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Abstract: B4C/TiB2 ceramic composites reinforced with three size scales (average particle size: 7 µm,
500 nm, and 50 nm) of TiB2 were prepared by using a pressureless sintering furnace at 2100 ◦C under
Ar atmosphere for 60 min. The results demonstrated that during the sintering process, TiB2 located
on the boundaries between different B4C grains could inhibit the grain growth which improved the
mass transport mechanism and sintering driving force. A semi-coherent interface between B4C and
SiC was found, which is supposed to help to reduce the interface energy and obtain good mechanical
properties of the B4C/TiB2 ceramic composite. On sample cooling from sintering temperature to
room temperature, the residual tensile stress fields formed at the TiB2 interfaces owning to the
thermo-elastico properties mismatched, which might have contributed to increase the ability of the
sample to resist crack propagation. The results showed that the relative density, Vickers hardness,
and fracture toughness of the composite with 20 wt.% submicron and 10 wt.% nano-TiB2 were
significantly improved, which were 98.6%, 30.2 GPa, and 5.47 MPa·m1/2, respectively.

Keywords: pressureless sintering; B4C-TiB2; particle size; microstructure; microstructure evolution

1. Introduction

Boron carbide (B4C) ceramics are interesting structural ceramics in view of their
outstanding physical and mechanical properties, especially the combination of low density
and extremely high hardness which make them superior anti-ballistic materials over
other armor ceramics (such as Al2O3, SiC) [1–3]. However, the expensive costs of B4C
ceramics fabricated through the hot isostatic pressing (HIP) method severely limits its wide
application in the armor protection field [4–6]. In addition, its low self-diffusivity efficiency
indicates that the sintered body could not achieve the goal of densification through the
single solid-state sintering technique. Recently, numerous attempts have been made to
overcome these disadvantages, such as the introduction of a second phase and sintering
additives into the B4C matrix to fabricate composites. Transition metal borides, such as
TiB2 [7,8], ZrB2 [9,10], and HfB2 [11], having high thermal expansion coefficients, and the
residual stress fields between B4C and borides rising during the cooling process possibly
enhance the fracture toughness of the fabricated composites [12,13].

Recently, the B4C/TiB2 ceramic composites have been the object of numerous
works [14–17]. The additives of TiB2 to B4C phase can maintain the advantages of high
Vickers hardness and low density of B4C and, in addition, inhibit the grain growth [16].
Additionally, the physical and mechanical properties of the B4C/TiB2 composites without
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additives prepared from the B4C and TiB2 powder are very low. The relative density of
B4C-30 wt.% TiB2 composites without any additives prepared via pressureless sintering
was lower than 90% [18,19]. The flexural strength of the B4C/TiB2 ceramic composite
reached 717 MPa for the hot-pressured method, which was above two times higher than
those (260–361 MPa) fabricated via pressureless sintering [16]. Many researchers have
used the B4C-TiO2-C powder mixture to prepare the B4C/TiB2 composites in different
ways, such as the reactive pressureless sintering, hot-pressing, and pulse electric-current
sintering [20,21]. Since the introduction of fine TiB2 grains by in-situ reaction, the B4C
and TiB2 grain size retained submicron sizes, and the mechanical property tests indicated
that the prepared B4C/TiB2 ceramic composites achieved the excellent Vickers hardness
~39.3 GPa and flexural strength ~865 MPa, respectively [7]. B4C with various particle
sizes was introduced to fabricate B4C/TiB2 ceramic composites under the condition of hot
pressing, and both of the B4C and TiB2 grains were grown compared to the raw powders
after hot pressing [22]. Many studies have shown that for B4C ceramic composites, C and
Si are good sintering aids [23–27]. Carbon removes oxides (such as B2O3) in the B4C raw
powder, and improves the interfacial tension by the way of solid solution of carbon atoms
into the boron carbide lattice, which increases the sintering driving force [23,24]. A small
amount of Si in the B4C ceramics tends to form a silicide phase, which could improve the
sintering ability of B4C [25–27].

