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Abstract: In this paper, an accurate distribution of stress as well as corresponding factors of stress
concentration determination around a spherical cavity, which is considered as embedded in a
cylinder exposed to the internal pressure only, is presented. This approach was applied at three main
meridians of the porosity by combining the Eshelby’s equivalent inclusion method with Mura and
Chang’s methodology employing the jump condition across the interface of the cavity and matrix,
respectively. The distribution of stresses around the spherical flaw and their concentration factors
were formulated in the form of newly formulated analytical relations involving the geometric ratio of
the cylinder, such as external radius and thickness, the angle around the cavity, depth of the porosity,
as well as the material Poisson ratio. Subsequently, a comparison of the analytical results and the
numerical simulation results is applied to validate obtained results. The results show that the stress
concentration factors (SCFs) are not constant for an incorporated flaw and vary with both the porosity
depth and the Poisson ratio, regardless of whether the cylinder geometric ratio is thin or thick.

Keywords: pressurized cylinder; spherical cavity; liner-elastic stress analysis; stress concentration
factors; analytical solution; numerical simulation results

1. Introduction

Pressurized structures, such as pipelines and piping systems, are a reliable and inex-
pensive way to transport energy products in the oil and gas industry [1,2]. Commonly,
the cylindrical shells are manufactured according to different specifications depending
on the service conditions in which they are supposed to be used. Low alloy steel is the
most frequently applied material, owing to the mechanical properties which satisfy the
growing demand for high-strength pipes in the oil and gas industry [3–5]. Although the
usage of pipelines is highly favored, they are sensitive due to several factors that often
weaken their ability to withstand the internal pressure. Thus, the load carrying capac-
ity often leads to the rupture of pipelines and systems of tubes, which results in serious
environmental, social, and economic consequences for the countries. It is inevitable that
the welded joints of metal structures contain imperfections during the construction phase.
Therefore, welded cylinders tend to contain typical defects such as cracks, cavities, solid
inclusions, and others, see Singh [6]. Therefore, to ensure safer operation of the cylindrical
structures, the study of flaws has become an important factor for an adequate assessment
of the latter. Unfortunately, volumetric defects, such as cavities and solid inclusions, are
generally either rejected or accepted as a result of non-destructive testing based on the
acceptability criteria of relevant codes, for example, British Standard BS 7910:2015 [7]
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and American Petroleum Institute standard 579, see Anderson and Osage [8]. As a re-
sult, these codes require appropriate evaluation methods for assessing volumetric defects.
Commonly, the defects embedded in the materials are called inclusions and are classified
by Mura, R. & Ting, T.C.T [9] as homogeneous inclusions, inhomogeneous inclusions,
and inhomogeneities. Thus, a homogeneous inclusion demonstrates the same mechanical
characteristics as the matrix; however, it is characterized by an eigenstrain referring to
thermal expansion or the material transformation phase. On the other hand, inhomoge-
neous inclusions present different mechanical properties and eigenstrain than the matrix.
Inhomogeneity zone demonstrates also various mechanical properties compared to the
matrix, however, is characterized by an eigenstrain.

Since the 1930s, many theoretical studies have been conducted to elucidate the effect of
the presence of one or more inclusions in an infinite isotropic-elastic medium subjected to an
external stress field. Among the important works published earlier, the works by Eshelby,
J.D. [10,11] are cited in the present paper. Eshelby, J.D. developed a method called the
Equivalent Inclusion Method (EIM) in which inhomogeneity is reduced to a homogeneous
inclusion leading to the resolution of the stress field inside and outside an ellipsoidal
inclusion embedded in an infinite isotropic-elastic medium. Since its development, EIM
has been used to determine the stress field in innumerable studies on inclusions of different
shapes and properties. More details related to EIM are discussed by Christensen [12],
Mura and Ting [9], Murakami [13], Nemat-Nasser and al. [14], Qu &Cherkaoui [15], and
Li & Gao [16]. However, the assessment of defect micromechanics of a single inclusion
has been extended to the interaction of two or more inclusions in an infinite medium, see
Moschovidis& Mura [17], Fond, C and al. [18], Sabina, F.J and al. [19], Benedikt, and Lewis
and Rangaswamy [20].

