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Abstract: Groundwater treatment residuals (GWTRs) are safe waste materials generated during
drinking water treatment. GWTRs are mainly deposited in landfills, but the preferred solution should
be reused or utilized for some components. To ensure proper sludge management, it is important to
provide quality, chemical composition, and texture characteristics of GWTRs. Therefore, in this study,
we aimed to investigate and compare the features of GWTRs collected from four water treatment
plants. GWTRs were characterized by X-ray diffraction (XRD); scanning electron microscopy (SEM)
with energy dispersion spectroscopy (EDS); Fourier transform infrared spectroscopy (FTIR); thermo-
gravimetric, differential thermogravimetric, and differential thermal analysis (TG, DTG, and DTA,
respectively); X-ray fluorescence (XRF); inductively coupled plasma optical emission spectrometry
(ICP-OEP); specific surface area (SBET) measurement; and determination of the isoelectric point
(pHIEP). According to the results, GWTRs are poor crystalline materials that are predominantly com-
posed of ferrihydrite with minor calcite and quartz admixture. They formed heterogeneously mixed
particles with irregular shapes. They were mainly composed of iron oxides (32–55%), silica (4–28%),
calcium oxide (4–17%), and manganese oxides (0.3–4.0%). They were found to be mesoporous with a
large specific surface area. Due to their composition and texture characteristics, GWTRs demonstrate
good adsorption properties toward different compounds such as heavy metals and metalloids.

Keywords: solid characterization; WTRs; water treatment sludges

1. Introduction

Drinking water treatment residuals (WTRs) are nonhazardous by-products generated
during the treatment of drinking water in water treatment plants, and so far, there is no
proper application available for GTWRs [1]. The quantity of WTRs usually varies from
2% to 5% of the whole volume of the processed water [2]. In this decade, the production
of WTRs has sharply increased, and thousands of tons of WTRs are produced every day,
which tends to be deposited [3,4]. Moreover, landfill disposal is increasingly expensive.
WTRs may be a potentially usable material but are being wasted as there is no application
available so far. From the viewpoint of the “3R principle” (reduce, reuse, and recycle), it is
crucial to identify a possible management option for WTRs [5], which might prove to be
beneficial both in terms of environmental safety and economy [6,7].

The origin (surface or underground), as well as the physicochemical composition of
the water, determines the appropriate type of treatment. For example, surface water is
purified using coagulation, flocculation, sedimentation, and filtration methods [8], whereas
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groundwater is purified by removing iron and manganese compounds [9]. Hence, WTRs
can be classified into two categories. First, post-coagulation residuals or surface water
treatment residuals (SWTRs) are primarily composed of amorphous masses of iron or
aluminum hydroxides due to the presence of Fe and Al salts which are used to remove
suspended solids and humic substances from raw water [10]. Second, residuals arising
from the treatment of groundwater with a high concentration of Fe(II) and Mn(II) or
infiltration water treatment called groundwater treatment residuals (GWTRs). Usually,
groundwater treatment is a simple, nonchemical reagent technology based on aeration and
filtration processes [11]. The iron salts present in groundwater easily hydrolyze to soluble
Fe(II) hydroxide and then oxidize and precipitate as soluble Fe(III) hydroxide, which is
the primary component of the sludge. These metals are removed from groundwater to
avoid organoleptic problems for consumers and to avoid technical problems in facilities
that supply groundwater [12,13]. Moreover, the permissible level of Fe and Mn in drinking
water is less [14,15]. To the best of our knowledge, there is less information with respect to
the composition, properties, and potential of GTWRs. Therefore, in this study, we aimed to
study the phase, physicochemical, and texture characteristics of GTWRs.

The structure of GWTRs is primarily composed of ferrihydrite. Ferrihydrite (Fe5OH8·4H2O)
is poorly crystalline iron oxide. Because of their amorphous nature, GWTRs have a large
specific surface area and are highly reactive [16]. Therefore, GWTRs demonstrate a high
capacity for adsorbing a large number of contaminants [17]. In addition, iron-containing
materials such as red mud, bog iron ore, and drinking WTRs were previously used as
sorbents. They seem to be promising as they cause low risk to the environment. However,
GWTRs contain heavy metals such as Al, Fe, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb,
and Zn, but their concentration is usually low (except for Fe). The aforementioned heavy
metals occur in relatively stable forms, and according to the US Environmental Protection
Agency (EPA), WTRs are nonhazardous materials [18–20].

