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Abstract: Additive manufacturing, such as selective laser melting (SLM), can be used to manufacture
cellular parts. In this study, cellular coupons of maraging steels are prepared through SLM by
varying hatch distance. Air flow and permeability of porous maraging steel blocks are obtained for
samples of different thickness based on the Darcy equation. By reducing hatch distance from 0.75
to 0.4 mm, the permeability decreases from 1.664 × 10−6 mm2 to 0.991 × 10−6 mm2 for 4 mm thick
coupons. In addition, by increasing the thickness from 2 to 8 mm, the permeability increases from
0.741 × 10−6 mm2 to 1.345 × 10−6 mm2 at 16.2 J/mm3 energy density and 0.14 MPa inlet pressure.
Simulation using ANSYS-Fluent is conducted to observe the pressure difference across the porous
coupons and is compared with the experimental results. Surface artifacts and the actual morphology
of scan lines can cause the simulated permeability to deviate from the experimental values. The
measured permeability of maraging steel coupons is regression fit with both energy density and size
of samples which provide a design guideline of porous mold inserts for industry applications such
as injection molding.

Keywords: additive manufacturing; porosity; mold inserts; cellular parts; injection molding; permeability

1. Introduction

Additive manufacturing (AM) can deliver parts of complex geometries with minimal
need for secondary machining. To permit large-scale industrial use [1], cellular structure-
based products are prepared using AM in the fields of biomedical [2,3], heat exchanger [4,5]
and aeronautical [6] applications.

For injection molding, cooling cycle time is the main factor that affects the through-
put [7]. Porous inserts that are permeable to in-mold gas are often used together with
cooling channels in steel molds for gas venting [8]. Such porous inserts can be manufac-
tured directly or separately as part of the steel molds via AM which aids in the flexibility of
mold designs. Selective laser melting (SLM) has been widely used to additively manufac-
ture metallic parts [9]. It is capable of preparing these porous inserts through controlling
the process parameters, including laser power, scan speed, hatch distance, and layer
thickness [10].

Energy density in SLM can be represented by the amount of laser power received by
the unit volume of materials [11]. The volume undertaking the laser power can be repre-
sented by the multiplication of scan speed, hatch distance, and layer thickness. Therefore,
the process parameters can lead to varying energy density. By changing energy density,
porous structures are formed, and their mechanical properties vary with the degree of
porosity [12].

When the porous parts are used for venting purpose in moldings, air permeability is
achieved by air flow paths and the topology of pores in cellular structures [13]. Air inside
the molding can then escape through the air flow paths in these cellular parts during plastic
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injection. The amount and pressure of air to escape from the molding depends on the size
and shape of the injection molded product. Apparently, the information of air permeability
is significant in understanding the release of gas in the molding [14].

There is no theoretical or numerical model which predicts the effect of printing
parameter changes on air permeability of SLM porous parts [15]. It is the intention of
this study that by varying hatch distance while fixing laser power and scan speed, the
cellular parts of different porosity and air permeability are made to correlate with printing
parameters. SLM porous parts such prepared can be selected according to their permeability
for use in the moldings. Thus, pressurized gas from inside the molding can escape through
the pathways within the porous insert to avoid the problems such as short run or burning
of porous parts [16].

The current work will provide a guideline for selecting porous parts and their printing
parameters based on the permeability needed according to the design of injection parts.
Air permeability is obtained according to the Darcy equation by relating pressure drop
and flow rate of escaping gas through the porous inserts [17]. In the current study, the
cellular parts were prepared using maraging steel by SLM process. Maraging steel has been
applied extensively for powder bed fusion AM process and subsequent heat treatment
which leads to a combination of high strength and ductility by TRIP effect [18].

We also characterized the cellular structures via computer tomography (CT) to observe
the topology of air paths [19]. Furthermore, ANSYS-Fluent is employed to simulate the air
flow and to compare the simulated permeability with experimental values. The simulation
can be useful in computer-aided-design of porous molds for injection molding and other
industrial applications.