As indicated in Figure 1, the above studies have shown that the interaction between
two adjacent inclusions of various radii becomes negligible if the inter-inclusions distance
d exceeds the largest inclusion radius at least fivefold.

Figure 1. Distance between two spherical inclusions of different radii embedded in an isotropic-
elastic material.

Studies of inhomogeneous materials for a certain number of technological applications
are focused on the behavior of inclusions when they are close to a half-space. The effect of
a half-space on an inclusion is also clarified in numerous studies, among others, Ru [21],
Sun and Peng [22], He and Li [23], Seo and Mura [24], and Mi and Kouris [25]. In these
studies, the disturbance of the stress field around an inclusion is negligible at a distance
determined by porosity depth ∆ exceeding the radius of the inclusion fivefold ∆ ≥ 5ρ.
Thus, an inclusion can be considered as isolated in a semi-infinite matrix if its location
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relative to the nearest inclusion or a half-plane is greater than 5ρ (Figure 1). The objective
of the present study is to determine stress concentration factors (SCFs) around a spherical
cavity embedded in a cylinder subjected to the internal pressure. Therefore, such a porosity
is subjected to a triaxial stress field associated with the applied internal pressure. In order
to resolve the stress discontinuity around the flaw/matrix interface, EIM method is used
with the Mura and Cheng jump condition [26] using a linear-elastic constitutive law for
an isotropic homogeneous material, assuming that the porosity is an inhomogeneity with
negligible mechanical characteristics. In order to satisfy the matrix infinity condition, the
location of the flaw is assumed to be at least 5ρ from the nearest internal or external surface
of the cylinder. These hypotheses lead to the determination of the stress distribution and
the stress concentration factors Kt around the three main meridians of the spherical cavity.
Subsequently, a finite element analysis (FEA) using ANSYS is carried out to validate the
proposed approach. The contribution of the present paper is a useful analytical solution to
evaluate an embedded welding defect such as cavity or porosity. This is the first time that
Eshelby’s theory has been used to describe the stress field around inclusions and porosities
in welded joints in a cylinder under internal pressure and it can be treated as novelty of the
current paper.

2. Theoretical Background
2.1. Eshelby’s Homogenization Principle

Eshelby’s problem, as shown in Figure 2, is a case in which an elastic inclusion Ωi
with an elastic stiffness tensor Ci

ijkl is embedded inside an infinite and elastic matrix Ωm

having a different elastic stiffness tensor Cm
ijkl . Then, the overall solid body (inclusion and

matrix) is subjected to a uniform deformation ε0
ij related to the applied stress field σ0

ij.
To resolve this issue, Eshelby introduced the concept of equivalent inclusion by replacing
the heterogeneous inclusion with another homogeneous inclusion of the same form with
the addition of an equivalent eigenstrain ε∗ij to achieve the same stress field and deformation
as in the case of the heterogeneous inclusion (Figure 2). The added eigenstrain ε∗ij can be
expressed as follows:

ε∗ij(X) =

{
0 , ∀ X ∈ Ωm
ε∗ij , ∀ X ∈ Ωi

(1)

In the case illustrated in Figure 2, the difference in the elastic stiffness tensor between
the matrix and the inclusion disrupts the total stress and strain fields by the amounts of
σd

ij(X) and εd
ij(X). Taking into consideration the above statement, the distribution of the

total stress and strain in solid V is described by the following equations:

σij(X) = σ0
ij + σd

ij(X) (2)

εij(X) = ε0
ij + εd

ij(X) (3)

The stress σij(X) can be correlated with the stiffness tensor of the matrix Cm
ijkl and the

inclusion Ci
ijkl using the following relations:

σij(X) =

 Cm
ijkl

(
ε0

kl + εd
kl(X)

)
, X ∈ Ωm

Ci
ijkl

(
ε0

kl + εd
kl(X)

)
, X ∈ Ωi

(4)

In Equation (4), the stiffness moduli Cm
ijkl and Ci

ijkl are given by the following expression:

Cijkl = λδijδkl + µ
(

δikδjl + δilδjk

)
(5)
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where the first and the second Lame’s coefficients, λ and µ, are connected to the isotropic-
elastic modulus E and Poisson’s ratio ν, respectively, using the expressions

λ =
E ν

(1 + ν)(1− 2ν)
(6)

µ =
E

2(1 + ν)
(7)

Figure 2. Eshelby’s equivalent inclusion method.

