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Abstract: Carbon fiber reinforced polymer (CFRP) laminates, as unique multifunctional materials,
are widely applied in various aircraft, such as airliners, fighter planes, and space shuttles. To ensure
aircraft safety during the production and application of CFRP laminates, it is necessary to improve
the accuracy of nonlinear Lamb wave nondestructive testing to assess the damage in CFRP laminates
caused by impact, high temperature, friction, corrosion, etc. In this study, the accuracy of nonlinear
ultrasonic nondestructive testing was found to highly depend on the cycle number, output level
and gain of the nonlinear ultrasonic detection system. Based on a single-factor experiment that
considered the cycle number, output level, and gain of the amplifier as independent variables, a
regression analysis was carried out on the fundamental wave amplitude value (A1) and second
harmonic amplitude value (A2). Two response surface surrogate models were established to improve
the accuracy of nonlinear Lamb wave nondestructive testing and to optimize the detection system
parameters. The response surface models were verified via an analysis of variance (ANOVA),
significance tests and an error statistical analysis. The results revealed the significant influence
of these three factors on A1 and A2. Optimization of the response surface was achieved at eight
cycles, an output level of 42 and a gain of 32 dB. Moreover, the nonlinear ultrasonic detection
system achieved good operational stability, high accuracy and reliability under the above optimal
parameter conditions. This approach provides scientific guidance for the accurate assessment of
CFRP laminate damage.

Keywords: CFRP laminates; response surface methodology; nonlinear Lamb wave; fundamental
wave; second harmonic

1. Introduction

Carbon fiber reinforced polymer (CFRP) laminates are extensively applied in the elec-
tronics, military, and aerospace fields due to their excellent mechanical properties [1–4]. One
of CFRP laminates’ critically important characteristics is an unusually high anisotropy [5,6].
Although CFRP laminates have many advantages, their production process is complex,
and damage, such as fracturing, delamination and debonding, inevitably occurs during the
application process [7–9]. Especially for aircraft composite structures during service, the
environment faced is extremely complicated and quite harsh, and it is easily affected by
various conditions, such as hail strikes, bird strikes, lightning strikes, and tool drops [10,11].
Damage poses a great potential danger to the safety of the material structure. Additionally,
the frequency dispersion of CFRP laminates is significant, which prevents their applications
in conventional nondestructive detection methods. Therefore, the development of new
detection equipment and methods is necessary to identify manufacturing defects, control
the quality of the final product, and ensure the safety of personnel.

In recent years, ultrasonic nondestructive detection has been widely adopted in the
assessment of the safety of material structures. According to the different mechanisms of
damage interaction, ultrasonic detection technology is usually classified into linear and
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nonlinear techniques [12,13]. Compared to linear ultrasonic detection, nonlinear Lamb
waves have attracted much attention in the material characterization and detection of
barely visible damage due to their higher sensitivity [14,15]. The method of detection
and evaluation that involves nonlinear ultrasonic nondestruction mainly capitalizes on
signal characteristics in the frequency domain to discriminate defects, which overcomes the
defects of traditional ultrasonic detection techniques [16–19]. Moreover, nonlinear Lamb
waves are almost nondispersive in anisotropic media so that different harmonics effectively
interact in the process of wave propagation.

Nonlinear Lamb waves detect not only visible damage, such as external cracks, but
also invisible damage, such as internal delamination and bonding defects, in CFRP lami-
nates [20,21]. Therefore, nonlinear Lamb wave-based higher-harmonic detection methods
have increasingly been adopted by researchers to evaluate the structural safety of com-
posite materials [22,23]. Tie et al. [24] investigated the impact damage to CFRP laminates
under different impact energies via finite element and experimental methods based on the
higher harmonics of nonlinear Lamb waves. This work proposed an integrated numerical
model to study the interaction relationship between nonlinear Lamb wave propagation and
low-velocity impact damage. Yang et al. [25] experimentally and theoretically analyzed
the second harmonic signal generated by the nonlinear interaction between nonlinear
Lamb wave propagation and fatigue cracks in materials and demonstrated that the three-
dimensional (3D) finite element method could properly predict the double-frequency signal
due to the material contact nonlinearity that occurs at fatigue cracks. Carboni et al. [26]
investigated a structural health monitoring approach based on nonlinear Lamb wave detec-
tion, which matched the out-of-phase driving of low-frequency piezoceramic transducers.
Via the design of an experimental statistical method that considered the pulse echo and
pitch capture configurations of piezoceramic transducer (PZT) sensors, several factors and
their interactions effectively affected the detection of delamination damage. Although
some of the existing studies have mainly focused on the application of nonlinear ultrasonic
nondestructive testing for damage (e.g., cracks, delamination, and impact) assessment in
CFRP laminates. However, there are still few studies on the optimization of nonlinear
ultrasonic detection-related parameters in CFRP laminates.

