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Abstract: Achieving good piezoelectric properties, such as the widely reported d33 charge co-
efficient, is a good starting point in establishing the potential applicability of piezoceramics.
However, piezoceramics are only completely characterized by consistent piezoelectric-elastic-
dielectric material coefficient matrices in complex form, i.e., including all losses. These matrices,
which define the various alternative forms of the constitutive equations of piezoelectricity, are
required for reliable virtual prototyping in the design of new devices. To meet this need, ten
precise and accurate piezoelectric dielectric and elastic coefficients of the material, including all
losses, must be determined for each alternative. Due to the difficulties arising from the coupling
of modes when using the resonance method, this complete set of parameters is scarcely reported.
Bi0.5Na0.5TiO3-based solid solutions are already commercially available in Europe and Japan.
Here, we report a case study of the determination of these sets of material coefficients (diα , giα , eiα

and hiα ; sE ,D
αβ and cE ,D

αβ ; εT
ik and εS

ik; and βT
ik and βS

ik), including all losses, of the commercial
PIC700 eco-piezoceramic. Plate, disk, and cylinder ceramic resonators of a manageable aspect
ratio were used to obtain all the material coefficients. The validation procedure of the matrices is
also given by FEA modeling of the considered resonators.

Keywords: bismuth sodium titanate; barium titanate; piezoelectricity; coupling; shear resonance;
dielectric properties; elastic properties

1. Introduction

Piezoceramics of Bi0.5Na0.5TiO3-based solid solutions are already commercially avail-
able in Europe under the denomination, PIC700 [1]. Moreover, there are commercial
ceramics based on the same material in Japan [2]. Achieving good piezoelectric properties,
such as the widely reported d33 charge coefficient for sensors, is a good starting point in
establishing their potential applicability. However, this knowledge is largely insufficient.
Consistent piezoelectric-elastic-dielectric material coefficient matrices in complex form,
i.e., including all losses, which define the various alternative forms of the constitutive
equations of piezoelectricity, are required for reliable virtual prototyping in the design of
new devices, which is a relatively inexpensive and time-saving procedure [3,4].

Finite Element Analysis (FEA) is widely used for device simulation. Nevertheless,
its potential for modeling lead-free commercial piezoceramics is still insufficiently ex-
ploited. This is due to the lack of complete sets of data, including all losses, for many of
these. The FEA modeling is often restricted to consider piezoceramics as lossless and even
isotropic materials, which is just a rough approximation of their real performance. Piezo-
electric ceramics have lossy properties, which are conveniently defined by complex values
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(P* = P′ − iP”) [5,6], and possess an induced anisotropy, created by the unique direction of
the electric poling field. Piezoceramics are also dispersive and non-linear materials, and
their set of properties only has validity in a given range of applied electrical and mechanical
fields and frequencies.

The material parameter determination from complex impedance measurements at the
electrically excited electromechanical resonances of piezoelectric ceramics and their analysis
are strictly valid only for monomodal, uncoupled modes. Aiming to avoid mode coupling,
the standard measurement guidelines on the resonance method [7,8] have established
the resonator geometries to be used and their dimensional aspect ratios. High aspect
ratios are recommended to separate the various modes of each resonator associated to
each of its dimensions. It is recommended to use 5 resonators (2 bar, 2 plate, and 1 disc),
whose characteristic resonance frequencies are in the interval from 100 kHz to a few MHz
for the full material characterization in the linear range. Standards were issued for the
determination of the ten independent piezoelectric, elastic, and dielectric coefficients, which
correspond to these 6 mm symmetry materials of each set of constitutive equations of the
piezoelectricity in the reduced form.

The resonance method is widely spread due to its advantages [9], namely, easily
available instrumentation, high repeatability, and high accuracy in terms of the results.
However, it is commonly considered to lack consistency in the results obtained for the
alternative forms of the sets of constitutive equations of piezoelectricity [7] that can be used
in numerical modeling using Finite Element codes: These equations are as follows:

Tij = cE
ijklSkl − ekijEk (1)

Di = eiklSkl − εS
ijEk (2)

Sij = sE
ijklTkl + dkijEk (3)

Di = diklTkl + εT
ikEk (4)

Sij = sD
ijklTkl + gkijDk (5)

Ei = −giklTkl + βT
ikEk (6)

Tij = cD
ijklSkl − hkijDk (7)

Ei = −hiklSkl + βS
ikDk (8)

where ekij, dkij, gkij, and hkij are the piezoelectric coefficient matrices; sE,D
ijkl and cE,D

ijkl are
the elastic compliances and elastic stiffness tensors, respectively, at a constant electric field
(E), closed circuit, or constant electric displacement (D), open circuit; εT

ik and εS
ik, βT

ik, and
βS

ik are the free (at constant, zero, stress (T)) and clamped (at constant, zero, strain (S))
relative dielectric permittivity matrices and dielectric impermeabilities or impermittivities
(β = 1/ε), respectively. These equations are currently being simplified using Einstein´s
summation convention of repeated subscripts (i, k = 1, 2, 3; ij = α; and kl = β, where α,
β = 1, 2, . . . , 6) and the subscript 3 to denote the polarization direction in the material. The
mentioned matrices’ inconsistency derives from the use of resonator modes at a relatively
wide range of frequencies and whose microstructural characteristics or poling levels may
not be identical. For this reason, it is a good practice to provide one or more validity and
consistency criteria of the set of parameters determined [8].