By applying the Eshelby’s equivalent inclusion principle, it is possible to express the
total stress field as

σij(X) =

 Cm
ijkl

(
ε0

kl + εd
kl(X)

)
, ∀ X ∈ Ωm

Cm
ijkl

(
ε0

kl + εd
kl(X)− ε∗kl(X)

)
, ∀ X ∈ Ωi

(8)

The Eshelby’s tensor, Sijkl ,which was defined in original studies by Eshelby, J.D. [10,11]
and, in more detail, in Mura [9], connects deformation εd

ij in the inclusionwith the eigen-

strain ε∗ij through εd
ij(X) = Sijklε

∗
kl , ∀ X ∈ Ωi; thus, the expression of the total stress

field is

σij(X) =

{
Cm

ijkl

(
ε0

kl + εd
kl(X)

)
, ∀ X ∈ Ωm

Cm
ijkl
(
ε0

kl + Sklmnε∗mn(X)− ε∗kl(X)
)
, ∀ X ∈ Ωi

(9)

Comparison of Equations (4) and (9) leads to the following fundamental relationship
incorporating inhomogeneity into the matrix:

Ci
ijkl

(
ε0

kl + Sklmnε∗mn

)
= Cm

ijkl

(
ε0

kl + Sklmnε∗mn − ε∗kl

)
(10)

From Formula (10), the eigenstrain field ε∗ij in Ωi can be solved if the stress field σ0
ij

and deformation ε0
ij are given.

2.2. Jump Condition across Interface Ω

It is worth noting that the stress field presents a discontinuity across the boundary
of the inclusion. Having the eigenstrain ε∗ij known, Mura and Cheng [26] solved stress
discontinuity across the interface Ω, by deducing the stress jump ∆σij(X) through the
interface Ω, with the following expression:

∆σij(X) = σout
ij − σin

ij = Cm
ijkl

[
−Cm

pqmnε∗mn(X)Mkpnqnl + ε∗kl(X)
]
, ∀ X ∈ Ω (11)

where

Mkp =
1

µm

[
δkp −

nknp

2(1− νm)

]
(12)
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In Equation (12), nk and np are the projections of the unit vector n on xk and xp axes,
as indicated in Figure 3. δij is Kronecker’s delta operator, µm and νm the shear modulus
and Poisson’s ratio of the matrix Ωm, respectively.

Figure 3. Vector position of point M in plane x1 = 0 (n1 = 0).

For an eigenstrain field, ε∗ij, given in an embedded inclusion in an infinite isotropic
medium, and subjected to a field stress σ0

ij, Equation (11) can be used to solve the stress
field σij(X) = σout

ij , ∀ X ∈ Ω around the inclusion:

σij(X) = σin
ij + Cm

ijkl

[
−Cm

pqmnε∗mn(X)Mkpnqnl + ε∗kl(X)
]
, ∀ X ∈ Ω (13)

2.3. Inhomogeneity in the Form of Spherical Cavity

If inhomogeneity Ωi is regarded as a spherical porosity of radius ρ, its characteristics
νi, µi, and λi can be neglected and, according to Formula (5), the stiffness tensor of the
cavity is Ci

ijkl = 0. Thus, σin
ij = 0 and then Equations (10) and (11) can be reduced to

ε0
kl + (Sklmn − Iklmn)ε

∗
mn = 0 (14)

σij = Cm
ijkl

[
−Cm

pqmnε∗mn(X)Mkpnqnl + ε∗kl(X)
]
; ∀ X ∈ Ω (15)

where the fourth-ranked unit tensor Iklmn = (δkmδln + δknδlm)/3.