To improve the precision and application of nonlinear ultrasonic detection, the extrac-
tion of a suitable fundamental wave amplitude value (A1) and second harmonic amplitude
value (A2) is very important and difficult, because both A1 and A2 are affected by several
factors and should be considered simultaneously, including noise interference with the
instrument, filter use, amplitude of the driving voltage, and coupling with media. To accu-
rately extract nonlinear signals to determine the state of material characterization, harmonic
interference induced by the measuring instrument or random factors should be reduced to
optimally simplify the frequency components of the transmitted signal for proper setting
and selection. Therefore, it is necessary to study A1 and A2 under different conditions to
better understand the effect of various factors (e.g., cycle number, output level, and gain) on
the nonlinear ultrasonic detection system stability. The response surface method (RSM) is
an effective statistical method [27] that relies on the reasonable design of experiment (DOE)
method [28,29] to obtain certain data through tests, applies multiple quadratic regression
equations to fit a functional relationship between the factors and response values, and
determines the optimal process parameters through the analysis of regression equations
to solve multivariable problems. While reducing the number of experiments, damage to
the materials can be predicted, which greatly reduces costs. The RSM mainly includes the
Box–Behnken design, central composite design (CCD), full factorial design, and Plackett–
Burman design. Among these approaches, CCD comprises three parts, namely, a 2n (n
is the factor) full factorial design, an axis point design, and zero level of the center point
repetition test. The second-order polynomial of each influencing factor is considered to
predict its effect on the evaluation index. The CCD method expands the design space and
provides sample data regarding the response surface approximation model, which yields
the advantages of a simple design, fewer trials, and good predictability. CCD has been



Materials 2021, 14, 3186 3 of 18

widely adopted by researchers because it facilitates time, money, and manpower reduction.
In addition, the RSM involving statistical optimization overcomes the shortcomings of
traditional methods and examines the relationship between the independent variables
via the fitting of quadratic polynomial regression equations. Therefore, this method has
been widely applied in the experimental design and optimization of wastewater treatment,
organic synthesis, food science, and other fields [30,31]. The detection-related parameters
need to establish RSM model to be optimized and obtain their optimal detection conditions
because the inaccuracy of nonlinear Lamb wave detection results for damage of CFRP
laminates in aircraft structures. However, to the best of our knowledge, few studies have
been performed to explore A1 and A2 by optimizing the conditions of nonlinear Lamb
wave detection system parameters using the DOE method.

In this study, based on different parameter settings in the RAM-5000 SNAP nonlin-
ear ultrasonic detection system, according to the CCD design principle of the RSM, the
experimental conditions of the nonlinear ultrasonic nondestructive testing amplitudes A1
and A2 were optimized. Mathematical regression models of A1 and A2 were established
by the RSM with the cycle number, output level and gain as the independent variables,
and the average values of A1 and A2 retrieved from three parallel tests were adopted as
the response value. The optimal experimental conditions were explored by RSM, and a
theoretical basis for further studies on nonlinear ultrasonic detection was provided. This
simple and reliable evaluation method of material damage may greatly improve the accu-
racy of online, dynamic, and real-time aircraft structural health monitoring (SHM) systems
of aircraft composites during operation, and achieve a qualitative leap in safety monitoring
and the performance of engineering structures. The rest of this paper is arranged as follows.
Section 2 introduces the experimental study, including the RAM-5000 SNAP nonlinear
ultrasonic detection system setup, RSM model experimental design, calculation of the ultra-
sonic nonlinear parameter and relative error. Section 3 describes the nonlinear ultrasonic
detection method, the effect of single-factor experiments on A1 and A2, and the response
surface model analysis. Section 4 presents the results and discussion and proposes the
optimal experimental design parameters. Finally, this paper ends with a conclusion.

2. Experimental Study
2.1. Experimental Setup

A frequency-sweep analysis of the transducer is conducted to obtain its frequency
response and select the appropriate excitation frequency. Frequency-sweep tests are carried
out with superheterodyne technology and the phase-sensitive detector of a RAM-5000
SNAP system (RITEC Inc., Warwick, RI, USA), with the nonlinear Lamb wave signal chosen
as the integral window. In this experiment, two ultrasonic transducers, one with a central
frequency of 2.25 MHz (Olympus NDT Panametrics, A542S, Olympus, WA, USA) and the
other with a central frequency of 5 MHz (Olympus NDT Panametrics, V543, Olympus, WA,
USA), are applied as excitation and receiving transducers, respectively. Figure 1 shows
the frequency response range of these two transducers. The excitation transducer is a nar-
rowband longitudinal ultrasonic transducer, and the receiver is a broadband longitudinal
ultrasonic transducer.

The damaged material tested in the experiment was a T9001 CFRP laminate (Weihai
Guangwei Composites Co., Ltd., Weihai, China) cut with a high-pressure water jet cutter
(Anhui Aoyu CNC Technology Co., Ltd., Chuzhou, China). The CFRP laminate consists of
24 layers with a total thickness of 3.6 mm and linear dimensions of 360 × 250 mm2. The
layer stacking sequence is [45/0/−45/90]3s, and the single-layer thickness is 0.15 mm.