2. Materials and Methods
2.1. SLM of Porous Parts

Gas atomized maraging steel powder (MS1, from EOS, Krailling, Germany) of D50
30.7 µm is used in this study and their chemical composition is shown in Table 1. The
selective laser melting is made by an EOS M290 (Krailling, Germany) SLM equipment. The
energy density is expressed [20] in Equation (1) as:

ED

(
J/mm3

)
=

P
vht

=
285(W)

960(mm/s)· h(mm)· 0.04(mm)
(1)

where P refers to laser power of 285 W, layer thickness (t) is 0.04 mm, and scan speed (v) is
960 mm/s which are fixed in the current study for maraging steel. The hatch distance (h) is
varied between 0.3 and 0.75 mm to generate different spacing between laser tracks. The
hatch distance is chosen so that a range of porosity can be obtained in the SLM coupons
for measurement of air permeability. The energy density is thus controlled in the range of
8.6~21.7 J/mm3 by varying hatch distance. Each layer is rotated by an angle of 67◦ from
the previous layer to generate cellular structures as shown in Figure 1.

Nine different energy densities, ED (J/mm3), as listed in Table 2 are used to prepare
the porous coupons of (30 × 30 × t) mm. The thickness t ranges from 2 to 8 mm. The
thickness is chosen so that air can be permeable through the porous coupons. In the cellular
parts of high thickness, limited through pores are available and zero air permeability will
not meet the needs for porous molding applications. The porosity of samples is measured
directly by comparing the density of samples with the theoretical density of maraging
steel being 8.10 g/cm3 [21]. Carl Zeiss METROTOM 800 (Oberkochen, GERMANY) is also
utilized in this study to make tomography analysis of pore distribution and connectivity in
the printed parts [22].

Table 1. Composition percentages of maraging steel powder for SLM [23].

C Ni Co Mo Ti Al Mn Si Fe

<0.03 17–19 8.5–9.5 4.2–5.2 0.6–0.8 0.05–0.15 <0.1 <0.1 balance
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Figure 1. SEM image of printed structures showing average 0.13 mm scan line width and 0.3 mm
hatch distance (or D1 specimen in Table 2).

Table 2. SLM process parameters and porosity as obtained with fixed 285 W laser power, 960 mm/s scanning speed, and
40 µm layer thickness. D1~D9 identify the samples made by changing hatching distances.

Sample D1 D2 D3 D4 D5 D6 D7 D8 D9

Hatch distance (mm) 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.7 0.75

Energy density (J/mm3) 21.7 18.6 16.2 14.4 13.1 11.8 10.8 9.3 8.6

Porosity (%) 21.5 22.3 26.6 29.3 36.2 38.3 39.9 44.9 49.5

Projected area fraction of pores (%) 25.9 28.6 38.1 41.5 45.4 49.6 54.2 56.5 57.1

2.2. Air Permeability Measurement

Concept of fluid flow as defined by Darcy equation is used to establish an air perme-
ability measurement device. Air permeability, k, is expressed as a relationship between
pressure drop (pin−pout) and flow rate (Q) as Equation (2) [24]:

k =
QµL

A(pin − pout)
(2)

where L stands for the thickness of the porous parts, µ is the viscosity of air, and A is the area
for air to pass through. Figure 2 shows the schematic view of air permeability measurement
apparatus. The inlet air is supplied by air compressor with pressure regulator. The porous
parts are sealed between the inlet and outlet ports with their pressure and flow measured
by the gauges and flow sensor. In the experiment, the inlet compressed air pressure is
controlled at 0.14, 0.27, or 0.41 MPa to measure the pressure drop and permeability across
the cellular coupons made using SLM process parameters listed in Table 2. The cellular
SLM specimens are mounted so that the area of 30 × 30 mm2 is available for air to flow
through. The experiment is also conducted by varying the thickness of the test coupons to
observe the change of permeability with sample size.

2.3. Numerical Simulation and Analysis

CAD (Computer-Aided Design) structure is developed using Solidworks software
for ANSYS-Fluent (v.2019 R3, Canonsburg, PA, USA) simulation. In Solidworks software,
circular cylinders of diameter 0.13 mm are employed as the scanning line width as shown
in Figure 3. Each layer is rotated by an angle of 67◦ from the previous layer to generate
porous gaps between the layers. The samples are square of 30 × 30 mm2 and their thickness
varying from 2 to 8 mm to replicate the experimental samples.