To provide a better consistency between matrices, it was shown previously that
all material coefficients can be determined from only 3 resonators and four modes of
resonance [3,10]. Measurements of the radial and thickness extensional modes of thickness-
poled thin disk can be used to obtain those parameters derived from the Length Thickness
Extensional (LTE) mode of a bar and the Thickness Extensional (LTE) mode of a thin
plate, which is thickness-poled. The full set of matrices is completed using well-known
relationships between coefficients [3,10].
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However, the thin plate for shear coefficient determination (e.g., d15, sE
55, and εS

11)
from the electrically-induced shear mode cannot be excluded from this reduced resonator
set. Two types of difficulties arise when using the standard thin shear plate, which is
length-poled and excited in thickness. They cause the associated parameters to be scarcely
reported and affect the consistency of the matrices. On the one hand, longitudinal poling
is a problem when dealing with materials of a high coercive field [11] or low dielectric
breakdown [12]. On the other hand, the coupling of shear modes and other lateral and
contour modes, which takes place in the shear resonance of standard length-poled shear
plates, is unavoidable [3,4,13,14]. Unfortunately, this leads to the stringent requirement
of aspect ratios between the length for poling (L), the width (w), and the thickness for
electrical excitation (t) of the plate of L, w > 20 t [15] and to an underestimation of the
piezoelectric coefficients [13].

To create an improved approach to the determination of the properties using the res-
onance method, we present, in this work, the determination of piezoceramic coefficients
by the measurement of four resonance modes in three poled ceramic resonators, includ-
ing a non-standard, thickness-poled, and shear plate [3]. An analysis of the complex
impedance spectra was carried out using a widely tested iterative automatic method
that overcomes the difficulties and limitations of the current standard procedures of
measurement [7,8]. Noticeably, this method has been implemented in the analysis of all
resonances under consideration [3,16–18]. Besides, the method is self-sustainable, as
it does not need an initial estimate of the parameters. Some issues to consider when
attempting to obtain weakly coupled resonances and reliable coefficients are discussed.
Commercial PIC700 ceramics were studied, and the piezoelectric-dielectric-elastic ma-
trices of material coefficients in complex form were determined for the alternative
types of constitutive sets of piezoelectricity (Equations (1)–(8)). Besides, the validity
of the matrices was tested by using them in Finite Element Analysis modeling for the
reproduction of the experimental measurements.

2. Materials and Methods
2.1. Materials

Bi0.5Na0.5TiO3-based commercial lead-free (PIC700; PI Ceramic GmbH, Lederhose,
Germany) poled ceramic resonators were studied in this work [19]. The ceramics were
prepared from high-purity oxide precursors by the conventional ceramic method. Samples
were cut and lapped to the desired dimensions. Afterwards, they were electroded and
poled in an oil bath, according to the company standards [19], whose details are protected
knowledge. All the resonators under study were poled to saturation in the same conditions
to ensure the consistency of the results obtained from them. All measurements were taken
for at least two samples—although statistical analysis is not an issue discussed in this
work—to verify that the results are not affected by microstructure accidents. Changes from
batch to batch could take place. The density of the considered samples was 5.49 g·cm−3.

2.2. Material Coefficient Determination

Piezoelectric, elastic, and dielectric complex coefficients in the linear range (diα, giα, eiα,
and hiα; sE,D

αβ and cE,D
αβ; εT

ik and εS
ik; and βT

ik and βS
ik), accounting for all losses, were

determined at room temperature from measurements of complex impedance curves. The
data were automatically acquired from an HP-4192A LF precision impedance analyzer
(Hewlett-Packard, Palo Alto, CA, USA) and controlled by a PC via a GPIB-PCIIA (National
Instruments). An automatic iterative method explained elsewhere [3,16,17] was here
used for the analysis of the curves for each resonance considered. Contrarily to standard
methods, this method does not require additional measurements, besides those of the
resonance. Four complex impedance spectra, Z*, of the electromechanical resonance modes
of three poled ceramic resonators were analyzed. These modes are: (i) Shear mode of
non-standard, thickness-poled, and longitudinally excited shear plates, (ii) Radial and (iii)
Thickness extensional modes of thickness-poled thin disks; and (iv) Length extensional
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mode of a longitudinally poled cylinder. The software used is available to the scientific
community [20].