In recent years, many researchers are focusing on reusing of GWTRs. An increasing
number of articles on the use of GWTRs for the removal of many contaminants reveals
that there is a great requirement for a more detailed examination of these materials. Stud-
ies have shown high adsorption capacity of GWTRs for cadmium [21], manganese [22],
phosphorus [23], arsenic [24], and nickel [25]. A comprehensive study in terms of the min-
eralogical, physical, and textural parameters of GWTRs is fundamental in the development
of a potential application of GWTRs.

Therefore, in this study, we aimed to investigate and compare the features of GWTRs
from four different water treatment plants. The phase and chemical composition, as well
as textural and physicochemical properties of GWTRs, was evaluated based on scanning
electron microscopy equipped with energy dispersive spectrometer (SEM-EDS); X-ray
diffraction (XRD); Fourier transform infrared (FTIR) spectroscopy; thermogravimetric
(TG), differential thermogravimetric (DTG), and differential thermal analysis (DTA); X-ray
fluorescence (XRF); inductively coupled plasma optical emission spectrometry (ICP-OEP);
and specific surface area (SBET). The pHIEP of samples was also determined. So far, there
has been no research that has used so many different methods of analysis to characterize
the GWTRs. Researchers have focused only on the basic characteristics, including simple
methods such as XRD or SEM-EDS. Therefore, the manuscript presents a set of results that
have not been published before.

2. Materials and Methods
2.1. GWTRs

The samples of GWTRs (GWTRs-1, GWTRs-2, GWTRs-3, GWTRs-4) were respectively
collected from four groundwater treatment plants (GWTP-1, GWTP-2, GWTP-3, GWTP-4)
located in Wielkopolska Voivodeship, Poland. All of these plants extract groundwater from
quaternary deposits from depths ranging from 27 to 83 m. The groundwater is treated with
typical nonreagent technology based on the process of aeration, filtration, and disinfection.
At GWTP-2, the open aeration system with reaction chamber and rapid filtration with the
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use of open filters were applied, whereas, at GWTP-1, GWTP-3, and GWTP-4, water was
treated in pressurized systems. In all four stations, quartz sand or two-layer anthracite-sand
bed (GWTP-2 and 3) was used as filter filling. Filter backwashing waters were discharged
to the clarifier. At GWTP-2, polyelectrolyte was added to backwash water to accelerate the
sedimentation of suspended solids in the clarifier.

The groundwater samples from GWTPs-1–4 were characterized as follows: iron
content ranging from 1.0 to 3.62 mg/L, manganese ranging from 0.130 to 0.382 mg/L,
elevated turbidity ranging from 6.4 to 27 Nephelometric turbidity units (NTUs), and
watercolor ranging from 10 to 200 mg Pt/L. The hardness of water (caused by the presence
of Ca and Mg) ranged from 235 to 352 mg CaCO3/L. The content of organic compounds
was quite different, as evident from the total organic compound (TOC), which ranged from
1.2 to 4.7 mg C/L. Table 1 shows the characteristics of raw and treated water.

Table 1. Characteristics of raw and treated water.

Parameters Unit
GWTP-1 GWTP-2 GWTP-3 GWTP-4

Raw Treated Raw Treated Raw Treated Raw Treated

Color mg Pt/L 10.0 5.0 33.0 2.5 10.0 5.0 200.0 5.0
Turbidity NTU 27.0 0.5 15.3 0.5 6.4 0.2 12.4 0.5

Hardness mg
CaCO3/L 352 352 290 290 NA * NA 235 229

pH — 7.0 7.4 7.3 7.5 7.3 7.2 7.3 7.5
Fe mg Fe/L 2.490 0.044 3.620 0.020 1.000 0.060 2.900 0.116
Mn mg Mn/L 0.382 0.007 <0.150 <0.005 0.130 0.004 0.130 <0.025

TOC mg C/L 2.62 2.10 3.53 3.09 1.20 NA 4.70 4.70

* NA, not analyzed.