A RAM-5000 SNAP nonlinear ultrasonic detection system is employed to generate
high-power tone burst signals [32], and the frequency, cycle number, output level and
gain of the signals can be conveniently and flexibly set through a computer-controlled
panel, as shown in Figure 2a. A block diagram of the setup is shown in Figure 2b. Its
key component, the RAM-5000 SNAP detection system, emits sequences of tone burst
cycles attenuated by 4 dB. After the 2.25 MHz low-frequency filter group removes any
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high-frequency interference generated by the device, the transducer with a center frequency
of 2.25 MHz generates ultrasonic Lamb waves that enter the samples. The broadband
transducer (5 MHz) is employed to receive the propagated signal via the fundamental wave
channel (CH1) and second harmonic channel (CH2). After 4.5 MHz high-pass filtering and
20 dB preamplification, the signal is received at CH2, after which it enters the RAM-5000
SNAP system for signal extraction and processing. A photograph of the experimental test
system is shown in Figure 2c.

Figure 1. Frequency response range of the (a) excitation and (b) receiving transducers.

Nonlinear Lamb waves are excited and received in the CFRP laminates through two
longitudinal ultrasonic transducers mounted on Plexiglas wedges at an angle of 45◦. The
optimal distance between the Plexiglas wedges is 60 mm. Mount 7501 high-vacuum silicone
grease is applied as the coupling agent, and the excitation and receiving transducers are
positioned along the same straight line. A special fixture is employed to ensure full coupling
between the sensors and samples during detection under constant pressure.

In this study, three main parameter settings that cycle numbers ranging from 5 to 14,
the output level ranging from 30 to 55 and the gain ranging from 28 to 50 are considered.
The nonlinear Lamb wave detection system is used to measure the sample response under
the same conditions three times; then, the average value is taken as A1 and A2. To overcome
the effect of random noise generation, the relative error of the repeated measurement is set
below 1.5%.

2.2. Response Surface Model Experimental Design

The RSM model relies on CCD to optimize the most effective variables under the
parameter setting conditions of the RAM-5000 SNAP nonlinear ultrasonic detection system
and to study their mutual relationships. Based on the one-factor experimental results, the
number of cycles (x1), output level (x2), and gain (x3) are chosen as the three independent
variables. A1 and A2 averaged over three parallel tests are selected as the response values
for the regression analysis with the RSM model considering 3 factors and 5 levels. Each
parameter of this model was set according to various five-level codes (−2, −1, 0, 1, and 2),
and the detailed range and level results of the experimental design factors are listed
in Table 1.

Table 1. Experimental design factors range and levels.

Factors Variable
Range and Coded Levels

−2 −1 0 1 2

Cycle number x1 5 7 9 11 13
Output level x2 35 40 45 50 55

Gain (dB) x3 28 34 40 46 52



Materials 2021, 14, 3186 5 of 18

Figure 2. Nonlinear ultrasonic detection system: (a) Computer-controlled RAM-5000 SNAP ultrasonic detection system
parameter settings, (b) block diagram of the experimental system setup, and (c) photograph of the experimental system.
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In the regression analysis equation, the actual values are converted into coded values
as follows:

Xi = (xi − x0)/∆x (1)

where Xi denotes the coded value of the independent variable, xi represents the actual value
of the independent variable at the ith level, x0 indicates the actual value of the independent
variable at the center point, and ∆x is the step change value.

The experimental data of CCD are fitted to a second-order polynomial regression
Equation (2) via the RSM.

y = a + a1x1 + a2x2 + a3x3 + a12x1x2 + a13x1x3 + a23x2x3 + a11x2
1 + a22x2

2 + a33x2
3

=
[

1 x1 x2 x3
]


a a1
2

a2
2

a3
2

a1
2 a11

a12
2

a13
2

a2
2

a12
2 a22

a23
2

a3
2

a13
2

a23
2 a33




1
x1
x2
x3

 (2)

where y is the predicted response value; x1, x2, and x3 are the actual values of the inde-
pendent variables; a is a constant coefficient; a1, a2, and a3 are the linear-effect coefficients;
a11, a22, and a33 are the squared effect coefficients; a12, a13, and a23 are the interaction
effect coefficients. The results are analyzed graphically and statistically with Design-Expert
software to determine the interaction relationship among the above three factors to finally
obtain the RSM model.

2.3. Calculation of the Ultrasonic Nonlinear Parameter and Relative Error

Based on the isotropic assumption of nonlinear acoustic theory, in the early stage of
material damage, the distribution in different directions has less effect on the mechan-
ical properties of the material. Therefore, it is assumed that material damage does not
lead to anisotropy of the material. For this reason, the anisotropy analysis of material is
summarized in isotropic to study.