Commonly, Z* is represented as the modulus (Z) and phase angle (θ) vs. frequency
plots (Figure 1a). Here, we also use an equivalent representation. The peak of the real part
of Z*, the resistance (R), and the peak of the conductance (G), the real part of the complex
admittance, which is the inverse of the impedance (Y* = 1/Z*). These is a convenient plot for
using the automatic iterative method (Figure 1b). After plotting these peaks, the frequencies
of the maximum G and R values, fs and fp, respectively, are automatically determined by
the software. For each of the considered modes, some material coefficients were directly
determined by the automatic iterative solution of the impedance/admittance expression
as a function of these coefficients and the resonator density (ρ) and dimensions (thickness
between electrodes for electrical excitation (t); electroded surface area (S)) [3,16,17]. In each
iteration of the analysis, the software solves a system of four equations for the values of
Z* or Y* measured at four frequencies, including fs and fp, by a numerical method, until a
convergence criterion of the last determined coefficients in comparison with the previous
ones is met.

Besides, using well-known expressions among coefficients of the constitutive equa-
tions [3,10], several other coefficients related to the studied mode were also determined
after the directly calculated ones. These are the electromechanical coupling factors (kx,
where x = 33, 31, 15, p (radial mode of the disc) and t (thickness mode of the disc)) and
the corresponding frequency numbers (Nx = f x

s (kHz) · D(mm), where f x
s is the series

resonance of the x mode, and D is the leading dimension of the resonance), as well as the
planar Poisson’s ratio.

After the directly obtained coefficients are available, a reconstruction of the spectra
(Figure 1b) is carried out. Calculation of the complex impedance as a function of the fre-
quency is conducted using the analytical expression that was just solved and the calculated
coefficients. The residuals for these R- and G-reconstructed peaks (a residual being the
difference between the experimental value for a given frequency and the value of the
reconstructed peaks at the same frequency) give us a regression factor for the iterative
analysis (<2). This parameter accounts for the validity of the analytical expression and
these coefficients for 1D modeling of this mode of resonance. The higher the coupling of the
resonance with other undesired resonances, the lower the <2. The closer the experimental
resonance to a monomodal resonance, the closer <2 is to 1.

2.3. Finite Element Modelling

The FEA modeling software (COMSOL Inc., Burlington, MA 01803, USA, COMSOL
Multiphysics® 4.3) was used. The piezoelectric device module (PZD) was used to simulate
the piezoelectric response of the four resonance modes of the three resonators considered
here. The mesh used typically has five nodes per wavelength, which allowed for simulating
the modes of resonance that are excited, together with the fundamental resonance under
study. The number of frequencies analyzed was chosen to obtain the needed resolution
of each calculated spectra. The shear plate was simulated as a full 3D item. This typically
results in a calculation time of up to 5 h for each sweep of 1000 frequencies. The cylinder
and disk resonators were simulated using their rotational symmetry, which results in faster
calculations. The 3D harmonic analysis used here provides the complex impedance values
in a given interval of frequencies. The intervals of the frequency of interest in the present
work were those of the experimental measurements.

3. Results and Discussion
3.1. Measurements and Calculation of the Piezoelectric, Elastic, and Dielectric Material Coefficients
3.1.1. Shear Resonance of Non-Standard, Thickness-Poled, and Longitudinally Excited
Thin Plates

Thin PIC700 ceramic plates of a ratio between the length for electrical excitation to
thickness for poling L/t = 3.75 were initially prepared with t = 2.00 mm. Figure 1a shows
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the experimental spectra in (Z, θ) plots for this resonator. In addition to the fundamental
shear mode associated to the thickness of the plate, which takes place at fs = 797.7 kHz
and is marked as 3, four other modes are measured. The resonances marked as 1 and
2 correspond to modes taking place at lower frequencies, which are associated with the
larger lateral dimensions of the plate. Their overtones appear at periodically distributed
frequencies. Those marked with 4 and 5 are coupled with the fundamental shear resonance,
which is marked 3. This invalidates the sample for the accurate determination of complex
material coefficients.
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Figure 1. Shear resonance mode of non-standard, thickness (t) poled, and longitudinally (L) excited plates: (a) Impedance
spectra in (Z, θ) plots, and (b) the same spectra in the equivalent (R, G) plots. In the (Z, θ) plots, the lines are only a “guide
for the eye” in between the experimental points, and the frequency interval covers the lateral modes (marked as 1, 2, 4, and
5) at both sides of the fundamental shear mode (marked as 3). In the (R, G) plots, the symbols are the experimental data,
and the lines are the reconstructed peaks after the calculation of the coefficients for the fundamental shear mode of the
plates. The values of the regression factors for these calculations (<2) are shown. Figure (a) shows two spectra: the one
corresponding to the initial plate with t = 2 mm (red circles; full symbols for Z values and open symbols for θ values) and
the one for the reduced plate with t = 1.66 mm (black squares; full symbols for Z values and open symbols for θ values). The
other two dimensions, L = 7.49 mm and w = 7.45 mm, remain unaltered in the process. Figure (b) shows the two equivalent
spectra for the same plates as in Figure (a), (red circles for t = 2 mm and black squares for t = 1.66 mm). In Figure (b) the full
symbols are used for the G values, and open symbols are used for the R values. Additionally, in Figure (b) the spectra of
an intermediate plate with t = 1.93 mm and L/t = 3.89 (blue triangles) and of a plate after a further thickness reduction to
t = 1.61 mm and L/t = 4.66 (blue rhombus) are shown to complete the description of the resonance decoupling process.