Treated water was characterized by a low concentration of iron ranging from 0.020
to 0.116 mg/L, manganese ranging from 0.005 to 0.025 mg/L, turbidity ranging from 0.20
to 0.54 NTU, and the color of water ranging from 2.5 to 5.0 mg Pt/L. The TOCs ranged
from 2.1 to 4.7 mg C/L. Treated water fulfilled the requirements for the quality of water
intended for human consumption [15].

The presented values of the parameters determining the water quality were provided
by the Water Treatment Plants (WTPs) and come from the period preceding the sampling of
the GWTR (lasting 3–12 months depending on the WTP). These parameters are determined
regularly in order to control the WTP work and ensuring the required quality of purified
water supplied to the recipient. All parameters were determined in accredited laboratories
in accordance with Polish Standards, which correspond to Standard Methods for Water
and Wastewater Treatment guidelines [26].

TOC was determined on a TOC analyzer using the high-temperature combustion
method. The determination of the carbon content was made by thermocatalytic decomposi-
tion of sample in the presence of an N/C catalyst at 800 ◦C with synthetic air as the carrier
gas. The Total Carbon (TC) and Inorganic Carbon (IC) were measured, and the difference
between them was calculated to obtain TOC.

GWTR samples were collected from the bottom of the backwash water clarifier. At
GWTPs-1–3, sludge samples were collected directly from the upper sediment layer immedi-
ately after the clarified backwashings were discharged from the settling tank. At GWTP-4,
the sample was collected during the periodic (once every 6 months) cleaning of the clarifier,
and it could be collected from deeper layers.

The samples were dried for 4–7 days at 40 ◦C, ground in a mortar, and sieved using a
1 mm sieve to remove large particles. Then, the powdered samples were subjected to phase
analysis in addition to analyzing the chemical composition and porosity.
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2.2. Method of Analysis

XRD analysis was conducted on a SmartLab RIGAKU diffractometer (RIGAKU Tokyo,
Japan) using a copper X-ray tube, in the angular range of 2–70◦ 2θ with a 0.05◦ 2θ measuring
step. To identify mineral phases, the PCPDFWIN version 1.30, formalized by JCPDS-ICDD,
was used. The phases were identified based on the results using the X-RAYAN computer
software (Version 4.2.2, “KOMA”, Warsaw, Poland). The chemical composition was deter-
mined with sequential wavelength dispersive X-ray fluorescence (WDXRF) RIGAKU using
ZSX Primus II with Rh anode (4.0 kW), and emission spectrometers inductively coupled
plasma (Perkin Elmer, Tokyo, Japan). A qualitative spectral analysis was performed by
identifying spectral lines and determining their possible coincidences. Based on this, ana-
lytical lines were selected. The semiquantitative analysis was developed using the SQX
calculation program. Loss of Ignition (LOI) was determined by the mass change of calcined
sample at 950 ◦C within 1 h. The FTIR spectra were recorded by Nicolet 6700 spectrometer
(Fishers, Waltham, MA, USA) using the drift technique with 64 scans at 4 cm−1 resolution
in the 4000–400 cm−1 region. The powdered sample was mixed with KBr at 2% by weight
relative to KBr. Peak fitting was conducted with OMNIC v8.3 software (Thermo Fisher
Scientific, Waltham, MA, USA). Morphological observations of uncoated samples were
analysed by SEM-EDS (FEI QUANTA 200, FEI, Graz, Austria). The characteristics of poros-
ity were determined on the basis of low-temperature adsorption and nitrogen desorption
isotherms at −196 ◦C. The analysis was conducted using the ASAP 2020 (Micromeritics,
Norcross, GA, USA) apparatus for precise sorption measurements in a wide range of
relative pressures, from approximately 10−3 to 0.99. Before the measurement, the samples
were heated under vacuum at 105 ◦C for 12 h.

TG/DTA coupled with the measurement of the composition of evolved gases was per-
formed using a Netzsch STA 449 F3 Jupiter apparatus (Netzsch, Chennai, India). Samples
were heated at a temperature of 30–100 ◦C (heating rate: 10 ◦C/min). The analyses were
conducted in combustion conditions. The concentration of trace elements was determined
by inductively coupled plasma–mass spectrometry (ICP-MS) ELAN 6100 (Perkin Elmer),
except for Ba, Sr, and Zn, which were analyzed by ICP-OES Plasm 40 (Perkin Elmer). The
isoelectric point (pHIEP) of samples was determined by using Zetasizer Nano-ZS (Malvern
Inc., Malvern, UK). For the measurement, 0.05 g of the sample was dispersed into both
100 mL of H2O and 100 mL of NaCl solution (0.01 M), and its pH value was adjusted
with HCl.