Although hot-pressing and pulse electric current sintering can obtain high-performance
composites, the equipment and production costs are high, and the product size is small.
The pressureless sintering is an efficient way to fabricate B4C/TiB2 composites with large
sizes and low costs. At present, the research on improving the performance of the B4C/TiB2
ceramic composites prepared under pressureless sintering conditions is relatively scat-
tered [18,28,29], and these reports indicate that the sintering temperature and TiB2 content
have a great influence on the microstructure and density of the composite. Additionally,
the research regarding the TiB2 particle size affecting the sintering behavior of B4C/TiB2
ceramic composites under pressureless sintering conditions is rarely reported. In our
present work, the B4C/TiB2 ceramic composites with 30 wt.% TiB2 were fabricated via
the pressureless sintering method from commercial B4C raw powder with the average
size of 3 µm and TiB2 raw powder with three different size scales (7 µm, 500 nm, and
50 nm), and mixed in variable mass ratio. In addition, carbon black and silicon particles
were used as sintering auxiliary components. Furthermore, the effect of TiB2 grains on
the interfaces to optimize the microstructure of the B4C/TiB2 composites was thoroughly
investigated. This research should be beneficial to fabricate the excellent performance of
B4C/TiB2 ceramic composite.

2. Materials and Methods

Raw materials were B4C powder (3 µm, purity: >99.5%; Zhengzhou Songshan Boron
Technology Co., Ltd., Zhengzhou, China), silicon raw powder and carbon black raw pow-
der (submicron, purity: >99.8%, Shanghai ST-NANO Co. Ltd., Shanghai, China), and
TiB2 powder (purity: >99%; Shanghai ST-NANO Co. Ltd., Shanghai, China). Figure 1a–c
show the three type morphologies of the TiB2 raw powders. Figure 1a depicts the micro-
topography of micro-TiB2 powder with average size about 7 µm. Figure 1b,c show the
microtopography of submicron TiB2 powder with average size about 500 nm and nano-TiB2
powder with average size about 50 nm, respectively. Table 1 lists the phase composition
of the three mixtures. The mixed raw powders were ball-milled in ethyl alcohol absolute
with ZrO2 balls and then dried using a rotary evaporator (R205B, Shanghai Shensheng
Technology Co. Ltd., Shanghai, China). The powder mixture was pressed in a graphite die
and then cold isostatic pressed (CIP, LDJ100/320–300, Sichuan Aviation Industry Chuanxi
Machine Factory, Sichuan, China) to form a green body with a 50 mm diameter. The sam-
ples were processed by pressurelss sintering in a graphite crucible (FCT Systeme GmbH,
Rauenstein, Germany) at 2100 ◦C for 60 min at a heating rate of 10 ◦C per minute under
flowing Ar atmosphere.



Materials 2021, 14, 5227 3 of 10

Materials 2021, 14, x FOR PEER REVIEW 3 of 11 
 

 

were processed by pressurelss sintering in a graphite crucible (FCT Systeme GmbH, Rau-
enstein, Germany) at 2100 °C for 60 min at a heating rate of 10 °C per minute under flow-
ing Ar atmosphere. 

 
Figure 1. Nominal particle size and SEM images of commercial TiB2 raw powders (a) TiB2-7 μm 
(Micron), (b) TiB2-500 nm (Submicron), (c) TiB2-50 nm (Nano). 

Table 1. Starting composition of BM30, BM10S20, and BS20N10 ceramic composites. 

Grade 
B4C 

(wt.%) C (wt.%) Si (wt.%) 
Micron TiB2 

(wt.%) 
Submicron 
TiB2 (wt.%) 

Nano TiB2 
(wt.%) 

BM30 60 7 3 30 / / 
BM10S20 60 7 3 10 20 / 
BS20N10 60 7 3 / 20 10 

The relative densities of the samples were determined through Archimedes’ princi-
ple in deionized water. The average grain size was estimated by intercept method and 
more than 200 grains on the surface after polishing and thermally etching were measured. 
The flexural strength of the prepared specimens which were cut into the bars of 3 × 4 × 35 
mm3 was tested on an electromechanical universal testing machine (INSTRON-5566, Nor-
wood, MA, USA) of which the crosshead speed was 0.5 mm per minute and the span was 
30 mm. The fractural toughness of the composites tested on bars (the size of 3 × 6 × 35 
mm3), and a notch depth of 3 mm, was measured by the single-edge notched beam (SENB) 
test of which the crosshead speed was 0.05 mm per minute and the span was 24 mm. 
Vickers hardness measurement applied a load of 1 kg for 15 s to the sample surfaces on a 
hardness testing device (AHVD-1000, Shanghai Jujing Precision Instrument Manufactur-
ing Co., Ltd., Shanghai, China). The phases and components were characterized by X-ray 
diffraction (D8 Advance, Germany). The microstructure was analyzed by a scanning elec-
tron microscope (SEM, Hitachi-S3400N, Hitachi, Tokyo, Japan) and a transmission elec-
tron microscope (TEM, Oxford INCAX-ACT, Oxford Instruments, Oxford, UK). The TEM 
sample of a selected specimen was prepared through conventional mechanical thinning 
and finished with precision ion polishing system machine (PIPS, Gatan-691, Pleasanton, 
CA, USA). 

