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Abstract: In this study, rice husk ash (RHA) was explored as a strength enhancer for mortars con-
taining waste rubber. The effects of RHA on the flow, mechanical strength, chloride resistance, and 
capillary absorption of rubber mortar were investigated by substituting up to 20% cement with 
RHA. The experimental results showed that the incorporation of rubber into mortar could be safely 
achieved by adding RHA as a cement substitute by up to 20% without compromising the compres-
sive strength of mortar. Moreover, the RHA also exerted positive effects on the enhancement of the 
chloride resistance as well as the capillary absorption of rubber mortars, for which 15% RHA was 
found to be the optimal dosage. 
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1. Introduction 
The shortage of natural aggregates worldwide has evoked great attention to alterna-

tive materials for natural aggregates [1]. This is especially significant in China, where the 
production of aggregates has sharply decreased in recent years as a consequence of the 
strict policies of environmental protection [2]. Additionally, recycling wastes into supple-
ments of natural aggregates has boomed in construction sites [3,4]. Currently, recycled 
aggregates, waste rubber, and plastic are popular recyclable wastes used to replace natu-
ral aggregates to prepare concrete [5–7]. With proper proportions, concrete incorporated 
with waste aggregates can display comparable or even superior performance to that with 
natural aggregates. In particular, waste rubber produced from waste tires [8] has gained 
attention because of its prominent features, such as its excellent impact resistance, ductil-
ity, energy consumption, damping ratio, and toughness [9,10]. Concrete incorporated 
with waste rubber, namely, rubber concrete, normally has enhanced impact resistance 
[11], better ductility [12,13], abrasion resistance [14], sound insulation [15], thermal insu-
lation [16,17], and freeze–thaw resistance [18]. 

However, one of the drawbacks of rubber concrete is the inferior mechanical strength, 
as rubber is mechanically weaker with a low elastic modulus. In fact, rubber acts as a weak 
filler in the microstructure of concrete, when stress transfers to the interface between rub-
ber and when the surrounding paste rubber is similar to voids, without the capacity to 
withstand stress. In addition, the poor interface adhesion between hydrophobic rubber 
and paste is another reason for the weak mechanical strength of rubber concrete [19,20]. 

Thus, great efforts have been made toward improving the mechanical strength of 
rubber concrete [21–23]. Positive measurements have been proposed including the use of 
pozzolanic materials, the introduction of hydrophilic groups on the rubber surface and 
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other pretreatment methods. However, surface modification is complicated and la-
borsome. In particular, chemical surface modification generates vast amounts of waste, 
causing pollution to the environment. 

Rice husk ash (RHA), a by-product of burned agriculture waste, has been investi-
gated as an effective volcanic ash material [24–26]. It is generally believed that when rice 
husk is burned (<700 °C), a high content of amorphous silica can be produced with a large 
specific surface area, which can be used as a supplementary cement material (SCM) for 
concrete applications [24,27]. The influence of RHA on the mechanical properties and du-
rability of mortar has been widely studied. A large number of studies have shown that 
the addition of RHA into concrete produces three positive effects that optimize the pore 
structure, secondary pozzolanic reaction, and internal maintenance [25,28,29]. The use of 
RHA as an active filler by adding it to ultra-high-performance concrete can increase the 
mechanical properties of concrete, refine the pores, and promote the pozzolanic reaction 
and the densification of the microstructure [29]. Moreover, the influence of the grain size 
of RHA on the performance of concrete cannot be ignored. RHA with a fine grain size can 
help to improve the mechanical properties of concrete and increase its durability. The fea-
sibility of RHA as a supplementary cementitious material in the cement industry has also 
been evaluated [30]. 

Currently, it is evident from the work reported above that although a number of 
studies have examined the properties of plain mortar or concrete with RHA incorporated, 
the effectiveness of RHA as a performance enhancer on the properties of rubber concrete 
or mortar has rarely been reported [27,31,32]. For cases in which it is necessary to mitigate 
the problem of the weak mechanical strength of rubber concrete prior to a practical appli-
cation, using RHA as a strength enhancer for rubber mortar facilitates the use of RHA as 
a resource for recycling. Therefore, there is a need to carry out a systematic experimental 
study to evaluate the effectiveness of RHA as a performance enhancer for the properties 
of rubber mortars and to provide a reference for the utilization of RHA-reinforced rubber 
mortar. In this regard, the effects of RHA on the flow, mechanical strength, chloride re-
sistance and capillary absorption of rubber mortars were investigated by substituting up 
to 20% of cement with RHA (5%, 10%, 15%, and 20%) in this study. The relevant mecha-
nisms were further studied with X-ray diffraction (XRD) and Fourier transform infrared 
spectroscopy (FT-IR). 