3. Results and Discussion
3.1. XRD Analysis

Figure 1 shows the XRD patterns of GWTR-1–4. The XRD patterns did not reveal
many sharp peaks, which indicates poorly ordered particles in the GWTRs, and while
another method indicates a predominance of iron oxides in GWTRs, there is likely to
be amorphous iron [27]. Depending on the reaction conditions, fast and simultaneous
oxidation and hydrolysis of Fe(II) salts lead to the formation of lepidocrocite, magnetite,
goethite, and poorly crystalline ferrihydrite, as well as feroxyhyte; therefore, the last
two can be considered as the most likely components of GWTRs [24,28,29]. Then, 2-line
ferrihydrite (Fe2O3 5H2O) with a very low degree of crystallization can be confirmed on the
XRD pattern by two fuzzy diffraction peaks with maxima at about 33–35◦ 2θ and 61–63◦

2θ [30,31]. The rising background pattern of diffractograms indicates the presence of a
large number of substances, probably iron compounds, with a low degree of structural
order, which agrees with previous research [24,32,33]. All GWTRs contained quartz, which
was attributed to the fragments of quartz-containing materials turned out during the
backwashing process. GWTR-4 sample (Figure 1d) was the mostly crystalline material;
its sharp peaks (20.9, 26.6, 40.0, 42.5, 46.5, 50.2, 60.0, 67.8, 68.2◦ 2θ) can be attributed to
the presence of quartz [34]. A slight peak at maximum at about 30◦ revealed the presence
of calcite admixtures, which can be seen in GWTRs 2–4 (Figure 1b–d). GWTR-2 and 4
contained smaller quantities of feldspar (Figure 1b,d). Manganese compounds could not be
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identified by XRD analysis, which might be because of the low concentration of manganese,
as well as due to its poor structure order [29].
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GWTRs-4.

3.2. Chemical Composition

Table 2 shows the chemical composition of the four GWTRs. It is known that the
chemical characteristics of GWTRs depend on the raw water quality and the method used
for the treatment (Table 1). Iron removed from water is retained in the form of suspensions
in the deposit and washed away during the backwashing process, which is then led to
sludges. Manganese grows over the grains and stays predominantly in the filters, and is not
washed away. Hence, the concentration of manganese in sludge, as well as treated water, is
definitely, which has been proven by XRF analysis [24]. The iron content was the highest
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in GWTR-1 (56% wt. as Fe2O3), followed by GWTR-3 (45% wt.), GWTR-4 (37% wt.), and
GWTRs-2 (32% wt.). The high iron content in the GWTRs samples is due to the presence
of ferrihydrite. The samples showed a clear differentiation in the type of ferrous material,
from almost pure form (GWTR-1, 56% wt.) to high content of siliciclastic material (29% wt.
SiO2, GWTR-4), which is proved by XRD analysis. The backwashing procedure might be
responsible for the presence of iron compounds (as in the case of GWTRs-1 and 3), whereas,
for GWTRs-4, the quartz peaks are the most visible peaks. The presence of SiO2 might have
been a result of the residue of quartz sand grains of the filter bed, which was lost during
backwashing. Attention should be paid to the dependencies between the concentration of
dominant (SiO2, Fe2O3) and secondary components. The GWTRs containing more SiO2 are
also characterized by large quantities of Al2O3, Na2O, K2O, and TiO2, probably due to the
presence of admixtures of aluminosilicates. Moreover, CaO content is lower in samples rich
in Fe2O3This tendency was not observed for GWTRs-4. The proportion of CaO is the result
of natural carbonate precipitation. The loss of ignition (LOI) depended on the quantity of
CaO—the higher the concentration of CaO, the higher the LOI. Then, with the increase
in the concentration of Fe2O3, MnO also increases, which is similar to the composition
of raw water. The level of MnO in GWTRs is similar to the level of Mn in the treated
water (Table 1). The content of P2O5 did not directly correlate with the content of iron in
samples, but the GWTRs-1 that contained the lowest amounts of phosphorus oxides was
characterized by the highest amounts of iron oxides. Previous studies have shown that iron
oxides can be simply formed by the oxidation of Fe2+ in natural water. However, due to the
presence of other ions such as silica, calcium, or manganese, as well as organic matter in
groundwater, the process of crystallization is constricted [35,36], which is demonstrated by
the results of this study. Despite the high content of iron oxides, as demonstrated by XRF
analysis, it was an amorphous form of iron compounds. The phase composition of GWTRs,
obtained from XRD analysis, showed that the samples are, among others, composed of
ferrihydrite (Figure 1), which had the lowest degree of crystallization compared to goethite,
hematite, or magnetite. Moreover, the rising background pattern of diffractograms might
indicate the presence of amorphous iron compounds. These results can be proved by other
research [37–41]. The particle size of ferrihydrite is less than 10 nm [42]. Hence, ferrihydrite,
due to its high reactivity and large surface area, was considered a superior absorbent [43].