3. Spherical Cavity Embedded in a Cylinder Wall

The long tube shown in Figure 4 is considered to be isotropic-elastic, and its inner
and outer radii are ri and re, respectively. A cavity with radius ρ can be considered as
incorporated if its location rc from the cylinder axis satisfies the following condition:

ri + 5ρ ≤ rc ≤ re − 5ρ (16)

When the cylindrical shell is subjected to the internal pressure P, the average compo-
nents of the nominal stress in the circumferential, axial and radial directions, acting on
the surfaces of the elementary volume containing the cavity (Figure 4b), can be expressed
using the below Lame equations, see Timoshenko and Goodier [27]:

σ0
11 = P

r2
i

r2
e − r2

i

(
1 +

r2
e

r2
c

)
(17)

σ0
22 = P

r2
i

r2
e − r2

i
(18)
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σ0
33 = P

r2
i

r2
e − r2

i

(
1− r2

e
r2

c

)
(19)

Figure 4. Spherical cavity embedded in the weld of an isotropic-elastic long cylinder: (a) elementary
solid volume surrounding the porosity and (b) components of the average stress acting on the faces
of the elementary volume of the solid body.

The corresponding average components of deformation in the circumferential, axial
and radial directions are obtained by substitution of Equations (17)–(19) into the formula
of the strain tensor ε0

ij = (1 + νm/Em)σ0
ij − (νm/Em)σ0

kkδij, as follows:

ε0
11 =

P
Em

r2
i

(r2
e − r2

i )

[
(1 + νm)

r2
e

r2
c
+ (1− 2νm)

]
(20)

ε0
22 =

P
Em

r2
i

(r2
e − r2

i )
(1− 2νm) (21)

ε0
33 = − P

Em

r2
i

(r2
e − r2

i )

[
(1 + νm)

r2
e

r2
c
− (1− 2νm)

]
(22)

By applying to Formula (14) the tensor’s summation rule, the explicit expressions of
eigenstrain components ε∗ij are obtained in the inclusion and the equators x1 = 0, x2 = 0
and x3 = 0:

ε∗11 =
[
C1ε0

11 − C2ε0
22 + C2ε0

33

]
/C0 (23)

ε∗22 =
[
2C3ε0

11 + (C4 + C5C0)ε
0
22 + (C4 − C5C0)ε

0
33

]
/2C0 (24)

ε∗33 =
[
2C3ε0

11 + (C4 − C5C0)ε
0
22 + (C4 + C5C0)ε

0
33

]
/2C0 (25)
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where the dimensionless constants C0−C5 in Equations from (23) to (25) are defined by

C0 = −1 + (S1111 + S2222 + S2233)− [S1111(S2222 + S2233)− 2S1122S2211]

C1 = S2222 + S2233 − 1

C2 = S1122

C3 = −S1122

C4 = S1111

C5 = 1/(S2233 − S2222)

where the components of the Eshelby’s tensor Sijkl for the spherical inclusion (as shown in
Appendix A.1) are derived from the following expression:

Sijkl = −
(1− 5νm)

15(1− νm)
δijδkl +

(4− 5νm)

15(1− νm)

(
δikδjl + δilδjk

)
(26)

In order to express the eigenstrain in the spherical cavity in terms of the applied pres-
sure P, the mechanical characteristics and dimensions of the cylinder, Equations (20)–(22)
are replaced in Equations (23)–(25) to provide

ε∗11 =
3
2

P
Em

r2
i

(r2
e − r2

i )
(1− νm)

[
10

r2
e

r2
c

(
1 + νm

7− 5νm

)
+ 1
]

(27)

ε∗22 =
3
2

P
Em

r2
i

(r2
e − r2

i )
(1− νm) (28)

ε∗33 = −3
2

P
Em

r2
i

(r2
e − r2

i )
(1− νm)

[
10

r2
e

r2
c

(
1 + νm

7− 5νm

)
− 1
]

(29)

As indicated in Appendix A.2, the successive substitution of the eigenstrain expression
ε∗ij given by Equations (27)–(29) in Formula (15) leads to the determination of the stress
components around the cavity in the equators x1 = 0, x2 = 0 and x3 = 0. The solution is
provided in terms of P, angle θ, νm and dimensions of the cylinder, as follows:

- stress components in equator x1 = 0:

σ11 =
3
2

P
r2

i
(r2

e − r2
i )

[
10

r2
e

r2
c

(νm cos2θ − 1)
(−7 + 5νm)

+ 1
]

(30)

σ22 =
3
2

P
r2

i
(r2

e − r2
i )

sin2θ

[
10

r2
e

r2
c

(cos2θ − νm)

(−7 + 5νm)
+ 1
]

(31)