Materials 2021, 14, 3118 4 of 13

Materials 2021, 14, x 4 of 13 
 

 

porous gaps between the layers. The samples are square of 30 × 30 mm2 and their thickness 
varying from 2 to 8 mm to replicate the experimental samples. 

 
Figure 2. Schematics of the apparatus for air flow across cellular test coupons. 

 
Figure 3. CAD sample constructed using Solidworks for D5 sample. 

In ANSYS-Fluent, compressed air flow is modelled to pass through the cellular cou-
pons as illustrated by Figure 4 in a closed enclosure. Square walls in the closed envelope 
are named after inlet and outlet flow, whereas the rectangular walls that surround the 
flow region are named as stationary walls. The pressure and velocity of the flow are con-
trolled for the inlet wall with the same parameters employed in the experiment. The sta-
tionary walls of the envelope hold no-slip condition. Virtual laminar air flow is performed 
to simulate and validate experimental results [24]. Based on the mesh convergence study, 
a mesh size of around 0.05 mm is optimal for description of the complex geometries of the 
sample. Global mesh size of 0.05 mm for the 4-node tetrahedral element is used to mesh 
the CAD specimens [25]. Exemplary simulation result is shown in Figure 5 demonstrating 
the air pressure drop across the cellular coupon. 

Darcy equation is employed to calculate permeability using the pressure drop simu-
lated across the cellular coupons. Permeability results from the numerical simulation are 
then obtained and compared with the experiment results for all design variations. 

Figure 2. Schematics of the apparatus for air flow across cellular test coupons.

Materials 2021, 14, x 4 of 13 
 

 

porous gaps between the layers. The samples are square of 30 × 30 mm2 and their thickness 
varying from 2 to 8 mm to replicate the experimental samples. 

 
Figure 2. Schematics of the apparatus for air flow across cellular test coupons. 

 
Figure 3. CAD sample constructed using Solidworks for D5 sample. 

In ANSYS-Fluent, compressed air flow is modelled to pass through the cellular cou-
pons as illustrated by Figure 4 in a closed enclosure. Square walls in the closed envelope 
are named after inlet and outlet flow, whereas the rectangular walls that surround the 
flow region are named as stationary walls. The pressure and velocity of the flow are con-
trolled for the inlet wall with the same parameters employed in the experiment. The sta-
tionary walls of the envelope hold no-slip condition. Virtual laminar air flow is performed 
to simulate and validate experimental results [24]. Based on the mesh convergence study, 
a mesh size of around 0.05 mm is optimal for description of the complex geometries of the 
sample. Global mesh size of 0.05 mm for the 4-node tetrahedral element is used to mesh 
the CAD specimens [25]. Exemplary simulation result is shown in Figure 5 demonstrating 
the air pressure drop across the cellular coupon. 

Darcy equation is employed to calculate permeability using the pressure drop simu-
lated across the cellular coupons. Permeability results from the numerical simulation are 
then obtained and compared with the experiment results for all design variations. 

Figure 3. CAD sample constructed using Solidworks for D5 sample.

In ANSYS-Fluent, compressed air flow is modelled to pass through the cellular
coupons as illustrated by Figure 4 in a closed enclosure. Square walls in the closed envelope
are named after inlet and outlet flow, whereas the rectangular walls that surround the flow
region are named as stationary walls. The pressure and velocity of the flow are controlled
for the inlet wall with the same parameters employed in the experiment. The stationary
walls of the envelope hold no-slip condition. Virtual laminar air flow is performed to
simulate and validate experimental results [24]. Based on the mesh convergence study, a
mesh size of around 0.05 mm is optimal for description of the complex geometries of the
sample. Global mesh size of 0.05 mm for the 4-node tetrahedral element is used to mesh
the CAD specimens [25]. Exemplary simulation result is shown in Figure 5 demonstrating
the air pressure drop across the cellular coupon.
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Figure 5. Schematic view of flow field in simulation showing the pressure drop (left: gas inlet and
right: gas outlet).