Trace elements also demonstrated significant differentiation (Table 2). Barium was the
leading contaminant in all four samples, varying from 5.46 ppm in GWTR-1 to 15.83 ppm
in GWTR-4. The analyzed GWTRs also contained large amounts of arsenic, especially
GWTR-4 (4.217 ppm). As the previous research has shown, As is well adsorbed in the
beds of quick filters; hence, As might have been adsorbed in iron hydroxides. This can
explain the high As content in GWTRs-4 [44–46]. There was no significant relationship
between the main contents of elements in the samples. GWTR-2–4 contained significant
quantities of strontium; the highest concentration was recorded for GWTR-2 (3.91 ppm).
This may be because of the large proportion of CaO in the sample, which might be because
of the substitution of Sr for Ca. Chromium was present in all four samples in relatively
large concentrations, varying from 0.694 ppm (GWTR-2) to 0.990 ppm (GWTR-1). It can
be noted that GWTR-4, which has the highest concentration of SiO2, also contained the
highest quantities of Ba (15.83 ppm), As (4.218 ppm), Zn (2.25 ppm), Sr (2.06 ppm), Cr
(0.935 ppm), and Se (0.013 ppm).
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Table 2. Chemical composition of GWTRs.

Element Unit GWTR-1 GWTR-2 GWTR-3 GWTR-4

SiO2 % 8.09 4.11 6.15 28.68
TiO2 % 0.03 0.02 0.03 0.05
MnO % 4.33 0.29 2.29 1.36
Al2O3 % 0.28 0.58 0.60 2.20
Fe2O3 % 55.76 32.17 44.88 36.51
CaO % 4.11 17.72 5.85 3.97
MgO % 0.10 0.37 0.28 0.10
BaO % 0.13 0.16 0.27 b.d.
K2O % 0.06 0.27 0.12 0.49

Na2O % 0.04 b.d. 0.13 0.51
SO3 % 0.22 0.41 0.02 0.07
SrO % 0.01 b.d. 0.03 b.d.

P2O5 % 1.69 3.28 8.69 4.85
As2O3 % 0.03 b.d. 0.03 b.d.

LOI % 25.12 40.62 30.63 21.21
Se ppm b.d. b.d. b.d. 0.013
As ppm 0.710 0.997 0.869 4.217
Zn ppm 1.86 0.17 0.89 2.25
Sr ppm 0.50 3.91 1.09 2.06
Ba ppm 5.46 6.60 10.84 15.83
Cu ppm 0.341 0.040 0.216 0.092
Ni ppm b.d. 0.084 b.d. b.d.
Cd ppm 0.021 0.040 0.060 0.041
Cr ppm 0.990 0.694 0.783 0.935
Hg ppm b.d. b.d. b.d. b.d.
V ppm 0.261 0.310 0.310 0.254

Notes: LOI—measured at 950 ◦C; b.d.—below detection limit.

The utilization of materials in the environment requires that these materials meet
certain environmental regulations. As the GWTRs are waste materials generated from
various industrial processes, it is important to assess the leaching behavior of metals and
anions. Despite this, concentrations of metals are typically low and similar to those in
soils, and most metals and metalloids occur in relatively stable forms; some concern was
also associated with the concentration of heavy metals in WTRs [18,19,47]. According
to the results from the toxicity characteristic leaching procedure (TCLP) and synthetic
precipitation leaching procedure (SPLP) [48], the concentration of trace elements in leachate
(As, Ba, Cd, Cr, Pb, Hg, or Se) was below the US EPA-allowable levels and below the US
primary or secondary drinking water standards. This suggests that WTR samples cannot
be considered hazardous waste. It is noteworthy that so far, no research has demonstrated
the toxic effect of WTRs on the environment, which suggests that it can be a safe material
for use as an adsorbent.