σ33 =
3
2

P
r2

i
(r2

e − r2
i )

cos2θ

[
10

r2
e

r2
c

(cos2θ − νm)

(−7 + 5νm)
+ 1
]

(32)

- stress components in equator x2 = 0:

σ11 =
3
2

P
r2

i
(r2

e − r2
i )

sin2θ

[
10

r2
e

r2
c

(2 cos2θ − 1)
(−7 + 5νm)

+ 1
]

(33)

σ22 =
3
2

P
r2

i
(r2

e − r2
i )

[
10

r2
e

r2
c

νm
(2 cos2θ − 1)
(−7 + 5νm)

+ 1
]

(34)

σ33 =
3
2

P
r2

i
(r2

e − r2
i )

cos2θ

[
10

r2
e

r2
c

(2 cos2θ − 1)
(−7 + 5νm)

+ 1
]

(35)
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- stress components in equator x3 = 0:

σ11 =
3
2

P
r2

i
(r2

e − r2
i )

sin2θ

[
10

r2
e

r2
c

(sin2θ − νm)

(7− 5νm)
+ 1
]

(36)

σ22 =
3
2

P
r2

i
(r2

e − r2
i )

cos2θ

[
10

r2
e

r2
c

(sin2θ − νm)

(7− 5νm)
+ 1
]

(37)

σ33 =
3
2

P
r2

i
(r2

e − r2
i )

[
10

r2
e

r2
c

(νm sin2θ − 1)
(7− 5νm)

+ 1
]

(38)

4. Factors of Stress Concentration around a Cavity within the Tube Wall

In order to deduce an explicit form for Kt factors, position rc can be decomposed into
two parts rc = re − ∆, where ∆ is the depth of the porosity within the cylinder wall. Thus,
if the geometric ratio is considered as κ = re/t, re/rc ratio can be expressed as follows:

re

rc
=

κ

κ − ∆/t
(39)

By substituting Formula (39) into Equations (30)–(38), the stress components σ11,
σ22, and σ33 within three meridians can be fully described in terms of νm, the angle θ, the
dimensionless depth of the cavity (∆/t), and the geometric ratio κ of the cylinder. Therefore,

- stress components in equator x1 = 0:

σ11 =
3
2

σ0
11[

1 +
(

κ
κ−(∆/t)

)2
][10

(
κ

κ − (∆/t)

)2 (νm cos2θ − 1)
(−7 + 5νm)

+ 1

]
(40)

σ22 =
3
2

σ0
22 sin2θ

[
10
(

κ

κ − (∆/t)

)2 (cos2θ − νm)

(−7 + 5νm)
+ 1

]
(41)

σ33 =
3
2

σ0
33[

1−
(

κ
κ−(∆/t)

)2
] cos2θ

[
10
(

κ

κ − (∆/t)

)2 (cos2θ − νm)

(−7 + 5νm)
+ 1

]
(42)

- stress components in equator x2 = 0:

σ11 =
3
2

σ0
11[

1 +
(

κ
κ−(∆/t)

)2
] sin2θ

[
10
(

κ

κ − (∆/t)

)2 (2 cos2θ − 1)
(−7 + 5νm)

+ 1

]
(43)

σ22 =
3
2

σ0
22

[
10
(

κ

κ − (∆/t)

)2
νm

(2 cos2θ − 1)
(−7 + 5νm)

+ 1

]
(44)

σ33 =
3
2

σ0
33[

1−
(

κ
κ−(∆/t)

)2
] cos2θ

[
10
(

κ

κ − (∆/t)

)2 (2 cos2θ − 1)
(−7 + 5νm)

+ 1

]
(45)

- stress components in equator x3 = 0:

σ11 =
3
2

σ0
11[

1 +
(

κ
κ−(∆/t)

)2
] sin2θ

[
10
(

κ

κ − (∆/t)

)2 (sin2θ − νm)

(7− 5νm)
+ 1

]
(46)

σ22 =
3
2

σ0
22cos2θ

[
10
(

κ

κ − (∆/t)

)2 (sin2θ − νm)

(7− 5νm)
+ 1

]
(47)
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σ33 =
3
2

σ0
33[

1−
(

κ
κ−(∆/t)

)2
][10

(
κ

κ − (∆/t)

)2 (νmsin2θ − 1)
(7− 5νm)