2. Materials and Methods 
2.1. Materials 

42.5 Ordinary Portland Cement with a 28-day compressive strength over 42.5 Mpa 
was purchased from Anhui Conch Cement Co., Ltd. Its density and Brunauer, Emmett 
and Teller (BET) surface area were 3.15 g/cm3 and 0.86 m2/g, respectively. Raw rice husk 
ash (RRHA) was provided by the Hubei Xiangyang Grain Factory. The RHA was pre-
pared by calcining the RRHA in a muffle furnace at 600 °C for 2 h to achieve an optimal 
pozzolanic activity, as proposed by Bie [24]. Table 1 presents the chemical compositions 
of both the cement and the RHA. It can be seen that the RHA was a classic Si-rich material 
containing 92% SiO2. Figure 1 shows the digital photographs of the RRHA and the RHA. 
The color change between the RRHA and the RHA indicated the combustion of carbon 
within the RRHA. Figure 2 further presents the micromorphology of the RHA by scanning 
electron microscopy (SEM), indicating that the RHA had a very porous structure and loose 
layers. Consequently, the RHA had a very large BET surface area of 11.071 m2/g. Figure 3 
presents the XRD pattern of the RHA. Except for small amounts of quartz and cristobalite, 
the RHA was vitreous in phases, as suggested by the hump peak ranging from 15°–35° 
[33]. To further reveal the content of amorphous silica of the RHA, the Rietveld method 
was applied using a software program by Jade [34]. The step sizes (0.01°) and the scan 
speed (1°/min) within 5–80° are typically considered for Rietveld analyses. The conditions 
used were 40 kV, 50 mA, Cu_Kα radiation, a resolution of 0.0002 and a counting time of 
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2 s per step. The quantitative analyses of the crystalline and amorphous phases with the 
Rietveld method were carried out using the Whole Pattern fitting function of Jade. Thus, 
the amorphous silica content of the RHA was computed with Jade after the fitting process. 
The results suggested that the crystallinity of the RHA was only 5.59%. In other words, 
94.41% of the RHA was in the amorphous phase. To further confirm this finding, the 
amount of amorphous silica in the RHA was further measured by using a versatile method 
according to GB/T10846 [35], which provided a standard measuring method for amor-
phous silica for a variety of supplementary cementitious material, i.e., fly ash, slag and 
silica fume. Specifically, an XRD analysis of the RHA sample with low scanning speed at 
1°/min was first carried out at 15–35°. The XRD pattern was then printed on paper and a 
baseline was drawn in the peak base. Then, a curve was drawn in the oscillation midpoint 
of the diffraction intensity curve to separate the vitreous region and the crystal region. 
The sharp diffraction peak represented the crystal and the rest the vitreous region. Se-
quentially, the portion of paper with only the profile of the XRD pattern encircled by the 
baseline printed was cut and weighted, namely, m1. Then the portion of paper was further 
cut to separate the vitreous region, which was also weighted and named m2. Finally, Equa-
tion (1) could be applied to calculate the content of the amorphous phase of RHA, as fol-
lows, 

wamorphous phase = m2/m1 × 100 (1) 

where wamorphous phase represents the content of the amorphous phase (%). The result indicated 
that the wamorphous phase of the RHA was as high as 95%, which agreed well with the Rietveld 
method. 

Figure 4 presents the particle size distribution of the cement and the RHA. 60–80 
mesh rubber with particle sizes ranging from 250 μm to 180 μm was used, as shown in 
Figure 5. The sand was natural river sand with a fineness modulus of 2.36. Tap water was 
used throughout this research. 

Table 1. Chemical compositions of cement and RHA. 

 Chemical Composition/wt.% (XRF) 
 SiO2 CaO Al2O3 MgO Fe2O3 TiO2 K2O SO3 Na2O P2O5 MnO 

Cement 20.98 61.91 7.69 1.36 3.72 0.44 0.95 2.40 0.20 0.07 0.10 
RHA 92.71 0.92 0.48 0.50 0.18 0.04 3.36 0.29 0.08 1.10 0.12 

2.2. Mixing Proportion 
Table 2 presents the mixing proportion. Five mixtures were designed with a fixed 

water-to-cement ratio of 0.5. Additionally, 10% of the sand was replaced with rubber by 
volume to prepare the rubber mortar. Four replacement levels of RHA to cement by mass 
were considered at 5%, 10%, 15%, and 20%, respectively. The mortar was prepared fol-
lowing the same procedure. All dry materials were first mixed in a mortar mixer for 5 
min. Subsequently, water was added and the mixture was mixed for another 3 min. 