3.3. FTIR Analysis

Figure 2 shows the results of the FTIR analysis of GWTRs-1–4. The FTIR spectra
showed that the main peak (3420, 1639, 1419, 1092, 957 cm−1) positions and values were
similar for all four samples; however, there was a slight variation in the peak positions
and intensity of GWTRs-2 and 4. The FTIR spectra of GWTRs-1 and 3 were similar. The
broad peaks visible at the 3420 cm−1 region were attributed to the characteristic peak of
the –OH stretching vibrations of H2O [49]. The band located at the 1639 cm−1 region was
assigned to C=O stretching vibrations [50]. In the case of GWTR-2, the peak appeared
at 1419 cm−1, which is associated with the symmetrical stretching vibration of O=C-O,
whereas for GWTRs-1–3, the stretching vibration was significantly reduced. The aromatic
ring with a C=C bond is shown at 1503 cm−1 in the case of GWTRs-1, 3, and 4 [51]. The
strong band at 1012 cm−1 visible in the spectra of GWTRs-3 and 4, as well as the slight shift
to wave number 957 cm−1 for GWTRs-1 and 2, with a shoulder at 1095 cm−1, were the
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result of the formation of the binuclear complex between ferrihydrite and sulfates [39,52].
Ferrihydrite was characterized by very vague and fizzy absorption bands in the infrared
region; therefore, the unambiguous identification of this mineral by FTIR technique was
possible only at high concentrations [53].
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The FTIR spectra of GWTR-4 (Figure 2d) displayed peaks at 861 cm−1 and 775 cm−1

that are attributed to Si–O bonds of silica and quartz, which correspond with the XRD and
XRF results [54]. The Fe–O stretching vibrations appeared in the 400–600 cm−1 area [55].
Moreover, the last sharp peak at the wave number 468 cm−1 with a shoulder at 692 cm−1

visible for GWTRs-1 and 4 can be attributed to Fe–O and Mn–O stretching vibrations [24,25].
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In the case of materials containing mixtures of metal oxides, an accurate consideration
is required as in the region of bands with low wavenumbers characteristic for Mn–O
vibrations might be observed [56].

3.4. TG/DTA

Figure 3 shows the TG and DTA curves of GWTRs. The course of GWTRs-1–3 ther-
mograms was similar. The DTA curve revealed a very deep endothermic effect in the
low-temperature range associated with the removal of weakly bound water [57]. The
minimum of this effect is around 120–125 ◦C. It smoothly turned into an equally intense
exothermic effect with a maximum of around 290–312 ◦C, which can be associated with
the decomposition of the organic matter present in the GWTR samples [58]. For GWTR-1,
the curve has a slightly different course, and the exothermic effect was not that distinct,
which was confirmed by XRF analysis and the highest concentration of iron of all samples.
This effect might also be related to the transformation of ferrihydrite into hematite. The
exothermic peak is usually relatively sharp [59]. This exothermic peak is indicative of the
high energy released during its recrystallization to hematite [60,61]. However, the TG/DTA
analysis cannot confirm the presence of ferrihydrite in the case of GWTR samples due to
the high content of organic substances [62]. TG analysis showed a 17–23% loss of mass,
which is related to the desorption of adsorbed water that takes place at 100–200 ◦C and the
subsequent loss of mass (8–11%) at 200–400 ◦C. Further loss of mass, usually associated
with endothermic effects, occurred at higher temperatures. They were predominantly re-
lated to the thermal dissociation of carbonates and the decomposition of residuals of highly
transformed organic substances (450–500 ◦C). At temperatures above 600 ◦C, the effects
resulting from dehydroxylation and breakdown of the structure of GWTRs were mainly
observed. The last loss of mass was recorded at higher temperatures up to 900 ◦C. The very
low exothermic effect around 760–795 ◦C did not cause changes in phase composition and
crystal structure. It might be the conversion of the poorly crystalline hematite to a highly
crystalline phase [63]. Total loss of mass varied from 29% (GWTR-1) to 39% (GWTR-3).