The major surfaces of the non-standard plate are not electroded for the electrical excita-
tion of the resonance and the impedance measurement. It is therefore feasible to reduce the
thickness, which increases the L/t ratio and the frequency of the fundamental resonance
by polishing the major surfaces in steps of approximately 0.05 mm. Measurements were
taken after each step for the control of the coupling. As the lateral dimensions remain
unchanged, the frequencies marked 1 and 2 for the lateral modes are unaffected. The
coupling diminishes as the shear frequency moves away from these frequencies to higher
frequencies. Noticeably, these modes are weakened as their frequency is separated from
the frequency for the fundamental shear. The calculations carried out in each step are not
strictly valid for the accurate determination of the properties [21], but they allow for the
quantitative evaluation of the coupling, using the regression factor for the iterative analysis
(<2). Figure 1a also shows the resonance spectra, measured again after the thickness of the
plate was reduced in steps to a plate with t = 1.66 mm (L/t = 4.52), which has a virtually
uncoupled fundamental shear mode taking place at fs = 892.0 kHz.
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Figure 1b shows the alternative (R, G) plot for the two samples shown in Figure 1a
and for the intermediate plate with L/t = 3.89. Both the experimental and reconstructed
spectra, after calculation, are shown in Figure 1b, together with the increasing values of <2,
from the initial 0.8420 to the intermediate value of 0.9003 and up to 0.9780 for the sample of
t = 1.66 mm. Figure 1b shows also the data for a plate with L/t = 3.89, after a further
thickness reduction to t = 1.61 mm, which again shows a coupled shear mode due to
interference, with modes 4 and 5 marked in the spectra of the t = 1.66 mm sample in
Figure 1a. For this sample, <2 is reduced to 0.9560. This indicates that the maximum
decoupling of modes was surpassed, and the resonators evolve away from a monomodal
resonance once again.

The described procedure does not follow the standard procedure for preventing cou-
pling by the separation of frequencies of the resonance modes of the resonator, associated
with each one of its dimensions, by measurement in high-aspect-ratio resonators. It is
assumed that, in this way, the overtones of low-frequency modes become weaker at higher
frequencies, and the same occurs in the case of coupling with the high frequency resonance
of interest.

Nevertheless, previous work on thickness-poled shear plates has shown that undesir-
able overtones of lateral modes are activated by coupling when the shear mode frequency
is in coincidence with their frequency. This occurs periodically. This periodical sequence
of coupling–decoupling processes of the non-standard shear resonator was observed for
a soft lead titanate-zirconate (PZT; four periods studied from L/t = 7.5 to 15) [3] and for
a barium calcium titanate-zirconate (BCZT; five periods studied from L/t = 6 to 12) [19].
Besides, it was modeled by FEA for bismuth sodium barium titanate (BNBT; three periods
modeled from L/t = 7.5 to 14.5) [22].

According to the results shown in Figure 1, the plate used here for the coefficient de-
termination was the t = 1.66 mm one. This was efficiently decoupled from lateral modes,
despite its low aspect ratio, compared with the standard recommended procedure.
Besides, this was achieved using a method that is not feasible for the standard resonator,
because it requires multiple steps for the removal of electrodes and re-electroding at
room temperature.

The directly calculated coefficients in this mode are εS
11, e15, and sE

55, and, from these,
εT

11, d15, h15, g15, sD
55, cE

55, and cD
55 are also calculated. Due to the symmetry d24 = d15,

e24 = e15, h24 = h15, g24 = g15, εT,S
22 = εT,S

11, sD,E
44 = sD,E

55, and cD,E
44 = cD,E

55 are also
determined. Additionally, the electromechanical coupling factor and frequency number,
k15 and N15, are obtained from this resonance mode. These are shown in Tables 1–3.