In the case of small strain, if attenuation during propagation is neglected. Consider
the one-dimensional plane wave in the xy plane. Assuming that the wave propagates only
along the x-axis, the particle displacement u is related only to the position x and time t.
The wave equation is obtained, as follows:

ρ
∂2u
∂t2 =

∂σ

∂x
(3)

where ρ is the density and σ is the stress.
Ultrasonic Lamb waves are distorted due to their nonlinear interaction with the com-

posite material during propagation, which may generate high-order harmonic components.
Based on the physical mechanism, the wave beam response phenomenon is caused by the
nonlinearity of the material elastic behavior. According to the nonlinear Hooke law [33],
the interaction between σ and strain ε is as follows:

σ = Eε(1 + βε + · · · ) (4)

where E is Young’s modulus of the material; and β is the absolute nonlinear elastic constant
of the second-order [34], which is due to the wave interaction with the imperfect interfaces
causing a local change in the stiffness at that region.

According to perturbation approximation theory [35], the approximate solution of
the one-dimensional nonlinear wave Equation (3) in an isotropic solid is expressed in
Equation (5).

β =
8

k2x
A2

A2
1

(5)
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where A1 is the amplitude atω, A2 is the amplitude at 2ω, k =ω/v (k is the wavenumber,
which is proportional to the square root of Young’s modulus, v is the ultrasonic phase
velocity), and x is the Lamb wave propagation distance.

When the detection conditions remain the same, k and x should be kept constant.
Therefore, Equation (5) can be simplified, then the relative acoustic nonlinear parameter β′

is introduced [36,37] and represents a generalized parameter associated with the nonlinear
properties of Lamb waves.

β′ ∝
A2

A2
1

(6)

β′ is a quantitative indicator that can be used to characterize the microdamage degree
in CFRP laminates in the following discussion. When β′ is larger, the internal damage in
the CFRP laminate is more serious, and vice versa.

The absolute error is considered to estimate the error range between the actual and
predicted response values of A1 and A2, and the relative error is considered to determine
the reliability of the response surface model according to Equations (7) and (8), respectively.

∆ = L− L′0 (7)

δ =
∆

L′0
× 100% (8)

where L denotes the actual value of A1 and A2, L′0 represents the predicted values of A1
and A2, ∆ is the absolute error, and δ is the relative error.

3. Experimental Work
3.1. Nonlinear Lamb Wave Detection

According to the setup of the nonlinear ultrasonic detection system, as shown in
Figure 2b, the experiment adopts the sensor arrangement method [38], where one trans-
ducer excites and the other transducer receives components to measure A1 and A2, re-
spectively. To minimize the generation of harmonics, the transmitted signal should not
overlap the received signal during propagation in the sample. Therefore, we apply sine
pulse excitation in the experiment and record the received signal with an oscilloscope,
conduct additional Hanning window debugging, and observe the oscilloscope waveform
to ensure that the measured samples generate a single-mode Lamb wave. The fast Fourier
transform (FFT) is utilized to convert the signals from a time-domain representation to the
frequency domain to be stored on the computer.

At an excitation frequency of 2.25 MHz and a cycle number of 9, the time-domain
signals of Lamb waves are recorded with the oscilloscope, as shown in Figure 3. The
frequency-domain signal during the various cycles is shown in Figure 4. Then, A1 and A2
are extracted, and with an increasing number of cycles, the amplitude continues to increase,
and the signal is significantly enhanced.

3.2. Single-Factor Experiment

Before the RSM analysis, the factors and levels of the experiment should be selected
according to the range of the individual factors. Under the same conditions, only one
independent variable is adjusted, and its effect on the nonlinear amplitude is determined,
as shown in Figure 5. If the number of cycles is small, then the launch energy is low,
which makes it difficult to obtain harmonics at the receiving end. If the number of cycles is
large, the wave of the first cycle propagates through the sample and is reflected, thereby
interfering with the newly excited wave. Therefore, the measurements could be inaccurate.
The effect of the cycle number on the amplitude is shown in Figure 5a. With an increasing
number of cycles, the values of A1 and A2 also exhibit a rapid increase to reach maximum
values at 11 cycles followed by a decrease. A1 and A2 mainly increase because of the
increase in number of cycles and launch energy. However, since the test sample is thinner,
nonlinearity of the pulse strings occurs due to overlap, and the trailing effect of the received
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signal should be minimized. The data fluctuate within the range from 7 to 11 pulse strings,
which corresponds to a relatively small cycle number and a relatively stable measurement
environment. Figure 5b,c shows that both the output level and gain indicate amplification of
the received signal. With an increasing signal, the amplitude value continuously increases.
However, an excessive signal leads to an excessive voltage, which could damage the device,
and the signal could become too large to receive the excessive amplitude value, which
easily leads to distortion. Thus, to guarantee the signal stability, the step size of the output
level and gain should be gradually increased.

Figure 3. Lamb wave time-domain signal recorded by the oscilloscope: (a) Fundamental wave and (b) second harmonic.