Darcy equation is employed to calculate permeability using the pressure drop simu-
lated across the cellular coupons. Permeability results from the numerical simulation are
then obtained and compared with the experiment results for all design variations.

3. Results and Discussion
3.1. Effects of Energy Density and Thickness on Sample Porosity

Porosity of the cellular coupons is evaluated from sample density and is shown in
Table 2 to vary with energy density. Figure 6 shows the binary images of the projected
porous areas in black. The area fractions of pores (Table 2) are slightly larger than the
volumetric porosity due to the projected porous area being a two-dimensional section of
the three-dimensional porous object. The 2D projected porosity and the actual porosity
obtained from density measurement have a linear relation with 0.94 R2 (coefficient of
determination). Porosity apparently increases from 21.5% to 49.5% with energy density
decreasing from 21.7 to 8.6 J/mm3. The structural morphologies of air pathways can be
observed in the reconstructed CT images as shown in Figure 7. Through channels are
channels that are open to both the top and bottom surfaces. Open channels represent
the channels that are open on one surface only, whereas closed channels correspond to
closed pore capsules between metals. Among the different types of channels, only through
channels contribute to the air flow. When the thickness of the coupon decreases, some
close pores become open channels, and some open channel pores become through channels.
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The flow rate of compressed air through the cellular coupons is shown in Figure 8. Lower
thickness and energy density results in greater numbers of through channels which lead
to greater air flow and higher air permeability. Therefore, energy density can be tuned to
tailor the porosity and permeability of cellular parts [26].
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Figure 6. Binary image showing projected pores (black parts) by surface grinding the (a) D1, (b) D2, (c) D3, (d) D4, (e) D5,
(f) D6, (g) D7, (h) D8, and (i) D9 samples, respectively. (The width and length of each image corresponds to the surface area
of 10 mm × 10 mm).
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3.2. Effects of Porosity and Inlet Air Pressure on Air Permeability

At fixed inlet pressure and cellular coupon thickness, air permeability is calculated
from the pressure drop, flow rate, and air viscosity according to Equation (2). Figure 9
shows the air flow rate of 4 mm thick cellular coupons made by varying energy density and
inlet air pressure. An increase of energy density and decrease in inlet air pressure decreases
the air flow. Air permeability is deducted and shown in Figure 10. The air permeability
obviously increases from 0.99 × 10−6 mm2 to 1.664 × 10−6 mm2 for decreasing energy
density from 21.7 J/mm3 to 8.6 J/mm3 at inlet air pressure of 0.27 MPa. The increase of air
permeability is related to the increased porosity due to decreasing energy density, or there
are more through channels (Figure 7) as air pathways in the samples.
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Furthermore, at any specific energy density, permeability drops with increasing inlet
pressure. With increasing inlet pressure, the air flow rate must also increase. When the
pressure drop increases at a higher rate than the increase of flow rate, air permeability
drops. Figure 11 shows that by increasing thickness of coupons, air permeability also
increases. For the thickness varying from 2 to 8 mm and energy density varying from
16.2 to 8.6 J/mm3, the air permeability increases from 0.741 × 10−6 to 2.485 × 10−6 mm2

when inlet pressure is 0.14 MPa. With these measurements, it is possible to reproduce
the morphological and geometrical of cellular coupons and vary the air permeability in a
controlled manner [27].
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3.3. Simulation for Air Permeability

Pressure drop across the cellular coupons is simulated to calculate the permeabil-
ity. The air permeability obtained through ANSYS-Fluent simulation increases with the
number of layers as shown in Figure 12 which has the same trend as that in Figure 11. In
Figure 13a–d, permeability measured through experiment and simulation are compared
for different energy densities. For samples of 2 mm thickness made at 13.1 J/mm3 energy
density, simulation accurately fits with the experimental results. At low energy density
(8.6 J/mm3 of Figure 13d), simulated permeability is somewhat higher than the measured
value. While at higher energy density, such as 16.2 J/mm3 (Figure 13a), permeability is
lower than the experimental values. This result demonstrates that the permeability is also af-
fected by the geometrical variation of the cellular structures due to manufacturing process.
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inlet pressure 0.14 MPa.

