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Abstract: The great interest, within the fields of research and industry, in enhancing the range and
functionality of polymer powders for laser powder bed fusion (LB-PBF-P) increases the need for
material modifications. To exploit the full potential of the additivation method of feedstock powders
with nanoparticles, the influence of nanoparticles on the LB-PBF process and the material behavior
must be understood. In this study, the impact of the quantity and dispersion quality of carbon
nanoparticles deposited on polyamide 12 particles is investigated using tensile and cubic specimens
manufactured under the same process conditions. The nano-additives are added through dry
coating and colloidal deposition. The specimens are analyzed by tensile testing, differential scanning
calorimetry, polarized light and electron microscopy, X-ray diffraction, infrared spectroscopy, and
micro-computed tomography. The results show that minute amounts (0.005 vol%) of highly dispersed
carbon nanoparticles shift the mechanical properties to higher ductility at the expense of tensile
strength. Despite changes in crystallinity due to nano-additives, the crystalline phases of polyamide
12 are retained. Layer bonding and part densities strongly depend on the quantity and dispersion
quality of the nanoparticles. Nanoparticle loadings for CO2 laser-operated PBF show only minor
changes in material properties, while the potential is greater at lower laser wavelengths.

Keywords: laser powder bed fusion; polyamide 12; nanocomposites; nanoparticles; dispersion;
LB-PBF; mechanical properties; additively manufactured parts

1. Introduction

For over 30 years, Additive Manufacturing (AM) has been known for its ability to
produce customized parts of high complexity and resolution [1]. Next to the AM of
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inorganic materials [2,3], laser-based powder bed fusion of organic polymers (LB-PBF-
P, according to ISO/ASTM 52911-2:2019) has experienced increased interest in terms of
research and development over the last decade [4]. However, AM still requires a lot of
operator know-how as many external and internal variables influence the process, e.g.,
feedstock material [5] or build orientation [6]. In this regard, the interplay of parameters
related to the laser source, such as laser power, laser beam diameter, laser scanning speed,
and hatch distance, with machine-related parameters, such as powder layer height, process
temperature, and recoating speed, is crucial for the successful manufacture of dimensionally
accurate three-dimensional parts. The most common way to combine the most important
process parameters is the volume energy density [4,7].

Next to the process parameters, first and foremost, bulk solid properties affect the
packing density, the flowability and, thus, the spreadability during the AM process [8,9]. If
the adaptation of process parameters reaches its limits, the additivation of the base polymer
powder with nanomaterials provides a promising tool to steer the material properties
in a certain direction or to add new functionalities, e.g., electrical conductivity or mag-
netism [4,10]. The most common examples of nano-additives for PA12 are carbon-based
materials due to their vast availability and attractive properties [4,11,12]. Interestingly, the
results of studies on carbon additivation reported in the literature differ significantly for
LB-PBF-P. On the one hand, the addition of carbon nanomaterials led to a degradation
of mechanical properties under the same process conditions [13–15], while, on the other
hand, major improvements were reported [16–19]. However, these improvements mainly
correlate with the anisotropic properties of the nanofillers, e.g., carbon nanotubes and fibers,
or the optimization of process strategies to improve the processability and the densification
of final parts. In this context, a good dispersion of the nanomaterial on the polymer particle
is essential to avoid heat accumulation at agglomerate positions and, thus, impairment of
mechanical properties [4,15,18]. The quality of the dispersion depends on many influencing
factors, for example, the chemical nature of the nano-additives [20], their dosage [21,22],
the additivation method [23], and the preparation method of the nanocomposites [15].

While studies have already discussed the importance of a good dispersion for nano-
additives on polymer particles [24], a comparative evaluation between different dispersion
qualities is still missing, especially for LB-PBF of polymer composites with nanoparticle
quantities below 0.1 vol%. Our study closes this gap by processing PA12 powder com-
posites modified with carbon nanoparticles (CNP) [23] into three-dimensional specimens
to analyze the influence of two additivation methods of different dispersion qualities on
the process and material behavior. In order to gain an initial insight into the influence of
another nanoparticle group on the LB-PBF-P process and the mechanical part properties,
PA12 specimens with 0.05 vol% colloidally additivated silver nanoparticles (Ag-NP) [20]
were manufactured and mechanically tested analogously to PA12/CNP. The results of this
study provide a deeper understanding of the importance of the dispersion quality of minute
amounts of nanoparticles and its impact on the LB-PBF-P process and the part qualities.