Table 2. Mix proportions of mortars (kg/m3). 

Groups Cement Sand Water Rubber RHA 
R0 700 945 350 41.23 0 
R5 665 945 350 41.23 35 

R10 630 945 350 41.23 70 
R15 595 945 350 41.23 105 
R20 560 945 350 41.23 140 
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Figure 1. Digital photographs of RRHA and RHA: (a) RRHA; (b) RHA. 
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Figure 2. SEM images of RHA calcined at 600 °C for 2 h. 

 
Figure 3. XRD pattern of RHA. 

 
Figure 4. Particle size distribution of cement and RHA. 
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Figure 5. SEM images of rubber. 

2.3. Test Methods 
2.3.1. Setting Time and Flow 

Immediately after mixing, the fresh properties of the pastes prepared according to 
Table 2 without sand or rubber were tested. Specifically, the Vicat method was adopted 
to test the setting properties of the pastes according to ASTM C191 [36]. The flow of the 
mortars was measured according to ASTM C1437 [37] using a flow table. 

2.3.2. XRD and FT-IR of Pastes 
In order to analyze the microscopic mechanism of the RHA reinforced rubber mortar, 

the cement pastes cured for 28 days were analyzed with XRD and FT-IR. The mineralogi-
cal phase composition of the samples was analyzed with XRD with Cu-Kα radiation 
whose scanning angle was in the range of 5–60°. FT-IR was used to analyze the molecular 
vibrations and the chemical bonds in the 28 d pastes. In this study, the FT-IR spectra were 
obtained from 4000 cm−1–400 cm−1 since the absorption peaks of interest existed within this 
wave range. The FT-IR samples were prepared with the KBr tablet method [38]. 

2.3.3. Capillary Absorption 
The capillary absorption of rubber mortar with and without RHA was tested. Ac-

cording to ASTM C1585 [39], the mixtures were cast into cylinder molds with a size of d 
× h = 100 mm × 50 mm and cured standardly for 28 d. Prior to testing, the side surfaces of 
the cylinder specimens were coated with epoxy resin for sealing to ensure one-dimen-
sional water transport. The specimens were then oven-dried to constant weight at 105 °C. 
Figure 6 illustrates the schematic of the apparatus for the capillary absorption test [40]. 
During the testing, the upper surfaces of the cylinder sample were sealed with plastic film, 
and the bottom surface was immersed into water by 1–3 mm. 

 
Figure 6. Schematic of the capillary absorption test [40]. 
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2.3.4. Compressive Strength and Flexural Strength 
According to ASTM C349 [41], the mixtures were cast into plastic molds with a size 

of 40 mm × 40 mm × 160 mm for measurements of the compressive strength and the flex-
ural strength. The mixtures were initially cured within molds for 24 h under standard 
curing conditions that at 23 °C and RH > 95%, and subsequently demolded and cured as 
standard until certain ages. The average results of three specimens were reported for the 
flexural strength, and the compressive strength was the average value for the six identical 
tests with the broken specimens. 

2.3.5. Chloride Resistance Test 
To evaluate the influence of the RHA on the durability of the rubber mortar, chloride 

resistance was tested according to ASTM C1202 [42]. Fresh mortars were cast into cylinder 
molds with a size of d × h = 100 mm × 50 mm and cured as standard for 28 days. The side 
surfaces of the specimens were sealed with epoxy resin. Subsequently, the specimens were 
vacuum-saturated. The total charge passed for 6 h was tested by a DTL–6 electrical flux 
tester (Zhongkelujian Co., Ltd., Beijing, China), and the average value of the triplicate 
samples was reported for each group. 

3. Results and Discussion 
3.1. Setting Time and Flow 

Table 3 presents the setting times of pastes and the flows of the fresh mortars. The 
addition of RHA in the mortars caused poor workability as the flow of the mortars de-
creased according to the dosage of the RHA. In particular, when 20% RHA was added, 
the flow of R20 was about half of that of R0. The reasons for this variation with the RHA 
could be attributed to the porous structure and the irregular morphology of the RHA par-
ticles [30]. The RHA with a porous structure absorbed the mixing water, and hence in-
creased the consistency of the fresh mortars. 

Table 3. Fresh properties of pastes and mortars. 