For cellular parts printed using lower energy density, struts are often partially sintered.
Struts of next layer stack on the unsintered scan lines and effectively reduce the layer
thickness. Therefore, the cross sections of the struts printed through the SLM process are
elliptical in shape [28] with shorter diameter along the printing direction. These are in
contrast to the round cylindrical shapes of the designed CAD used in simulation. The
measured permeability is thus lower than that of simulated cellular structures.
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(b) D5, (c) D7 and (d) D9 conditions at 0.14 MPa inlet pressure.

On the other hand, the simulation underestimates the permeability for samples printed
with high energy density. It is mainly due to the fact that the simulated strut diameter
used the actual average strut diameter based on observations. The surfaces of struts are
attached with many partially melted particles. The simulated strut diameter is thus larger
in diameter than the actual strut diameters with surface roughness [29]. The scan lines
with larger round cylindrical sections lead to lower permeability in the simulations of parts
printed with high energy density. Therefore, it is important to bear the effects of process
parameters on surface morphology [30] in mind for optimum CAD modelling.

3.4. Empirical Expression of Permeability

Figure 14 shows the relationship between energy density and porosity. The porosity
from experiments drops with increasing energy density used for SLM process and can be
correlated exponentially with a coefficient of determination R2 being 0.96:

Porosity(%) = 84.32 × e−0.068ED (3)

where ED is the energy density in J/mm3.
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According to Hommel et al. [31], several models have been used to express the
change of permeability with porosity. Among them, power law is one that is often used to
relate porosity and permeability. Parameters such as energy density and sample thickness
could be taken into consideration to relate with air flow. Besides porosity in the samples,
decreasing samples thickness and increasing inlet pressure both increases air permeability
(Figures 10 and 11) as well. The air permeability regression equation relating experimental
permeability, energy density (ED in J/mm3), inlet air pressure (p in MPa), and sample
thickness (t in mm) is thus fitted empirically by Equation (4) with a 0.97 R2.

k
(

m2
)
= 3.4488 × 10−13 e−0.0622 ED p−0.621t0.582 (4)

This empirical equation is useful when designing the porous inserts for injection
molding. Figure 15 compares fitted and experimental results. The fitted values based on
Equation (4) matches well with the experiment and follows the Darcy regime of viscous
flow [32]. According to Chan et al. [33], permeability routinely used in the paper industry is
often discussed via the Kozeny–Carman equation using a simple power law model. Sabet
uses this model to bring a relationship between permeability and Knudsen number [34]
which refers to the ratio of pore size divided by sample thickness. Even though Knudsen
number speaks about the capability of mean molecular flow, the combined effect of pressure
and thickness on air flow also demonstrates similar behaviors.
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4. Conclusions

Process parameters of selective laser melting are varied to control the energy density
and to print cellular coupons of varying porosity. Air permeability is measured for marag-
ing cellular parts made using different hatch spacing, sample thickness at three air flow
pressure. Air permeability makes a negative exponential relationship to the energy density.
When energy density exceeds 18.6 J/mm3 and porosity becomes lower than 22.3%, the air
permeability approaches zero due to the lack of through holes in the cellular parts of 4 mm
thickness. Air permeability is shown to be inversely proportional to inlet pressure to the
power of 0.621 and directly proportional to thickness to the power of 0.582. The relations of
energy density, porosity, thickness, and air permeability have been expressed in empirical
equations (3) and (4). The fitted values relate well with the experimental values. These
regression results will be valuable for engineering purposes in the design of AM porous
molding for injection molding applications.

ANSYS-Fluent simulation is helpful in understanding the characteristics of cellular
structure and air permeability. For the 2 mm thickness and 13.1 J/mm3 energy density,
simulation results match well with the experiment. However, the simulation cannot
account for the irregular surface roughness and morphology of the struts. Therefore, the
discrepancies between the simulated structures and the geometry features on actual SLM
samples will be taken into account for more accurate simulations.
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