Figure 4. Frequency-domain signal during various cycles.

3.3. Response Surface Model Analysis

The number of sample points randomly selected via CCD in the experimental design
space is given by Equation (9) [39]:

N = 2n + 2n + λ0 (9)

where N is the total number of experiments, n is the number of independent variables, and
λ0 is the number of repeated experiments at the center point. Regarding this design, the
factor number is 3 and λ0 is 6. Therefore, a total of 20 groups of training points are selected,
and the DOE space of the three design parameters is constructed, as shown in Figure 6.
The experimental results of CCD are listed in Table 2.
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Figure 5. Single-factor experimental effect of the (a) cycle number, (b) output level, and (c) gain on A1 and A2.

Figure 6. DOE space of the three design parameters and the selected training points.

An analysis of variance (ANOVA) [40] was employed to assess the significance and
accuracy of the response surface model, and the results of the fitted quadratic polynomial
regression model to response surface values A1 and A2 are listed in Table 3. ANOVA is
also referred to as an F-test, and the F-value at the corresponding significance level was
considered to assess the difference between sample points. When the F-value is higher,
the fitted equation is more significant, and the fit is better. The p-value is the probability
value under the corresponding F value, which reflects the conditional probability of the
occurrence of extreme result D under the original hypothesis H (i.e., prob (D/H)). High F-
values and low p-values ensure the significance of the RSM model [41]. p-values of less than
0.05 demonstrate that the RSM model is significant, and a good fitting accuracy ensures the
subsequent response surface design of the approximation model. Consequently, the model
p-values for A1 and A2 are below 0.0001, which suggests that both RSM models are highly
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significant. Regarding the two models of A1 and A2, the F-values are 5498.52 and 353.71,
respectively, which suggest that they are significant. The lack-of-fit F-values of 2.01 and
2.44, and the lack-of-fit p-values of 0.2314 and 0.1752 for A1 and A2, respectively, suggest
that the two models are not significant (p > 0.05) relative to the pure error. A nonsignificant
lack of fit is good, which indicates that the fitting degree of the two models is suitable, and
the test error is small. In this case, x1, x2, x3, x1

2, x3
2, x1×3, and x2×3 of response A1 and x1,

x2, x3, x1×3, x2×3, and x3
2 of response A2 are highly significant (p < 0.01), and these values

indicate a great influence on responses A1 and A2, rather than simple linear relationships.

Table 2. Experimental results of CCD.

Run
Coded Actual Actual Values

(V)
Predicted
Values (V)

Relative Errors
(%)

X1 X2 X3 x1 x2 x3 A1 A2 A1
′ A2

′
δA1 δA2

1 −1 1 −1 7 50 34 0.1623 0.0987 0.1602 0.0939 1.31 5.07
2 1 −1 1 11 40 46 0.8260 0.4583 0.8298 0.4668 −0.46 −1.82
3 1 −1 −1 11 40 34 0.1598 0.1086 0.1562 0.0997 2.30 8.97
4 1 1 −1 11 50 34 0.1965 0.1627 0.1912 0.1520 2.77 7.06
5 2 0 0 13 45 40 0.4574 0.2695 0.4603 0.2802 −0.63 −3.83
6 −1 1 1 7 50 46 0.7521 0.4546 0.7574 0.4673 −0.70 −2.72
7 0 0 0 9 45 40 0.3905 0.2507 0.3863 0.2468 1.09 1.60
8 1 1 1 11 50 46 0.9845 0.6019 0.9855 0.5953 −0.10 1.11
9 0 0 0 9 45 40 0.3787 0.2386 0.3863 0.2468 −1.97 −3.31
10 0 0 0 9 45 40 0.3878 0.2488 0.3863 0.2468 0.39 0.83
11 0 2 0 9 55 40 0.4716 0.2918 0.4730 0.2984 −0.30 −2.20
12 −1 −1 1 7 40 46 0.6122 0.3880 0.6192 0.4025 −1.13 −3.60
13 0 0 0 9 45 40 0.3854 0.2596 0.3863 0.2468 −0.23 5.20
14 0 0 −2 9 45 28 0.1674 0.1066 0.1734 0.1155 −3.46 −7.70
15 −1 −1 −1 7 40 34 0.1421 0.0949 0.1427 0.1053 −0.42 −9.85
16 0 0 0 9 45 40 0.3835 0.2300 0.3863 0.2468 −0.72 −6.79
17 0 0 0 9 45 40 0.3935 0.2567 0.3863 0.2468 1.86 4.03
18 0 0 2 9 45 52 1.4520 0.8687 1.4443 0.8560 0.53 1.48
19 −2 0 0 5 45 40 0.2233 0.1724 0.2187 0.1579 2.10 9.21
20 0 −2 0 9 35 40 0.3029 0.1916 0.2998 0.1812 1.03 5.72

Note: p < 0.05 is significant, p < 0.01 is highly significant, and p > 0.05 is not significant.