Mixtures 
Setting Time (min) 

Flow (mm) 
Initial Setting Final Setting 

R0 361 444 266 
R5 347 440 238 
R10 333 435 214.5 
R15 320 428 172 
R20 303 418 143 

Furthermore, the addition of RHA nevertheless altered the setting times because the 
more RHA, the shorter the initial and final setting times. The accelerated setting properties 
of the pastes containing RHA were a result of the reduced effective water–cement ratio 
due to the highly porous structure of the RHA. This also indicated that partial mixing 
water was absorbed within the open pores of the RHA. Consequently, the stored water in 
the RHA could be released as additional feedback to the drying capillary pores to relieve 
the self-desiccation of cement hydration. 

3.2. Hydration Products Analyzed by XRD and FTIR 
The hydration products of the 28-d pastes incorporated with RHA were analyzed 

with XRD, as presented in Figure 7. Four major minerals were detected in all samples, 
which were portlandite (CH, JCPDS#44-1481), calcium silicate hydrate (C-S-H, JCPDS#33-
0306), calcium aluminate hydrate (C-A-H, JCPDS#02-0083), and belite (C2S, JCPDS#36-
0642). 
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In general, these XRD patterns were very similar without new minerals being gener-
ated when adding RHA to the pastes. The XRD peak heights at 2θ = 34° corresponding to 
CH were found to decrease with the content of RHA, while the characteristic peak heights 
of C-S-H at 2θ = 29.4° increased along with the content of RHA [43,44]. Although the 
quantitative determination of minerals based on XRD peak heights was difficult, espe-
cially without an internal reference, these changes in the characteristic peak heights of CH 
and C-S-H with RHA indicated that the pozzolanic reaction took place between high con-
tent of silica contained in the RHA and CH, contributing to the additional generation of 
C-S-H. This was reasonable and this has been well documented elsewhere [33,45–47]. 

 
Figure 7. XRD patterns of 28-day pastes. 

Figure 8 shows the FT-IR spectrum of the 28-d pastes. It can be observed from the 
figure that all of the samples had a wide vibration band near 3480 cm−1 due to the stretch-
ing vibration of the O–H bond in the adsorbed water [48]. Near 3300 cm−1, the internal 
water of the C-S-H gel generated a vibrating band that overlapped with the vibrating zone 
caused by the adsorbed water [49]. Furthermore, 3640 cm−1 indicated the -OH stretching 
vibration of the CH [50]. It could be found that the increase of the RHA led to the de-
creased peak intensity of the CH at 3640 cm−1. This was in accordance with the findings 
by XRD analysis that the pozzolanic reaction of the RHA with CH consumed the content 
of CH. 

There was an obvious acromion vibration band near 968 cm−1. According to the study 
of Yu et al. [48], this was related to the C-S-H gel. The vibration band that occurred near 
465 cm−1 was caused by the symmetric stretching vibration of the Si–O bond [43]. Simi-
larly, the bending vibration of the O–Si–O bond in the RHA and the vibration of the O–
Si–O bond in the C-S-H were also caused by this [43]. The peak that formed at 1640 cm−1 
was caused by the vibration of the H–O–H bond in the water [51]. Finally, the wave-
number at 1420 cm−1 might be attributed to the formation of carbonate during sample 
preparation [52]. 

3.3. Capillary Absorption 
Figure 9 presents the results of the 9-d capillary absorption experiment. It can be seen 

from the figure that the addition of RHA reduced the capillary absorption capacity of the 
rubber mortars despite the fact that the final water absorption of R10 was slightly higher, 
which might have been a result of the testing error. Moreover, with the increase in RHA, 
capillary absorption of rubber mortars decreased gradually. This indicated that the micro-
structure of the rubber mortar was densified by adding the RHA, which was attributed to 
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RHA’s filling effect as well as its pozzolanic nature [53]. In particular, the pozzolanic na-
ture of RHA, mainly composed of amorphous silica, ensured that more hydration prod-
ucts were produced, further filling the pores of mortars and leading to good bonding be-
tween the cement matrix and the rubber [54]. In addition, the RHA could be used as a 
nucleation site in the hydration of rubber mortar, resulting in more C-S-H gel being 
formed around the RHA. This was reinforced by the XRD results. Therefore, the denser 
the rubber mortar, the lower the capillary water absorption. 

 
Figure 8. FT-IR spectra of pastes. 

 
Figure 9. Capillary absorption of mortars. 