Table 1. Complex elastic coefficients of the PIC700 eco-piezoceramic (*).

sE,D
αβ = s′ + is′′/

10−12·m2·N−1 sE
11 sE

12 sE
13 sE

33 sE
55 sE

66 sD
11 sD

12 sD
13 sD

33 sD
55 sD

66

s′ 8.5998 −2.0200 1.673 8.9803 20.7702 21.24 8.5219 −2.0979 2.004 7.4639 18.6114 21.24

s′′ −0.0663i +0.0154i −0.012i −0.114i −0.2550i−0.163i −0.0577i +0.024i −0.03i −0.0486i −0.2322i −0.163i

cE,D
αβ = c′ + ic′′/

1010 N·m−2 cE
11 cE

12 cE
13 cE

33 cE
55 cE

66 cD
11 cD

12 cD
13 cD

33 cD
55 cD

66

c′ 13.102 3.686 −3.127 12.299 4.8139 4.708 14.056 4.641 −5.019 16.092 5.3722 4.708

c′′ +0.107i +0.034i −0.044i −0.164i +0.0591i +0036i +0.043i −0.029i +0.049i +0.033i +0.067i +0036i

(*) Directly calculated parameters are quoted in bold.
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Table 2. Complex piezoelectric coefficients of the PIC700 eco-piezoceramic (*).

diα = d′ + id′′

/10−12 C·N−1 d31 d33 d15
eiα = e′ + ie′′

/C·m−2 e31 e33 e15

d′ −21.1408 89.685 (**) 102.9606 e′ −6.357 11.0862 4.9590
d′′ +1.4046i −3.162i −4.4218i e′′ +0.265i +0.5252i −0.1520i

hiα = h′ + ih′′

/108 V·m−2 h31 h33 h15
giα = g′ + ig′′

/mV·N−1 g31 g33 g15

h′ −15.173 26.4709 11.2442 g′ −3.6952 15.632 20.9383
h′′ −0.408i +0.5634i +0.5044i g′′ +0.1393i −0.0180i +0.6777i

(*) Directly calculated parameters are quoted in bold. (**) The quasi-static value is 120 × 10−12 C.N−1 in Berlincourt meters (100 Hz).

Table 3. Complex dielectric coefficients, Poisson´s ratios, electromechanical coupling factors, and frequency numbers of the
considered resonances of the PIC700 eco-piezoceramic (*).

εS,T
ik = ε′ + iε′′

/ε0
εS

11 εS
33 εT

11 εT
33

βS,T
ik = β′+iβ′′

/10−4/ε0
βS

11 βS
33 βT

11 βT
33

Poisson’s Ratio
(σP)

ε′ 554.02 472.31 496.43 648.00 β′ 17.948 21.073 20.029 15.414 0.235
ε′′ −41.78i −32.46i −37.54i −22.1i β′′ +1.353i +1.448i +1.515i +0.526i +0.00002i

kx = k′ + ik′′ k31 k33 k15 kp kt
Nx

/kHz·mmN33 N15 Np Nt

k′ 0.07632 0.41102 0.32239 0.14737 0.43482 2231.47 1480.72 3021.04 2381.00
k′′ −0.00405i−0.00504i−0.00028i−0.00783i −0.00776i

(*) Directly calculated parameters are quoted in bold.

3.1.2. Resonances of a Thickness-Poled and Excited Thin Disk

(a) Extensional radial resonance of the disk

This is the only resonance mode for which it is necessary to conduct additional
measurement outside the fundamental resonance spectrum to apply the iterative method.
The series frequency of the first overtone of this mode (f 2s) is used to calculate the first
estimate of the planar Poissón´s ratio (σP) from the ratio, f 2s/fs [17].

Radial resonance-derived parameters are the most commonly reported, since it is the
mode of the lower frequency of the disk, and it is not affected by coupling. Figure 2 shows
the monomodal impedance spectrum of the radial mode as an (R, G) plot of a thickness-
poled and excited thin disk with a diameter of 12 mm and t = 1.15 mm. The experimental
and reconstructed spectra are shown. The coefficients from the iterative method lead to a a
high regression factor <2 = 0.9999.

The directly calculated coefficients in this mode are εT
33, d31, and sE

11, which are
the coefficients that can otherwise be obtained by the LTE of a thickness-poled bar. The
coefficient sE

12 is also determined in the radial mode from the Poisson´s ratio and given
the expression σP = (−s12

E⁄s11
E). Besides, g31, sD

11, and sD
12 are also calculated from the

previous values, along with sD,E
66 = 2(sD,E

11 − sD,E
12) and cD,E

66 = 1/sD,E
66. Due to the

symmetry d32 = d31, g32 = g31, s21 = s12, and s22 = s11 are determined. Additionally, the
electromechanical coupling factors and frequency numbers, kp, Np, and k31, were obtained.
These are shown in Tables 1–3.