+ 1

]
(48)

5. Numerical Validation of the Presented Methodology

In order to validate the determination of stress components around the three main
equators of a spherical cavity identified by Equations (40)–(48), linear-elastic stress analyses
were performed using the ANSYS code. The proposed solutions are, thus, validated by
means of a comparison with the results obtained by FEA. Figure 5 illustrates the geometry
of the solid body used in the numerical analysis, in which the symmetry with respect to x, y,
and z planes allowed reducing the numerical model to an eighth model. A fine and mapped
mesh (using solid-186 elements) is applied around the porosity, and a relatively coarse
mesh for the remaining parts of the cylinder mesh is used as a transition to connect both
zones. The following boundary conditions are applied to the eighth model: the movements
are constrained in the x = 0, y = 0, and z = 0 planes. However, the model may only expand
in the radial direction. The pressure of 14 MPa is applied to the entire inner surface of
the numerical model. The material of the pipeline is carbon steel, whose elastic modulus
Em = 225 GPa and Poisson module νm = 0.26. The radii of the tube are re = 155 mm and
ri = 150 mm. The focus of this validation was specifically set on the determination of
stresses around the main equators of a spherical cavity of radius ρ = 0.5 mm. The location
of the flaw is selected as a dimensionless depth ∆/t = 0.75 which is related to the highest
multi-axial stress condition.

Figure 5. A typical mesh in the pipe containing a spherical cavity: (a) depth of the flaw on the
thickness of the cylinder and (b) magnification of the area occupied by the spherical porosity.

In order to achieve the results that are reliable when using the finite element method,
a stress convergence study is carried out. The presented model is required to produce
accurate stresses only at defect region; the role of all elements away from the defect region
is only to represent the geometry and transmit the applied load. Therefore, local refinement
at the defect region is studied and the stresses of interest do not affect the stresses elsewhere.
Figure 6 shows the results of the mesh convergence study. Note that the stress asymptotes
about a mesh density of around 6500 elements. In the present paper, a mesh density of
8000 elements is used, therefore it would be an appropriate element density to demonstrate
the proposed numerical model.
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Figure 6. Convergence curve of principal stress σ11 at angle θ = π/2.

Figure 7a–c compares the evolution of stress components σ11, σ22, and σ33, respectively,
obtained with FEM, in equators x1 = 0, x2 = 0, and x3 = 0 with those obtained with
Equations (40)–(48). The obtained results correspond to the internal pressure load of 14 MPa.
Figure 8a–c shows the stress distribution and locations of the maximum values obtained.
As it is shown below, the components of circumferential and axial stresses reached their
maximum values at angles θ = π/2 and −π/2, while the axial stress component reaches its
maximum value at angles θ = 0 and π. However, a comparison of the analytical estimates
and the numerical values indicates a satisfactory agreement with a maximum difference of
+1.182%. Therefore, this comparison validates the determination of the stresses around the
cavity incorporated in the cylinder.

Figure 6. Cont.
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Figure 7. Variations of stress components around the spherical cavity: (a) equator x1 = 0, (b) equator
x2 = 0, and (c) equator x3 = 0. Porosity radius ρ = 0.5 mm, dimensionless geometric ratio of the
cylinder κ = 15.5, and dimensionless depth ∆/t = 0.75.

As indicated above, π/2 and −π/2 are angles at which circumferential and radial
stress are concentrated and reach the maximum values. However, Equations (40) and (44)
can be reduced to provide expressions of Kt1 and Kt2, respectively, in the following form:

Kt1 =
3
2

1[
1 +

(
κ

κ−(∆/t)

)2
][ 10

(7− 5νm)

(
κ

κ − (∆/t)

)2
+ 1

]
(49)

Kt2 =
3
2

[
10

(7− 5νm)

(
κ

κ − (∆/t)

)2
νm + 1

]
(50)
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Figure 8. Repartition of the components of stress around the spherical cavity and the stress values at
θ = 0, π/2, and −π/2, (a) component of hoop stress σ11, (b) component of axial stress σ22, and (c)
component of radial stress σ33.

