p0/pmax)

∆L
, (8)

where ∆L is the distance between the left-hand side and right-hand side boundaries of the
dashed region as shown in Figure 5.

When the frequency of the incident wave is 0.6 MHz, i.e., the same as the natural
frequency, the peak value of the stress at the output section is much lower than that with
f = 0.3 MHz and f = 0.9 MHz. The attenuation of the stress wave at 0.6 MHz is greater than
that with the other two frequencies. It indicates that the material can attenuate the stress
wave most with the wave frequency close to the local natural frequency.

To design a composite for the attenuation of stress wave, the natural frequency of the
coated particle system can be tuned to match the frequency of the incident stress wave, in
order to achieve the best attenuation performance.

4. Designed Composite for Multi-Frequencies Attenuation

Composite with uniform microstructures has only one natural frequency of Mode 2
(Figure 3) and it is effective for the attenuation of the incident stress wave with similar
frequency. Therefore, the frequency range of the stress waves that can be attenuated is
quite limited. How to conquer this disadvantage and achieve the attenuation on a wide
range of stress waves is discussed in this section.

In the numerical model shown in Figure 10, the particles in the red rectangular box
have the local natural frequency of f0 ≈ 0.3 MHz and the particles in the blue rectangular
box have the local natural frequency of f0 ≈ 0.6 MHz. The natural frequencies of the
local vibration modes are determined by adjusting the Young’s modulus of the coating:
E = 0.3 MPa for f0 ≈ 0.3 MHz and E = 1.5 MPa for f0 ≈ 0.6 MHz. Incident stress waves



Materials 2021, 14, 2991 9 of 14

with the frequencies of 0.3 MHz and 0.6 MHz are applied on the left-hand side boundary
of the model.
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the blue rectangular box.

First, the kinetic energies and the attenuation coefficients of the composites containing
only a single local natural frequency of particles are shown in Figures 11 and 12. Figure 11
illustrates that when the frequency of the incident stress wave is the same as the natural
frequency (e.g., Figure 11a: f 0 = 0.3 MHz, f = 0.3 MHz, and Figure 11d: f 0 = 0.6 MHz,
f = 0.6 MHz), the kinetic energies of the vibrating particles are dominant, indicating the
occurrence of local resonance and a better performance of attenuation. Figure 12 also
confirms that the attenuation coefficients of the composite to the stress wave are larger in
these two cases.

When the frequency of the incident stress wave deviates from the natural frequency
of the system, e.g., Figure 11b: f 0 = 0.3 MHz, f = 0.6 MHz, and Figure 11c: f 0 = 0.6 MHz,
f = 0.3 MHz, the energy of the matrix is more dominant, and the composite exhibits no
attenuation on the stress waves in these two cases, as shown in Figure 12.

In the above simulations, each composite can significantly attenuate the incident stress
wave of a specified frequency. In the following simulation results, by adjusting the Young’s
modulus of the coating, the particles in the red and blue rectangular regions, as shown
in Figure 10, have different natural frequencies. The kinetic energies and attenuation
coefficients are shown in Figures 13 and 14, respectively. In the figures, Particle 1 represents
the particles on the left-hand column, while Particle 2 represents the particles on the right-
hand column. The natural frequencies of the two types of particles, i.e., f 01 and f 02, are
0.3 MHz and 0.6 MHz, respectively, for the results shown in Figure 13a,b, and 0.6 MHz and
0.3 MHz, respectively, for the results shown in Figure 13c,d. Incident stress waves with the
frequencies of 0.3 MHz and 0.6 MHz are applied separately on the left-hand side boundary
of the model.
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Figure 11. Kinetic energies (mJ): (a) f 0 = 0.3 MHz, f = 0.3 MHz; (b) f 0 = 0.3 MHz, f = 0.6 MHz;
(c) f 0 = 0.6 MHz, f = 0.3 MHz; (d) f 0 = 0.6 MHz, f = 0.6 MHz.
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Figure 12. Attenuation coefficient of the composites with a single local natural frequency of particles:
(a) f 0 = 0.3 MHz, f = 0.3 MHz; (b) f 0 = 0.3 MHz, f = 0.6 MHz; (c) f 0 = 0.6 MHz, f = 0.3 MHz;
(d) f 0 = 0.6 MHz, f = 0.6 MHz.
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Figure 13. Kinetic energy (mJ): (a) f 01 = 0.3 MHz, f 02 = 0.6 MHz, f = 0.3 MHz; (b) f 01 = 0.3 MHz, f 02 = 0.6 MHz, f = 0.6 MHz;
(c) f 01 = 0.6 MHz, f 02 = 0.3 MHz, f = 0.3 MHz; (d) f 01 = 0.6 MHz, f 02 = 0.3 MHz, f = 0.6 MHz.
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Figure 14. Attenuation coefficients of the composites embedded with two types of particles of
different natural frequencies: (a) f 01 = 0.3 MHz, f 02 = 0.6 MHz, f = 0.3 MHz; (b) f 01 = 0.3 MHz,
f 02 = 0.6 MHz, f = 0.6 MHz; (c) f 01 = 0.6 MHz, f 02 = 0.3 MHz, f = 0.3 MHz; (d) f 01 = 0.6 MHz,
f 02 = 0.3 MHz, f = 0.6 MHz.