(b) Extensional thickness resonance of the disk

In comparison with the relatively easy to handle monomodal resonances of bars and
plates, great care must be taken with the disc resonator and its dimensional ratio to avoid
complex high-frequency resonance modes. These are the overtones of the planar mode
or the contour modes, which are coupled with the high-frequency fundamental thickness
mode of the disk. For this purpose, the recommended standard procedure is to have a
diameter to thickness ratio (D/t) > 10. However, it is also widely reported that coupling
takes place also under this condition [9,23–25].
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Figure 2. Fundamental radial extensional resonance mode of a thickness-poled and excited thin disk.
Impedance spectra in an (R, G) plot of a disk with a diameter of 12 mm and t = 1.15 mm. The symbols
are the experimental data, and the lines are the reconstructed peaks after the calculation of the
coefficients. The value of the regression factor for this calculation (<2) is shown. The black symbols
and lines (G data) can be read in the left-y-axis, and the blue ones (R data) are in the right-y-axis.

Figure 3 shows the impedance curve in an (R, G) plot for the thickness extensional
mode used for the evaluation of the parameters in this mode. A distorted spectrum is
shown, which is the result of coupling. This deficiency would pose some problems with
the accuracy of the material coefficients obtained, particularly the losses, as reflected by
the regression factor of the calculation: <2 = 0.8720. Undoubtedly, research must still be
conducted with the aim of enhancing this experimental result, which compromises the
overall determination of matrices. However, this type of spectra is what is commonly
accepted as a manageable aspect ratio and impedance curve for analysis when working
with the thickness modes of disks [9,23–25].
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Figure 3. Fundamental thickness extensional resonance mode of a thin disk. The impedance spectra
in an (R, G) plot of a disk with a 12 mm diameter and 1.00 mm thickness. The symbols are the
experimental data, and the lines are the reconstructed peaks after the calculation of the coefficients.
The value of the regression factor for this calculation (<2) is shown. The black symbols and lines (G
data) can be read in the left-y-axis, and the blue ones (R data) are in the right-y-axis.

The directly calculated coefficients in this mode are εS
33, h33, and cD

33. They can also
be obtained from the LE mode of a thickness-poled thin plate. From these coefficients, e33
and cE

33 are also calculated. At this stage of the process, the εS
ij matrix is complete, which
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allows for the calculation of the βS
ij matrix. Additionally, the electromechanical coupling

factor and frequency number, kt and Nt, are obtained. These are shown in Tables 1–3.

3.1.3. Longitudinal Resonance of a Longitudinally Poled and Excited Cylinder

Figure 4 shows the impedance curve in an (R, G) plot for the length mode used for
the evaluation of the parameters. As it corresponds to the mode of the resonator with
the lowest frequency, this is uncoupled, and the regression factor from the calculation is
high (<2 = 0.9998). The directly calculated coefficients in this mode are εT

33, g33, and sD
33.

Due to the frequency dependence of the permittivity, the εT
33 determined in this mode is

higher than the one determined in the thickness mode taking place at a higher frequency
(Figure 3). Consequently, at this point, there is a need for an expert selection of the value
that is more amenable for the validity of the matrices for FEA modelling [10].
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Figure 4. Fundamental length extensional resonance of a thickness-poled and excited cylinder.
The impedance spectra in an (R, G) plot of a cylinder with a 6 mm diameter and 15 mm length.
The symbols are the experimental data, and the lines are the reconstructed peaks after the calcula-
tion of the coefficients. The value of the regression factor for this calculation (<2) is shown. The
black symbols and lines (G data) can be read in the left-y-axis, and the blue ones (R data) are in
the right-y-axis.

At this stage of the process, with the coefficients determined for this resonance mode,
the giα and εT

ij matrices are complete, which allows the βT
ij matrix to be calculated. From

these coefficients, d33, which completes the diα matrix as well, and sE
33 are also calculated.

Due to the frequency dependence of the material coefficients, this d33 value at resonance is
lower than the quasi-static one measured at 100 Hz. Additionally, the electromechanical
coupling factor and frequency number, kt and Nt, are obtained. These are shown in
Tables 1–3.

3.1.4. Combined Determination of the Remaining Material Coefficients

The combination of the coefficients obtained from the radial and thickness extensional
resonances of a thin disk and the length extensional resonance of the cylinder, together with
the well-known relationships among these coefficients [3,7,8,10], also gives the following:

(a) from the inversion of the matrices, we have the following expression:

cE
33 =

−sE
13

sE
33(s

E
11 + sE

12)− 2sE
13

2
(9)
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and, hence, we can obtain sE
13. From sE

13, the symmetry considerations provide sE
23 = sE

13,
sE

31 = sE
13, and sE

32 = sE
13. This completes the sE

αβ matrix and allows the calculation of its
inverse, cE

αβ, which at this point was only lacking the values of cE
11, cE

12, and cE
13, to be

completed. This also ensures consistency between the stiffness and compliance matrices.