3. Results and Discussion 
The phase compositions of the sintered B4C/TiB2 ceramic composites with various 

raw powders are shown in Figure 2. All samples contained B4C, TiB2, SiC, and graphite. 
The X-ray characteristic peak patterns of the BM30 and BM10S20 were the same. With the 
introduction of TiB2 nanoparticle powders, the characteristic peaks of TiB2 changed sig-
nificantly. For the BS20N20, the 2θ = 68.206° characteristic peak of the TiB2 was higher 
than the characteristic peak intensity of the sample BM30 and BM10S20. The well-defined 
peaks in the as-prepared B4C/TiB2 composite suggests that the TiB2 phase has a preferred 
orientation in (102) and (111). 

Figures 3 and 4 show the SEM pictures of the fractured surface of the microstructure 
of the B4C/TiB2 ceramic composites. It could be clearly seen that due to the fact that the 
BM30 raw material powder particles are coarse and the sintering driving forcing is small, 
as shown in Figure 3a,b, there were a large number of interconnected open pores, and the 

Figure 1. Nominal particle size and SEM images of commercial TiB2 raw powders (a) TiB2-7 µm
(Micron), (b) TiB2-500 nm (Submicron), (c) TiB2-50 nm (Nano).

Table 1. Starting composition of BM30, BM10S20, and BS20N10 ceramic composites.

Grade B4C (wt.%) C (wt.%) Si (wt.%) Micron TiB2 (wt.%) Submicron TiB2 (wt.%) Nano TiB2 (wt.%)

BM30 60 7 3 30 / /
BM10S20 60 7 3 10 20 /
BS20N10 60 7 3 / 20 10

The relative densities of the samples were determined through Archimedes’ principle
in deionized water. The average grain size was estimated by intercept method and more
than 200 grains on the surface after polishing and thermally etching were measured. The
flexural strength of the prepared specimens which were cut into the bars of 3 × 4 × 35 mm3

was tested on an electromechanical universal testing machine (INSTRON-5566, Norwood,
MA, USA) of which the crosshead speed was 0.5 mm per minute and the span was 30 mm.
The fractural toughness of the composites tested on bars (the size of 3 × 6 × 35 mm3), and
a notch depth of 3 mm, was measured by the single-edge notched beam (SENB) test of
which the crosshead speed was 0.05 mm per minute and the span was 24 mm. Vickers
hardness measurement applied a load of 1 kg for 15 s to the sample surfaces on a hardness
testing device (AHVD-1000, Shanghai Jujing Precision Instrument Manufacturing Co., Ltd.,
Shanghai, China). The phases and components were characterized by X-ray diffraction (D8
Advance, Germany). The microstructure was analyzed by a scanning electron microscope
(SEM, Hitachi-S3400N, Hitachi, Tokyo, Japan) and a transmission electron microscope
(TEM, Oxford INCAX-ACT, Oxford Instruments, Oxford, UK). The TEM sample of a
selected specimen was prepared through conventional mechanical thinning and finished
with precision ion polishing system machine (PIPS, Gatan-691, Pleasanton, CA, USA).

3. Results and Discussion

The phase compositions of the sintered B4C/TiB2 ceramic composites with various raw
powders are shown in Figure 2. All samples contained B4C, TiB2, SiC, and graphite. The X-ray
characteristic peak patterns of the BM30 and BM10S20 were the same. With the introduction
of TiB2 nanoparticle powders, the characteristic peaks of TiB2 changed significantly. For the
BS20N20, the 2θ = 68.206◦ characteristic peak of the TiB2 was higher than the characteristic
peak intensity of the sample BM30 and BM10S20. The well-defined peaks in the as-prepared
B4C/TiB2 composite suggests that the TiB2 phase has a preferred orientation in (102) and (111).