3.4. Compressive Strength 
Figure 10 presents the compressive strength of the rubber mortars. When the RHA 

was added, the compressive strength of the rubber mortar was found to first increase but 
subsequently decrease along with the dosages of RHA, with R15 as the watershed. Spe-
cifically, significant increments of the compressive strength of the RHA-incorporated rub-
ber mortars were gained with 14.82% at 3 d, 16.02% at 7 d and 17.27% at 28 d in R15. The 
increments of the compressive strength of the RHA-incorporated rubber mortars sug-
gested the advantages of the RHA in compensating for the loss of compressive strength 
due to rubber. Actually, the RHA functioned as a strength enhancer of the rubber mortar, 
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which could be ascribed to its features of pozzolanic activity and fine sizes. Since amor-
phous silica is the principal component of RHA, additional hydration products can be 
produced through the reaction between RHA and CH, resulting in enhanced compressive 
strength [31]. Furthermore, the fine sizes of RHA are also a reason for the promoted com-
pressive strength [55]. As can be seen from Figure 10, the compressive strengths of R10 
and R15 at both 3 d and 7 d were higher than that of R0. In the case of the pozzolanic 
reaction between the RHA and CH taking a much longer time to exert an obvious influ-
ence on the compressive strength of the rubber mortar, this increment of the compressive 
strength at early ages was thus explained by the fact that RHA, as very fine particles, filled 
the voids or pores within the microstructure, contributing to a denser matrix and good 
adherence between the cement matrix and the rubber [33,56]. 

Nevertheless, 20% RHA seemed excessive in this study because the compressive 
strengths of R20 were lower than those of R0. This might have been a consequence of the 
dilutive effect when excessive cement was replaced by RHA [57]. 

 
Figure 10. Compressive strength of mortars. 

3.5. Flexural Strength of Mortar 
Figure 11 shows the flexural strengths of the mortars. In general, the flexural strength 

of the RHA rubber mortars was higher than that of R0, especially at 3 d. In fact, more than 
21.09–29.92% increments in flexural strength were gained in R10, R15 and R20 compared 
with that of R0. The greater the RHA content, the higher the flexural strength. This ten-
dency reappeared in the 28-d flexural strength of the RHA rubber mortars despite the fact 
that the 28-d flexural strengths of R5 and R10 were less than that of R0. The increments of 
the 28-d flexural strength of R15 and R20 were 1.91% and 5.44%, respectively. At 7 d, alt-
hough the flexural strengths of all RHA rubber mortars were higher than that of R0, the 
development tendency with RHA content was different from that of the 3-d and 28-d flex-
ural strengths, but similar to the results for the compressive strength, as presented in Fig-
ure 10 [58]. 
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Figure 11. Flexural strength of mortars. 

The increase in flexural strength was due to the micro-filling effect and pozzolanic 
activity [57]. Therefore, the benefit of the RHA for the flexural strength of mortar was thus 
confirmed [31]. 

3.6. Chloride Resistance 
Figure 12 presents the results for the chloride resistance of the rubber mortars. The 

incorporation of RHA exerted an effective influence on the chloride resistance of the rub-
ber mortars, which decreased continuously with the increased content of RHA. Specifi-
cally, the total passed charges of R5, R10, R15 and R20 were 17.5%, 47.2%, 70.2% and 79.4% 
less than that of R0, respectively. This was very consistent with the results of other studies 
[59,60]. The benefit of RHA for chloride resistance of the mortars was attributed to the 
pozzolanic activity and the filling effect of the fine RHA particles, as the generated addi-
tional hydration products as well as the fine RHA particles contributed to a denser micro-
structure [61]. Moreover, the pozzolanic reaction between the high content of silica con-
tained in the RHA and the cement generated additional C-S-H gel, resulting in the reduc-
tion of the porosity and ultimately the permeability. In such a case, the chloride migration 
within the microstructure of the rubber mortar could be greatly impeded and the chloride 
resistance of mortars was enhanced. 

 
Figure 12. The total charge passed of the cement mortars during 6 h. 
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4. Conclusions 
This paper explored rice husk ash (RHA) as a strength enhancer for concrete with 

waste rubber incorporated. Conclusions were drawn based on the findings, as described 
below: 

(1) The addition of RHA decreased the flowability and accelerated the setting prop-
erties of the mortar. An optimal dosage for RHA of 15% was determined based on the 
flow results. 

(2) The benefit of RHA for the compressive strength of mortar was confirmed. It was 
found that this increased initially, but subsequently decreased with RHA, whereas 15% 
RHA contributed to the highest compressive strength. 

(3) The addition of RHA contributed to a denser microstructure because both the 
chloride resistance and the water penetration of mortar were greatly decreased. Related 
mechanisms were summarized as the filling effect and the pozzolanic activity of the RHA, 
through which the pores of mortar were filled, and additional hydration products could 
be generated to enhance the compressive strength of mortar. 
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