DTA curves of GWTR-4 indicate the occurrence of several endothermic and exothermic
effects (Figure 2d). At temperatures ranging from 130 ◦C to 290 ◦C, endothermic and
exothermic effects were observed, as in the case of GWTRs-1–3. At temperatures above
580 ◦C, another deep endothermic effect was noticed, which is probably associated with
structural breakdown. TG analysis showed a 14% loss of mass due to the dehydration
process at 100–200 ◦C and the following loss of mass—6% and 4%. This result shows that
GWTR-4 had a lower loss in total mass (26%) than that of GWTRs-1–3, which might be
related to the high concentration of SiO2 and relatively low concentration of Fe2O3.

3.5. BET Analysis

Figure 4 shows the results of the nitrogen adsorption/desorption. The BET analysis
revealed that, according to the International Union of Pure and Applied Chemistry (IUPAC)
classification, GWTRs-1 and 3 are quite different from GWTRs-2 and 4 [64]. GWTRs-1
and 3 displayed a type II isotherm with a type H3 hysteresis loop (Figure 4). This suits
a mesoporous character with the construction of slit-shaped pores originating from the
stacking of crystal particles [64,65], whereas GWTRs-2 and 3 had a composite of type
IV isotherms with hysteresis loop of type H3, having adsorption curve characteristics of
typical mesoporous material [36]. Table 3 shows the results of SBET and porosity analysis.
According to the results, the values for SBET were diversified. GWTR-4 showed the lowest
value for SBET (49 m2/g), whereas GWTR-1 showed the largest one (246 m2/g). The large
surface area in the case of GWTR-1 is probably because of the highest concentration of
iron, as it is well known that iron oxides that existed in the amorphous phase led to its
large surface area [29]. GWTRs-2 and 4 had relatively smaller surface areas as they are
more crystalline than GWTRs-1 and 3, which was confirmed by XRD analysis. Textural
studies have shown the lowest proportion of macropores (15%, 16%, and 22%) in relation
to the volume of all pores for GWTR-1, GWTR-3, and GWTR-2, respectively. In the case of
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GWTR-4, micropores occupied the smallest volume (16%), which is reflected as a relatively
small surface area (49 m2/g). Mesopores had the largest share of the total pore volume
(41–55%). Coagulant-based Fe-SWTRs had a lower surface area (27.5 m2/g [66] and 76.8
m2/g [67]) than that of GWTRs, which is reported in this study (49–246 m2/g), as well as
120 m2/g, which was confirmed by Ocinski et al. [24].
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Table 3. Textural parameters of GWTRs.

Parameters GWTR-1 GWTR-2 GWTR-3 GWTR-4

SBET (m2/g) 246 203 144 49
Vtot

0.99 (cm3/g) 0.249 0.202 0.181 0.105
Vmic

T (cm3/g) 0.091 0.073 0.053 0.017
Vmic

T/Vtot
0.99 0.365 0.361 0.293 0.162

Vmes (cm3/g) 0.121 0.084 0.098 0.058
Vmes

BJH/Vtot
0.99 0.486 0.416 0.541 0.552

Vmac (cm3/g) 0.037 0.045 0.03 0.030
Vmac

BJH/Vtot
0.99 0.149 0.223 0.166 0.286

Notes: The parameters were calculated as follows: SBET—Brunauer–Emmett–Teller methodology; The total pore
volume Vtot

0.99 for the relative pressure P/P0 = 0.99; The volume of micropores Vmic
DR—Dubinin–Radushkevich

method; The volume of mesopores Vmes
BJH—Barrett–Joyner–Halenda (BJH) methodology.