(b) knowing cE
11, cE

12, and cE
13, we can make use of Equation (62) in [8] to obtain e31

from the following:

e31 = d31

(
cE

11 + cE
12

)
+ d33cE

13 (10)

This completes the eiα matrix.

(c) by the relationships between the coefficients, we can calculate h31 using the
following expression:

h31 =
e31

εS
33

(11)

This completes the hiα matrix.

(d) making use of Equation (29) in [8], we can obtain sD
13 from the following:

sD
13 = sE

13 −
d31d33

εT
33

(12)

and, similarly, by the symmetry considerations, we can also determine sD
23 = sD

13,
sD

31 = sD
13, and sD

32 = sD
13. This completes the sD

αβ matrix and allows the calculation
of its inverse, cD

αβ, which at this point was lacking the values of cD
11, cD

12, and cD
13, to

be completed. This completes all the matrix determinations, as shown in Tables 1–3, and
determines the consistency between the cD

αβ and sD
αβ matrices.

The PIC700 eco-piezoceramic has been considered a good replacement for PIC 255
(PI Ceramic GmbH, Lederhose, Germany) material [1]. PIC255 is a soft-type modified
lead zirconate-titanate, which is characterized by a moderate permittivity, high thickness
coupling factor, high charge coefficient, and low mechanical quality factor (ratio P′/P” for
elastic coefficients) [19]. Applications of this ceramic type are in low-power ultrasonic
transducers, non-resonant broadband systems, and force and acoustic sensors. PIC700
is additionally characterized by a lower planar coupling factor, higher electromechanical
anisotropy [26], and lower density (Table 3).

When standard procedures are used, this is not a sufficiently precise method for
determining a physically meaningful and mathematically coherent set of properties. To
obtain a coherent set of matrices suitable for FEA analysis, these results must be optimized,
using a suitable algorithm to minimize the overall error.

Here, we have used a validity check at each considered resonance mode through
the reconstruction of the measured spectrum and considering only results with high
enough <2 values. Additionally, we have used a thickness-poled and non-standard shear
plate producing accurate complex shear coefficients, as the shear mode can be efficiently
decoupled from other modes. The procedure reported here for the calculation of the
coefficients by combining parameters that were obtained from previously analyzed spectra
is not a universal solution, as there are options for calculating the indirectly determined
coefficients [8,10].

3.2. Validation of the Piezoelectric, Elastic, and Dielectric Material Coefficients

The validity of the coefficients shown in Tables 1–3 will be evaluated in the following.
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3.2.1. Meaningful Losses

Holland’s criteria [26] for the material to be passive, in the sense of not being an energy
generator, are given for the matrices of complex coefficients by the following expressions:∣∣∣sE′′

11

∣∣∣ ≥ ∣∣∣sE′′
12

∣∣∣ (13)

(sE′′
11 · sE′′

33) ≥ (sE′′
13)

2
(14)

(sE′′
11 · εT′′

33) ≥ (d′′ 31)
2 (15)

(sE′′
33 · εT′′

33) ≥ (d′′ 33)
2 (16)

(sE′′
44 · εT′′

11) ≥ (d′′ 24)
2 or, equivalently, (17)

(sE′′
55 · εT′′

11) ≥ (d′′ 15)
2 (18)

sE′′
33 · (sE′′

11 + sE′′
12) ≥ 2(sE′′

13)
2

(19)

εT′′
33 · (sE′′

11 + sE′′
12) ≥ 2(d′′ 31)

2 (20)

These criteria were checked, and they are fulfilled by the set of data in Tables 1–3,
which provide the first consistency criteria of the accomplished material coefficients.

3.2.2. Finite Element Analysis

Figure 5a shows the FEA modelled (/Z/, θ) spectra, including the lateral and
the fundamental shear modes, for the coupled and decoupled resonances of the non-
standard shear plates of a thickness t = 2.00 mm and t = 1.66 mm, respectively, whose
experimental spectra are shown in Figure 1a. Both were calculated using the values
of the complex coefficients shown in Tables 1–3. Figure 5b shows the (R, G) spectra
for the plate used for the material coefficient determination (t = 1.66 mm). The height
and frequency, where the main resonances are positioned in the FEA modeled spectra,
are in good agreement with their respective experimental data, marked as 3 for the
fundamental shear mode. It is worth noting that the agreement is also good for the
secondary modes, marked as 1, 2, 4, and 5. The calculated parameters show the validity
of the reproduction of all details of the spectra.