The error statistical analysis results of the regression equations are provided in Table 4.
The coefficient of variation (C.V.) values are 1.39% and 5.11% for A1 and A2, respectively,
which are less than 10%, which indicates a high accuracy and reliability of the two models.
Adeq. Precision reflects the signal-to-noise ratio, and this value should be higher than 4.
Regarding the two models, the ratios of 286.028 and 73.321 are obtained, which suggests
that the signal level is adequate. The two response surface models can be employed to
navigate the DOE space. Furthermore, the R-squared values are 0.9998 and 0.9969 for A1
and A2, respectively. When the multiple correlation coefficient R2 is higher, the correlation
is better. Based on Table 4, regarding the two models, the obtained R2 values are greater
than 0.99, which indicates that 99% of the total variation in A1 and A2 can be attributed to
the experimental variables, and the experimental values are highly similar to the predicted
values. Additionally, the Rpred

2 values are consistent with the Radj
2 values. This suggests

that all empirical models contain significant terms. According to the statistical analysis
of the above regression equations, the regression equation model is the most suitable
for this study.
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Table 3. ANOVA results of the fitted quadratic regression models.

Source

Response A1 Response A2

Sum of
Squares

Mean
Square F-Value p-Value

Probability > F
Sum of
Squares

Mean
Square

F-
Value

p-Value
Probability >

F

Model 2.05 0.23 5498.52 <0.0001
significant 0.69 0.076 353.71 <0.0001

significant
x1-

Cycle
number

0.058 0.058 1409.22 <0.0001 0.015 0.015 69.31 <0.0001

x2-
Output

level
0.030 0.03 724.18 <0.0001 0.014 0.014 63.49 <0.0001

x3-Gain
(dB) 1.61 1.61 38998 <0.0001 0.55 0.55 2538.12 <0.0001

x1×2 1.54 × 10−4 1.54 × 10−4 3.72 0.0827 2.03 × 10−3 2.03 × 10−3 9.38 0.0120
x1×3 0.019 0.019 469.29 <0.0001 2.45 × 10−3 2.45 × 10−3 11.32 0.0072
x2×3 7.29 × 10−3 7.29 × 10−3 176.04 <0.0001 2.90 × 10−3 2.90 × 10−3 13.42 0.0044
x1

2 3.44 × 10−3 3.44 × 10−3 83.01 <0.0001 1.21 × 10−3 1.21 × 10−3 5.58 0.0397

x2
2 2.54 × 10−8 2.54 × 10−8 6.15 ×

10−4 0.9807 7.61 × 10−5 7.61 × 10−5 0.35 0.5660

x3
2 0.28 0.28 6776.11 <0.0001 0.09 0.09 415.42 <0.0001

Residual 4.14 × 10−4 4.14 × 10−5 2.16 × 10−3 2.16 × 10−4

Lack of
Fit 2.76 × 10−4 5.53 × 10−5 2.01 0.2314;

not significant 1.53 × 10−3 3.06 × 10−3 2.44 0.1752;
not significant

Pure
Error 1.38 × 10−4 2.75 × 10−5 6.28 × 10−4 1.26 × 10−4

Cor
Total 2.05 0.69

Table 4. Error statistical analysis of the regression equations.

Response Standard
Deviation Mean C.V. (%) PRESS R-Squared

Adjusted
R-

Squared

Predicted
R-Squared

Adeq.
Precision

A1 6.435 × 10−3 0.46 1.39 2.51 × 10−3 0.9998 0.9996 0.9988 286.028
A2 0.015 0.29 5.11 0.014 0.9969 0.9941 0.9803 73.321

The final second-order polynomial equations in terms of the coded factors are

A1 =
[

1 X1 X2 X3
]

0.39 0.03 0.0215 0.16
0.03 −0.012 2.1935× 10−3 0.0245

0.0215 2.1935× 10−3 3.182× 10−5 0.015
0.16 0.0245 0.015 0.11




1
X1
X2
X3

 (10)

A2 =
[

1 X1 X2 X3
]

0.25 0.0155 0.0145 0.095
0.0155 −6.927× 10−3 0.008 0.0085
0.0145 0.008 −1.740× 10−3 0.0095
0.095 0.0085 0.0095 0.06




1
X1
X2
X3

 (11)

The final second-order polynomial equations in terms of the actual factors are

A1 =
[

1 x1 x2 x3
]

5.5355 −0.0506 −0.0178 −0.1320
−0.0506 −2.9233× 10−5 2.1937× 10−4 2.0536× 10−3

−0.0178 2.1937× 10−4 1.2727× 10−5 0.5031× 10−3

−0.1320 2.0536× 10−3 0.5031× 10−3 2.9346× 10−3




1
x1
x2
x3

 (12)

A2 =
[

1 x1 x2 x3
]

3.2970 −0.04171 −0.01379 −0.07179
−0.04171 −1.7318× 10−3 0.7956× 10−3 0.7286× 10−3