Figures 3 and 4 show the SEM pictures of the fractured surface of the microstructure
of the B4C/TiB2 ceramic composites. It could be clearly seen that due to the fact that the
BM30 raw material powder particles are coarse and the sintering driving forcing is small,
as shown in Figure 3a,b, there were a large number of interconnected open pores, and the
coarsened particles were connected in an island chain. A large amount of sinter-necks with
clear contours among the grains in the BM30 sample were still visible. With the size of
TiB2 powder decreasing, the pore content and pore size decreased, and the dense areas
increased significantly, as shown in Figure 3c,f. In the BS20N10 sample containing both
500 nm and 50 nm particle sizes of TiB2 powder, the shapes of the pores were relatively
regular, tending to form regular polygon or nearly circular shapes, as shown in Figure 4a,b.
Additionally, it can be inferred that these small particles belong to TiB2.
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The TiB2 grains on the grain boundaries can pin the movement of the B4C grain
boundaries and hinder the grain growth, thus increasing the content of grain boundaries
and increasing the sintering rate [29]. In the BS20N10 sample, the interfaces between TiB2
and B4C phases are well distributed, indicating that TiB2 and other phases achieved good
wetting during the sintering process as shown in Figure 5. The interface between B4C and
TiB2 is jagged, which indicates that the interface feature helps to improve the ability to
resist external loads.
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The SEM pictures of the polished surfaces of the specimens sintered with various
TiB2 powders are shown in Figures 6 and 7. In Figure 6, SiC grains were dispersed and
distributed on the B4C substrate in sample BS20N10, which acts as a pinning to prevent
the grain boundary and inhibit grain growth. Additionally, the compound reaction of Si
and C generated SiC exotherm, which helps the sintering process. Figure 7 show that the
average grain sizes of the TiB2 in the prepared specimens with various raw TiB2 particles
obtained under pressureless sintering conditions at 2100 ◦C for 60 min dwell were similar.
B4C grains ranged from 2 µm to 10 µm, and comparing with the TiB2 raw powder with
an average grain size of 50 nm, the grain sizes of the ceramic composites increased by a
maximum of 200 times. With the size of TiB2 raw powder decreasing, the amount and size
of the pores in the samples decreased significantly. The B4C average grain size of the BM30
sample to which the 7 µm-sized TiB2 powder was added was 3.01 µm, but many large
pores were present in Figure 7a. B4C average grain size of the BM10S20 sample, with the
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TiB2 addition of 7 µm and 500 nm, was consistent with BM30, but the amount of the pores
decreased, and the densification area of the BM10S20 sample increased. B4C average grain
size of the BS20N10 sample with the TiB2 addition of the 500 nm and 50 nm remained close
to the starting raw powder, about 2.63 µm, and the amount and size of the pores in the
BS20N10 sample was significantly reduced. The relative density of the BS20N10 sample
was also increased to 98.6%, as shown in Table 2.
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Table 2. Mechanical properties of the B4C/TiB2 ceramic composites.

Sample Relative Density (%) Flexural Strength (MPa) Fracture Toughness (MPa·m1/2) Vickers Hardness (GPa)

BM30 90.1 ± 0.2 217 ± 13 3.70 ± 0.19 8.3 ± 0.6
BM10S20 92.6 ± 0.1 288 ± 12 4.46 ± 0.12 12.5 ± 1.1
BS20N10 98.6 ± 0.1 364 ± 9 5.47 ± 0.12 30.2 ± 2.6

Figure 8a–b are TEM images of the interface structure between B4C and SiC in the BS20N10
sample. According to the selected area-electron diffraction (SAD) result in Figure 8b, the unit
cell structure parameter of B4C was a = b = 0.56 nm, c = 1.21 nm, α = β = 90◦, γ = 120◦, and
the unit cell structure parameter of SiC was a = b = c = 0.44 nm, α = β = γ = 90◦. The zone axis
of the two phases of B4C and SiC satisfies the relationship: [120]B4C//

[
112

]
SiC, and a group of
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crystal planes satisfies the relationship: (303)B4C//(311)SiC. Additionally the interface between
crystal plane (303)B4C and crystal plane (311)SiC satisfies:

δ =
d(303) − d(311)

d(303)
=

0.151nm − 0.137nm
0.151nm

= 9.27% (1)
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According to the calculation Formula (1), the mismatch degree between the crystal
plane (303)B4C and crystal plane (311)SiC is 9.27%, which could form a semi-coherent inter-
face, and it helps to reduce the interface energy and obtains a bonding strong interface [30].