Figures 6–8 show the FEA modeled spectra in (R, G) plots in the fundamental radial
and thickness extensional modes of the thin disk and length extensional mode of the
cylinder. The monomodal resonances are well modeled (Figures 6 and 8).

Figure 7 shows a good reproduction of the positions for the minimum and maximum
impedance modulus (Figure 7a) and the maxima of the main R and G peaks (Figure 7b) of
the coupled resonance. Besides, all secondary features of the experimental spectrum in the
distorted thickness extensional mode are also reproduced in the FEA-modeled curves.

The overall comparison between experimental and 3D FEA modeled spectra shown
in Figures 5–8 is a positive criterion for the validity of the complex material coefficients
shown in Tables 1–3 in a frequency interval from 100 kHz to at least 3 MHz.
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Figure 5. 3D FEA modeled shear resonance of non-standard, thickness-poled and longitudinally excited plates (L):
(a) impedance spectra in (Z, θ) plots and (b) spectra in the equivalent (R, G) plots. In the (Z, θ) plots, the lines are only a
“guide for the eye” in between the modeled points. In Figure (a), the spectra for plates with L = 7.49 mm, w= 7.45 mm, and
with an initial t = 2 mm (red circles) and reduced t = 1.66 mm (black squares) are shown. Full symbols are used for the
Z values and open symbols for the θ values. The corresponding experimental (Z, θ) plots are given in Figure 1a. In the
equivalent (R, G) plots in Figure (b), the 3D modeled spectrum of the plate with a reduced t = 1.66 mm is shown as a black
thick line for the G peak and blue thick line for the R peak. For comparison, the experimental spectrum and the 1D modeled
one (the spectra reconstructed using the iterative method) are also shown in Figure (b). The symbols are the experimental
data of G (closed black circles) and R (open blue circles), and the thin lines are the reconstructed peaks (1D model) (black
line for G and blue line for R). In Figure (a,b), the frequency interval covers the lateral modes (marked 1, 2, 4 and 5) on both
sides of the fundamental shear mode (marked as 3).
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Figure 6. Fundamental radial extensional resonance mode of a thickness-poled and excited thin disk.
The FEA-modeled (thick lines) impedance spectrum in an (R, G) plot of a disk with a diameter of
12 mm and a thickness of 1.15 mm. The experimental data (symbols) and the reconstructed spectrum
after the calculation of the parameters in a 1D model (thin lines) are also shown for comparison.
Black symbols and lines (G data) can be read in the left-y-axis, and the blue ones (R data) are in
the right-y-axis.
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Figure 7. Fundamental thickness extensional resonance of a thickness-poled and excited thin disk. 3D FEA-modeled
impedance spectrum: (a) (Z, θ) plot; and (b) equivalent (R, G) plot of a disk with a diameter of 12 mm and a thickness of
1.00 mm, shown as thick lines. The two types of plot also show the experimental spectrum (symbols). Figure (b), (R, G)
plots showing the reconstructed spectrum after the calculation of the parameters (1D model) as thin lines. Black symbols
and lines (Z and G data) can be read in the left-y-axis, and blue ones (θ and R data) are in the right-y-axis.
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Figure 8. Fundamental length extensional resonance of a thickness-poled and excited cylinder. 3D
FEA-modeled impedance spectrum in an (R, G) plot of a cylinder with a diameter of 6 mm and
a length of 15 mm (shown as thick lines). The experimental and reconstructed spectra after the
calculation of the parameters (1D model) are also shown as symbols and thin lines, respectively, for
comparison. Black symbols and lines (G data) can be read in the left-y-axis, and blue ones (R data)
are in the right-y-axis.

4. Conclusions

A non-standard strategy for obtaining an uncoupled shear resonance mode of a
thickness-poled and longitudinally excited shear plate of PIC700 eco-piezoceramic was
described here. It allows for the use of an analytical expression of the resonance, which
is strictly valid for a monomodal resonance, on samples with an aspect ratio as low as
L/t = 4.52, whereas the standard measurement procedure requires aspect ratios higher than
20. This strategy led to an accurate determination of all related shear material complex
coefficients from a manageable aspect ratio plate, along with the material losses.



Materials 2021, 14, 4076 14 of 15

All piezo-dielectric and elastic matrices of the PIC700 piezoceramic for the alternative
forms of the sets of constitutive equations of piezoelectricity were obtained from additional
measurements of the disks and cylinders. An analysis of the impedance curves was made
by the automatic iterative method. A quantitative evaluation of the validity of the complex
coefficients, obtained at each resonance using the regression factor of the recalculated
spectra (<2), was accomplished. The selection of spectra with a high <2 allows for the use
of resonators of a manageable aspect ratio. The matrices of the coefficients are consistent
and show the validity of PIC700 material modeling using an FEA in a frequency interval
from 100 kHz to a few MHz.
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