Similarly, the axial compressive stress reaches its maximum value at angles 0 and π.
Thus, Kt3 stress concentration factor can be derived from Formula (48) to obtain

Kt3 =
3
2

1[
1−

(
κ

κ−(∆/t)

)2
][ 10

(5νm − 7)

(
κ

κ − (∆/t)

)2
+ 1

]
(51)

Tables 1 and 2 compare the results obtained from Equations (49)–(51) with the results
of FEA for three materials with Poisson ratios νm = 0.25, 0.3, and 0.35. Two geometric ratios
for κ have been taken into account: κ = 15.5 for a thin-walled cylinder and κ = 3.1 for a
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thick tube. For each geometric ratio κ, three various dimensionless porosity depths were
examined ∆/t = 5 ρ/t, ∆/t = 0.5, and ∆/t = 1−5 ρ/t.

Table 1. Comparison of analytical and finite element analysis (FEA) results of stress concentration
factors (SCFs) near the cavity of radius of 0.5 mm and κ = 15.5.

SCF ∆/t

Proposed Approach
(Equations (49)–(51)) FEA Results

νm νm

0.35 0.3 0.25 0.35 0.3 0.25

Kt1

5ρ/t 2.190 2.124 2.063 2.181 2.116 2.056
0.50 2.201 2.134 2.073 2.189 2.124 2.064

1− 5ρ/t 2.212 2.144 2.082 2.217 2.149 2.087

Kt2

5ρ/t 2.533 2.345 2.174 2.520 2.333 2.162
0.50 2.568 2.374 2.196 2.550 2.358 2.182

1− 5ρ/t 2.604 2.404 2.220 2.601 2.398 2.213

Kt3

5ρ/t 43.913 39.855 36.149 43.155 39.165 35.516
0.50 22.881 20.835 18.967 22.030 20.094 18.310

1− 5ρ/t 15.872 14.496 13.241 15.661 14.307 13.066

Table 2. Comparison of analytical and FEA results of SCFs near the porosity of radius of 0.5 mm and
κ = 3.1.

SCF ∆/t

Presented Solution
(Equations (49)–(51)) FEA Results

νm νm

0.35 0.3 0.25 0.35 0.3 0.25

Kt1

5ρ/t 2.190 2.124 2.063 2.189 2.125 2.066
0.50 2.297 2.220 2.151 2.304 2.228 2.158

1− 5ρ/t 2.416 2.329 2.249 2.444 2.355 2.227

Kt2

5ρ/t 2.533 2.345 2.174 2.492 2.305 2.134
0.50 2.912 2.663 2.427 2.909 2.651 2.414

1− 5ρ/t 3.579 3.201 2.857 3.615 3.232 2.834

Kt3

5ρ/t 43.913 39.855 36.149 43.519 39.463 35.921
0.50 6.076 5.638 5.238 5.980 5.549 5.154

1− 5ρ/t 4.115 3.865 3.636 4.095 3.845 3.617

The results reported in Tables 1 and 2 are for a spherical cavity of radius ρ = 0.5 mm
and the internal pressure of 10 MPa. The results show that the SCFs are not constant for an
incorporated flaw and vary with both the porosity depth and the Poisson ratio, regardless
of whether the cylinder geometric ratio is thin or thick. The variation of the SCF in the
circumferential direction Kt1 remains slightly greater than 2, while in the axial direction, the
Kt2 increases slightly with the depth and Poisson ratio νm; however, it is less than Kt3. With
SCF in the radial direction Kt3 decreases rapidly with an increasing depth, and it can reach
high levels from 43,913 to 36,149 when νm is within a range from 0.35 to 0.25. A comparison
of the numerical and analytical estimate showed that SCFs fluctuate around an average
value ME = 100.4% with a coefficient of variation COV = 0.424%. The comparison showed
that a better agreement is provided by Equations (49)–(51) for a spherical cavity subjected to
the multiaxial stress field generated by the internal pressure. In addition, this methodology
is reliable regardless of the porosity depth, cylinder size, and the material grade.