As shown in Figure 13a, the kinetic energy of the particles with f 01 = 0.3 MHz is
significantly higher than those of the matrix and the particles with f 02 = 0.6 MHz, because
the frequency of the incident wave is the same as the natural frequency of the particles on
the left-hand side, i.e., f = f 01 = 0.3 MHz, and the local resonance occurs to the particles with
f 01 = 0.3 MHz. If the incident wave has the same frequency as the particles on the right-
hand side, i.e., f = f 02 = 0.6 MHz, as shown in Figure 13b, the kinetic energy of the particles
with f 02 = 0.6 MHz is significantly higher than that of the particles with f 01 = 0.3 MHz,
due to the local resonance of the particles with f 02 = 0.6 MHz. As can be seen from the
attenuation coefficients for Cases (a) and (b) in Figure 14, the composite embedded with
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the particles of two different natural frequencies can attenuate both the stress waves with
the frequencies of 0.3 MHz and 0.6 MHz.

By switching the natural frequencies for the two types of particles in the red and blue
boxes (Figure 10), i.e., f 01 = 0.6 MHz and f 02 = 0.3 MHz, similar attenuation behaviors are
observed: larger kinetic energies are obtained for the particles with the natural frequency
equal to the frequency of incident stress wave, as shown in Figure 13c,d. The attenuation
coefficients for Cases (c) and (d) provided in Figure 14 also confirm this attenuation effect.

In the above study, structures containing particles with two different natural frequen-
cies have attenuation effect on both incident waves when each wave is separately loaded.
However, most of the excitations are broad-banded in practice. Thus, in the study, incident
stress waves with two frequencies (f = 0.3 MHz, f = 0.6 MHz) are introduced at the same
time, and the model is the same as that in Figure 10. As can be seen from the kinetic
energies of the matrix and particles in Figure 15, in the two different samples, the kinetic
energies of the particles are both significant, indicating that the local resonance of particles
are inspired.
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Figure 15. Kinetic energy (mJ): (a) f 01 = 0.3 MHz, f 02 = 0.6 MHz; (b) f 01 = 0.6 MHz, f 02 = 0.3 MHz.

In terms of the attenuation coefficient as shown in Figure 16, the attenuation effect
on the stress waves through local resonance is also obtained. It can be seen that different
particle arrangements have little influence on the attenuation coefficient. By contrast, if
there is only one type of particles presented in the matrix, the amplitude of the stress wave
is not attenuated, although local resonance can occur, because the stress wave with another
frequency can still propagate through the composite. Therefore, to attenuate a wide band of
stress waves, a corresponding distribution of the natural frequencies of particles is required.
A variety of stress waves are attenuated by adding a variety of particles to the composite.
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5. Conclusions

The local resonant attenuation of stress wave in particulate composites is discussed in
this work. The coated particles are uniformly distributed inside the composite. The local
vibration mode and the natural frequency of the particles are studied numerically. The
effects of particle diameter, density, Young’s modulus and the thickness of the coating layer
on the natural frequency are examined.

Previous studies focused on the stress waves with low frequencies in the order of kHz,
while higher frequencies of stress waves propagating through a particulate composite are
investigated in the present work. The mechanism of the stress wave attenuation by adding
solid particles is revealed. When the frequency of the excitation is close to the natural
frequency associated with the local vibration mode, the local resonance of the particles
is agitated. As a result, a large amount of the incident energy transforms to the kinetic
energy of the particles, which is thereafter dissipated in the process of the strong particle
oscillation.

The FEM simulations show that a particulate composite exhibits a much better at-
tenuation performance for the stress wave, which has the frequency close to the natural
frequency of the particles. It is also demonstrated that the attenuation for the incident stress
waves with a broad distribution of frequencies can be achieved by introducing particles
with various local natural frequencies in a composite.
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