−0.01379 0.7956× 10−3 −6.9591× 10−5 3.1729× 10−4

−0.07179 0.7286× 10−3 3.1729× 10−4 1.6597× 10−3




1
x1
x2
x3

 (13)
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The internally studentized residuals are the values obtained by dividing the residuals by their
standard deviations, which are considered to intuitively assess whether the assumption that the
error terms obey a normal distribution is true. If the assumption holds true, then the distribution
of the internally studentized residuals should also obey a normal distribution. The internally
studentized residuals are the statistics of the abnormal point test. Figures 7–9 show a comparison
of the predicted and actual values, the residual normal probability distribution, and the internal
residual and predicted value distributions. The comparison of the experimental and predicted
values reveals that a high degree of similarity exists between the actual and predicted values.
Furthermore, the normal probability distribution of the residuals exhibits near-linearity, and irregular
distributions of the internally studentized residuals and predicted values are obtained. Based on
Figures 7–9, the response surface models of A1 and A2 attain good adaptability in nonlinear ultrasonic
nondestructive detection.

Figure 7. Comparison of the predicted and actual values: (a) A1 and (b) A2.

Figure 8. Normal probability distribution of the residuals: (a) A1 and (b) A2.

Figure 9. Distribution of the predicted values and internally studentized residuals: (a) A1 and (b) A2.
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4. Results and Discussion

To more intuitively analyze the effect of each factor, determine their mutual inter-
actions with A1 and A2, and characterize the shape of the response surface function, 3D
response plots are generated according to the quadratic polynomial regression equations,
as shown in Figures 10 and 11. These figures demonstrate the interaction effect of the
independent variables with A1 and A2 when a certain factor remains fixed at the same
central value.

Figure 10. Three-dimensional (3D) response plots: (a) Cycle number (x1) and output level (x2), (b) cycle number (x1) and
gain (x3), (c) output level (x2) and gain (x3), and their mutual interactions with A1.

Figures 10 and 11 show that when the slope of the curve is steeper, the effect of the
independent variables on the amplitude is more significant. Moreover, when the slope
is smoother, the effect is less significant. The effects of the cycle number, output level,
and gain on amplitudes A1 and A2 of the nonlinear ultrasonic waves are significant with
steep curves. The response surface plots of the cycle number and output level on A1 and
A2 exhibit open downward convex surfaces. This indicates that the response values are
extremely high within the range of the experimental factors, and the optimal values of
the cycle number and output level are 8~10 and 40~45, respectively. The interactions
between the number of cycles and gain, and between the output level and gain impose
a strong effect on the nonlinear ultrasonic wave amplitudes A1 and A2, which results in
high-density contour lines. The interaction between the number of cycles and output level
imposes no significant effect on nonlinear ultrasonic wave amplitude A1, and the contour
lines are not dense. The interaction between the number of cycles and output level exerts a
secondary significant effect on nonlinear ultrasound amplitude A2, and the contour lines
are not dense, which is consistent with the variance analysis results.
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Figure 11. Three-dimensional (3D) response plots: (a) Cycle number (x1) and output level (x2), (b) cycle number (x1) and
gain (x3), (c) output level (x2) and gain (x3), and their mutual interactions with A2.

Furthermore, the second-order polynomial response surface model is a conic function.
Therefore, a maximum, minimum, or saddle value exists. Thus, to further determine the
optimal point, we obtain the derivative with respect to the actual value of each independent
variable (xi) by setting the quadratic nonlinear regression model (i.e., Equations (12) and
(13)) to zero and then applying the MATLAB software to solve these equations.

The obtained equations are −5.8466× 10−3 4.3875× 10−4 4.1073× 10−3

4.3875× 10−4 2.5455× 10−6 1.0063× 10−3

4.1073× 10−3 1.0063× 10−3 5.8691× 10−3

 x1
x2
x3

 =

 0.1012
0.0357
0.2641

 (14)

The solutions of the model relative to the actual values of A1 are x1 = 8.2531, x2 = 43.6944,
and x3 = 31.7245. −3.4636× 10−3 1.5913× 10−3 1.4573× 10−3

1.5913× 10−3 −1.3918× 10−4 6.3458× 10−4

1.4573× 10−3 6.3458× 10−4 3.3193× 10−3

 x1
x2
x3

 =

 0.08343
0.02759
0.1436

 (15)

The solutions of the model relative to the actual values of A2 are x1 = 8.3877, x2 = 41.7520,
and x3 = 31.5943.

Considering operational convenience, the simultaneous detection of A1 and A2 under
the same conditions to ensure the reliability of the response surface results given the above
optimized conditions is preferable. The optimal experimental parameters regarding the
response surface include approximately 8 cycles, an output level of 42, and a gain of 32 dB.
Under these conditions, the averaged A1 and A2 values based on the three parallel tests are
0.1502 and 0.0976, with mean errors of 0.31% and 4.85%, respectively. This work indicates
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that the RSM models are feasible and significant for predicting A1 and A2 under different
cycle numbers, output level and gain in the nonlinear ultrasonic detection system.