Figures 9 and 10 are the bright field and high-resolution TEM images of the interfaces
between TiB2 and B4C, SiC, respectively. As can be seen in the bright field images of
Figures 9a and 10a, the interfaces were clean and straight, and there were no other new
phases. There were lattice distortion regions with a wide range of 2~3 nm at the interfaces,
which were also the transition regions of the lattice structures between TiB2 and the
other two phases, shown in Figures 9b and 10b. The main reason for the formation of
these transition zones may be attributed to the unit cell structure parameters of TiB2:
a = b = 0.30 nm, c = 0.32 nm, α = β = 90◦, γ = 120◦. Additionally, the difference of the unit
cell structure between B4C, SiC, and TiB2 was huge. During the sintering process, the
transition zones were created to coordinate the arrangement of atoms at the interfaces.

The mechanical and physical properties of the prepared ceramic composites with
different TiB2 particle sizes are presented in Table 2. With the size of TiB2 raw powder
decreasing, the relative density and mechanical properties of the prepared ceramic com-
posites all showed a significantly increasing trend. The relative density of the prepared
specimens increased, which helped to achieve the excellent mechanical properties of the
prepared specimens. The relative density of the BS20N10 sample reached 98.6%, which
is the first major requirement to obtain competitive B4C/TiB2 ceramic composites. The
optimized flexural strength, Vickers hardness, and fracture toughness of the BS20N10
sample reached 364 MPa, 30.2 GPa, and 5.47 MPa·m1/2, respectively.

The relative density of the BS20N10 sample was high (98.6%) and the grain sizes
were fine (about 2.63 µm), which were mainly due to the following four aspects: (1) the
50 nm-sized TiB2 particles filled the pores of the green body and increased the density of
the green body, being conducive to higher densification upon sintering; (2) with the size of
the TiB2 powder decreasing, the specific surface energy of the green body was higher than
in analogous compositions with coarser grain sizes, which provides a strong driving force
for sintering; (3) with the size of TiB2 powder decreasing, the amount of the grain boundary
increased, resulting in enhanced grain boundary diffusion during the sintering process;
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(4) TiB2 grains on the grain boundaries hindered the movement of the grain boundaries
and helped to preserve a fine B4C grain size.
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The improvement of the relative density and reduction of the grain size of the samples
both contributed to obtain high flexural strength. In addition, the shapes of the pores in
the BS20N10 were regular polygons or near circles, as shown in Figure 4. According to the
fracture mechanics of ceramic materials [31–33], these types of the pores could significantly
increase the critical value of fracture failure caused by the stress concentration in the sample,
and the sample could achieve a high flexural strength.

The thermal expansion coefficients of TiB2 (8.1 × 10−6/◦C), B4C (4.5 × 10−6/◦C), and
SiC (4.7 × 10−6/◦C) are quite different [34,35]. During the cooling process, the residual
tensile stress fields rise at the interfaces between TiB2 and another phase (such as B4C or
SiC). When the crack enters the residual stress field zone, the crack propagated proceeds
in the direction perpendicular to the tensile stress as shown in Figure 11, so that the crack
propagation directions can be deflected. The crack deflections and the crack propagation
paths are extended, which increase the energy consumption and increase the fracture
toughness of the prepared ceramic composite.
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4. Conclusions

B4C/TiB2 ceramic composites containing different proportions of submicron and
nano TiB2 powders were prepared by pressureless sintering at 2100 ◦C. With the decrease
of the particle size of TiB2 raw powders, the surface energy of the powder increased
significantly and the density of the sintered body increased. During the sintering process,
nano-TiB2 inhibited the grain growth, increased the number of the grain boundaries,
and promoted the densification of the material to 98%. With the size of TiB2 powders
decreasing, the average grain sizes of the B4C/TiB2 ceramic composites decreased, and
the interfaces between the different phases were strongly bonded, which helped to obtain
good mechanical properties. As a result, the B4C/TiB2 ceramic composite with 20 wt.%
submicron and 10 wt.% nano-TiB2 addition had a significant improved in mechanical and
physical properties. The optimized relative density, grain size, Vickers hardness, flexural
strength, and fracture toughness of the sample were 98.6%, 2.63 µm, 30.2 GPa, 364 MPa,
and 5.47 MPa·m1/2, respectively. Finally, it was illustrated that the sub-fine TiB2 powder
could control the grain growth in the preparation of the B4C/TiB2 ceramic composite under
the pressureless sintering condition, and was confirmed to be an effective approach to
enhance the mechanical properties of B4C ceramics.
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