3.6. SEM Analysis

The SEM is an effective method to examine surface morphology in the micro-region
of environmental samples; therefore, we conducted SEM analysis to study the unique
morphological characteristics in GWTR samples [68]. The SEM images (Figure 5) showed
a typical microcrystalline-organogenic microstructure. The size of grains varied widely,
and the small grains were approximately spherical. It can be observed that the grains were
aggregated into large agglomerates. SEM images of all samples revealed that the surface of
grains was uneven and rough [48]. Additionally, the surface of the grains showed varying
brightness in different regions, which suggests that GWTRs are amorphous [33]. These
results also demonstrate the porous nature of GWTRs, which would potentially enhance
sorption reactions due to their large surface area [16].
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SEM images confirmed the previous results. The amorphous nature of GWTRs
was also revealed by SEM images (Figure 5). Figure 5a shows a typical SEM image
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of GWTRs rich in iron content [3,24]. Differences in shapes and sizes of particles may
be observed, and the size of grains varied widely. Figure 5b shows a closer image of
GWTR-1 (13,000×magnification); it shows the grains aggregated into large agglomerates,
which is the size of several micrometers [24]. Figure 5c,d display small carbonate crystals
embedded within substantial cryptocrystalline-aggregated iron oxyhydroxides, which
corresponded well with XRD and XRF analysis. Figure 4d represented a fairly smooth
surface of the calcite crystal. Magnification of 3000× (Figure 5c) indicated many different
types of particles, including needle-shaped fragments, which might be organic compos-
ites [69]. Figure 5e,f are similar to Figure 5a,b. The samples had a lot of small particles,
which exhibited spherical ball-shaped morphology forming a rough surface with a porous
structure [43]. The well-crystalline phase was found to be absent. The residuals were rich in
dense iron material, which agreed with the results of the XRD and XRF analysis. The SEM
image for GWTR-4 revealed contrasting information when compared with other residuals
(Figure 5g,h). The big quartz grain, covered by iron, was visible. The surface of the crystal
appeared smooth with several cracks at 259×magnification (Figure 5g), with a rough and
porous surface apparent at 1000×magnification (Figure 5h). The particles had irregular
surfaces with edges (Figure 5h).

3.7. Isoelectric Point

The pHIEP was one of the most important parameters of adsorbents. Table 4 shows
the pHIEP of the GWTR samples. According to the results, the pHIEP values ranged from
4.0 to 4.5, and there was a minor difference between the four GWTR samples, which
might be caused by different concentrations of functional groups on the surface of the
particles that are responsible for its charge [70]. Below this pH, the surface of GWTRs had
a positive charge, which favors the uptake of anionic species [70]. However, above this
pH, the GWTRs had a negative surface charge, which favors the sorption of cations. This
observation was in agreement with a previous study, which reported that the pHIEP was
observed at 5 [71].

Table 4. Determination of the pH of the zero point of charge for GWTRs.

Parameter GWTR-1 GWTR-2 GWTR-3 GWTR-4

pHIEP 4.5 4.4 4.0 4.1

4. Conclusions

In summary, in this study, we investigated the structural and textural characterization
of GWTR, which is a product of the de-ironing and de-manganization process of ground-
water. Samples were obtained from four different water treatment plants located in Poland.
The difference between GWTRs were caused by the chemical composition of raw water,
as well as a water treatment technology. According to our results, GWTRs demonstrated
amorphous character based on various analyses. The noncrystalline structure increases
the surface area of GWTRsN2 adsorption/desorption analysis proved the mesoporous
structure of GWTRs. The GWTR particles showed irregular shape and size and tended
to form aggregates that are a few micrometers in size. The contribution of toxic heavy
metals was relatively low, which is considered as an advantage of GWTRs intended to be
used in sorption processes. According to our results, GWTRs had good physicochemical
characterization and textural properties comparable with commercially available sorbents
from the group of zeolites and bentonites. The concerns of increased WTRs production
rate and ways of reducing it deserve constant attention. Hence, it is important to develop a
novel and feasible solution for the treatment and disposal of GWTRs. Taking into account
all presented results, GWTRs should be considered as promising low-cost and effective
adsorbents for different pollutants, such as heavy metals and metalloids. Further studies
will examine sorption capacity, sorption mechanism, and desorption processes.
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Poznań, Poland, 2010; pp. 495–504.

45. Harper, T.R.; Kingham, N.W. Removal of arsenic from wastewater using chemicalm precipitation methods. Water Environ. Res.
1992, 64, 200–203. [CrossRef]

46. Sobesto, J.; Stover, T. Arsenic removal from potable water by means of flocculation filtration. In Proceedings of the Municipal and
Rural Water Supply and Water Quality III International Conference, Poznań, Poland, 11–13 September 1998.
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