To further verify that the RSM model satisfies the requirements of the amplitude, we
randomly selected ten training points outside the response surface level and substituted
them into Equations (12) and (13) to compare the accuracy of the predicted values and
experimental data. The calculation results for the corresponding nonlinear coefficient
β′ are listed in Table 5, and the relative errors in the response values A1, A2, and β′ are
below 10%. The experimentally measured values match the predicted values from the
regression model, which indicates that the response surface model fits the actual situation
accurately and that the RSM application to the experimental parameters of the nonlinear
ultrasonic amplitude is optimized. The established quadratic nonlinear regression model is
accurate and effective, and the experimental fitting effect is suitable, which yields a certain
practical value.

Table 5. Comparison of the predicted values with the RSM and the experimental values.

Cycle Number Output Level Gain
Actual Values Predicted Values Relative Errors

A1 (V) A2 (V) A1
′ (V) A2

′ (V) δA1 (%) δA2 (%) ∆β′ (%)

8 36 50 0.9396 0.5967 0.9706 0.5825 −3.20 1.39 8.20
8 36 44 0.4759 0.3207 0.4854 0.3059 −1.96 4.46 8.67
10 52 50 1.5298 0.9222 1.4118 0.8423 8.36 9.45 −6.78
10 48 44 0.7148 0.4355 0.7281 0.4453 −1.83 −2.24 1.44
10 46 42 0.5480 0.3394 0.5505 0.3408 −0.46 −0.25 0.68
10 38 42 0.4642 0.286 0.4617 0.2707 0.54 7.05 5.91
8 54 30 0.1463 0.075 0.1417 0.0672 3.25 −-3.05 −9.05
12 38 44 0.6108 0.3254 0.6607 0.3542 −7.55 −6.75 9.11
6 36 44 0.3759 0.3003 0.3767 0.2755 −0.20 7.43 7.86
10 36 42 0.4427 0.2500 0.4395 0.2520 0.72 1.01 −0.43

Under the same conditions and within a certain range of the input voltage, the
output level of the gated amplifier ranges from 36 to 48. By inputting different excitation
voltages, a series of A1

2 and A2 is generated, as shown in Figure 12. The relationship
curve of A1

2 and A2 can be obtained based on the measured data via polynomial fitting
(i.e., y1 = 0.45305 + 0.12188 x1 + 0.12188 x1

2) and the correlation coefficient is 0.9935.
Compared to the predicted values, the data fitting relationship curve of the response
surface equation is y2 = 0.18316 + 0.50948 x2 − 0.09045 x2

2, and the correlation coefficient
reaches 0.9997, while the slope of the linear fitting is β′. When the material properties
and Lamb wave propagation distance remain constant, β′ is a constant value, which
indicates that the nonlinear response of the ultrasonic detection system in the experiment
is stable and does not change with the excitation signal voltage. This further confirms that
the nonlinear response is not caused by the external environment but by the interaction
between the ultrasonic wave and nonlinear source in the specimen.

Figure 12. Ratio of A2 to A1
2 with increasing excitation voltage.
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5. Conclusions

Regression models that describe nonlinear ultrasonic amplitudes A1 and A2 and the
relationship among the cycle number, output level, and gain were obtained via CCD. The
reliability of these response surface models was verified through ANOVA, error statistical
analysis and normal probability distribution determination of the residuals. The results
revealed that the models were reliable and precisely predicted amplitudes A1 and A2.
The influence of these three factors on A1 and A2 and the interaction between the cycle
number and both the output level and gain were significant. Regarding the response
surface optimization, the values of the cycle number, output level, and gain were 8, 42 and
32 dB, respectively. Under these conditions, the average A1 and A2 values based on three
parallel tests were 0.1502 and 0.0976, with mean errors of 0.31% and 4.85%, respectively.
To further verify that the RSM model could reflect the requirements of the amplitude,
we randomly selected ten points outside the response surface level. The relative errors
in A1, A2, and β′ were below 10%, which indicates that the application of the response
surface analysis method in nonlinear amplitude ultrasonic nondestructive testing could
help determine the optimal process parameters and effectively reduce the challenge of
empirically setting the experimental conditions, which could represent a starting point
for further studies. In addition, the RSM model may be a promising way to predict
A1 and A2 among nonlinear Lamb wave detection system parameters under different
conditions and to study the interaction among all factors, which suggests a method for
the optimization and quantitative assessment of CFRP laminate damage. The optimized
conditions determined with the RAM-5000 SNAP detection system could also be employed
to detect other materials, such as metals and woven composites, and have good applicability
for other detection distances. In addition, the optimized conditions could be directly
adopted in the mixed-frequency detection of material damage. Furthermore, this method
provides the possibility to accurately monitor the structural health of composite materials.
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