6. Conclusions

Although construction codes may accept a single flaw or a cluster of pores in pressure
vessels and pipe welds, these volumetric defects need to meet certain acceptability criteria
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first of all. These acceptance levels are commonly made only to help engineers make the
decision to accept or reject quality of welds, solely based on two parameters: a cavity
diameter and a thickness of the tube wall. However, these criteria are not supposed to
assess the stress concentration generated by a porosity embedded into the weld of a cylinder.
If a flaw in the weld more significant than the quality levels of non-destructive control,
rejection is not necessarily automatic and the detailed assessment can be applied. In the
present paper, a method allowing determination of exact stress and the corresponding SCFs
with the usage of the main equators of the spherical cavity has been applied. The proposed
approach allows evaluating the SCFs in terms of three variables: the cylinder geometric
ratio, the cavity depth, and the Poisson ratio. Thus, this solution has been validated on two
types of a tubes with different geometric ratios, several Poisson ratios and various flaw
depths. The developed analytical methodology has provided the results that are in good
agreement with the numerical ones.
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Nomenclature

ε∗ij(X) Eigenstrain
Ωm,Ωi Domain occupied by the matrix and the inclusion, respectively
Cm

ijkl ,C
i
ijkl Elastic stiffness of the matrix and the inclusion

σ0
ij,ε

0
ij Applied stress and the corresponding deformation

σd
ij(X),εd

ij(X) Total stress and the corresponding deformation
σij(X),εij(X) Perturbation stress and the corresponding deformation
Sklmn Fourth rank Elshby’s tensor
∆σij Stress jump across the interface
n Unit vector normal to the interface
σ0

ij,ε
0
ij Average applied stress and corresponding deformation

σr Reference stress
P Applied internal pressure
ri,re Internal and external radius of the tube
rC Cavity position with respect to the cylinder axis
ρ Porosity radius
νm,Em,µm Poisson ratio, Young and shear modulus of the cylinder
νi,Ei,µi Poisson ratio, Young and shear modulus of the inclusion
Kt Stress concentration factor
κ Geometric ratio of the cylinder
∆ Cavity depth
d Distance between two inclusions
t Cylinder wall thickness



Materials 2021, 14, 3057 15 of 16

Appendix A

Appendix A.1. Expressions of the Coefficients C0 to C5

Using the Eshelby’s solution, the eigenstrain ε∗ can be determined in terms of the
components of the Eshelby’s tensor for a spherical cavity. However, the dimensionless con-
stants C0 to C5, which appear in Equations (23)–(25), are found by solving and rearranging
Formula (15) into the following form:

ε∗ = [S− I]−1ε0

where the components of the Eshelby’s tensor are given as follows:

S1111 = S2222 = S3333 = (7−5νm)
15(1−νm)

S1122 = S2233 = S3311 = (5νm−1)
15(1−νm)

Appendix A.2. Components of Normal Constraint σ11 across a Spherical Porosity

The stresses around the cavity are given in the main equators x11, x22, and x33 by
Equation (15). Thus, the expression of the circumferential stress component in the equator
x11 can be deducted with

σ11 = Cm
1111
[
−(Cm

11mnε∗mn M11n1 n1 + Cm
22mnε∗mn M12n2 n1 + Cm

33mnε∗mn M13n3 n1) + ε∗11
]
+

Cm
1122[−(Cm

11mnε∗mn M21n1 n2 + Cm
22mnε∗mn M22n2 n2 + Cm

33mnε∗mn M23n3 n2) + ε∗22]+

Cm
1133[−(Cm

11mnε∗mn M31n1 n3 + Cm
22mnε∗mn M32n2 n3 + Cm

33mnε∗mn M33n3 n3) + ε∗33]

where n1 = 0, n2 = cosθ, n3 = sinθ, and the stiffness tensors Cm
ijkl are provided by the

Formula (5). Therefore, the previous equation has the following form:

σ11 = Cm
1111ε∗11 + Cm

1122
[
−
(
Cm

22mnε∗mn M22 cos2θ + Cm
33mnε∗mn M23cosθsinθ

)
+ ε∗22

]
+

Cm
1133
[
−
(
Cm

22mnε∗mn M32cosθsinθ + Cm
33mnε∗mn M33 sin2θ

)
+ ε∗33

]
where the coefficients M22, M23, M32 and M33 can be obtained from Equation (12):

M22 = 1
µm

[
1− n2n2

2(1−νm)

]
M23 = 1

µm

[
− n2n3

2(1−νm)

]
M32 = 1

µm

[
− n3n2

2(1−νm)

]
M33 = 1

µm

[
1− n3n3

2(1−νm)

]
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