2. Materials and Methods
2.1. Nano-Additivation Process

The adhesion of CNP (CARBON BLACK, Orion Engineered Carbons) onto PA12
powder (EVONIK VESTOSINT 1115, Evonik Industries, Essen, Germany) was achieved by
dry coating (DC) and colloidal additivation (Coll) [23,25]. The polymer powder particles
are potato-shaped due to their formation through precipitation from ethanol under pres-
sure [26]. The influence of nano-additivation on the polymer shapes is discussed in-depth
in [27]. For dry coating, the polymer powder was mixed with CNP powder in a rotating
drum for 2 h and then sifted with a 125 µm sieve. For the colloidal deposition process, CNP
powder was dispersed in deionized water (washed) by ultrasonic treatment (50 mg/L),
followed by laser irradiation with a 10 ps-laser at a wavelength of 532 nm (Edgewave
PX400-3-GH, Würselen, Germany, 80 kHz, 30 W, 150 mJ/cm2, 375 µJ/pulse, 0.25 mm2

spot size) in a liquid jet setup [25] and finally mixed as a colloid with an aqueous PA12
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suspension (50 g/L) [28]. Finally, the colloidal suspension was stirred for 5 min, filtered,
dried (24 h at 50 ◦C), and sifted using a 125 µm sieve. Silver nanoparticles were only
added colloidally to PA12 [29,30] for an initial comparison between organic and inorganic
nanomaterials, and are discussed in more detail in [20,31].

2.2. Polymer Powder Characterization

Since the size and shape of polymer powder particles have a significant influence
on the structure and properties of manufactured parts [32], the different PA12 powder
compositions with CNP and Ag-NP were analyzed and characterized by measuring the
Hausner ratio, utilizing dynamic image analysis (Camsizer X2, Microtrac Retsch, Haan,
Germany) and a ring shear tester (RST-XS, Dietmar Schulze Schüttgutmesstechnik, Wolfen-
büttel, Germany) at a pre-consolidation stress of 1 kPa within a small ring shear cell
(V = 31 cm3) [20,23]. An evaluation of the flowability with the Hausner ratio is limited due
to its low methodological sensitivity and lack of transferability to the powder application
procedure in LB-PBF-P [27]. Therefore, ring shear tests deliver more reliable results, as
this method is more sensitive to small changes in powder composition [33,34]. Additional
measurements of PA12/CNP and PA12/Ag were performed three times to complete the
powder characteristics under the same conditions as previous studies [20,23]. Since only
the colloidal additivation was accompanied by a preceding washing step of PA12 pow-
der, comparisons were made with washed and as-received PA12 powder, accordingly.
Two-sample t-tests were performed to assess the statistical significance.

2.3. Thermal Analysis by Differential Scanning Calorimetry (DSC)

Previous studies analyzed the pure PA12 powder and the additivated powder with
CNP and Ag-NP by dynamic DSC (DSC 822e, Mettler Toledo, Columbus, OH, USA) [20,23].
This way, the process temperatures for LB-PBF-P were estimated. After processing the
powders in LB-PBF-P (see Section 2.4), cut-up pieces from the center of the manufactured
square plates of the different PA12 powder compositions were heated from 25 ◦C to
230 ◦C at a rate of 10 K/min to determine the melting temperatures, enthalpies, and
crystallinities. The crystallinity Xc of the processed samples was calculated according to
Equation (1) [35,36]:

Xc =
∆Hm

∆H100·
(

1 − w f

) =
∆Hm

209.3 J
g ·
(

1 − w f

) (1)

the heat of fusion of the sample ∆Hm was extracted from the measurements; the heat of
fusion ∆H100 of 100% crystalline PA12 is found in the literature [37]. The parameter w f
gives the weight percentage of nanoparticles in the composite. Each sample was analyzed
three times, leading to a total of 18 runs. The evaluation of the results was performed with
the Mettler Toledo STARe Evaluation Software 16.10 (Columbus, OH, USA). The integral
tangential baseline was used for the calculation of the relevant enthalpies. Two-sample
t-tests were performed to include the statistical significance.

2.4. Laser Powder Bed Fusion of Polymers (LB-PBF-P)

Process development of powder bed fusion was conducted with a CO2 laser-based
LB-PBF-P machine (Eosint P385, EOS, Krailling, Germany) of 0.6 mm beam diameter
at the working plane. The coater speed was set to 50 mm/s to ensure a smooth and
homogeneous powder surface. Pure PA12 powder was used as a base layer of 10 mm
height for thermal decoupling from the building platform. To process small amounts
of powder, the process chamber was downsized via a reduction in the coater length
from 350 mm to 100 mm. In order to avoid premature melting of the top layer of the
PA12/CNP powders due to the change in emissivity, the process temperature was lowered
successively until coalescence was avoided. Conversely, the PA12/Ag powders needed
to be processed at higher temperatures. Furthermore, the power of the IR-emitters was
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set to the same power range in the machine software for processing of pure PA12 in order
to provide similar thermal conditions for every material composition. A powder layer of
0.6 mm was added to the last molten areas to reduce warpage during the cooling phase.
Five tensile 1BA specimens (DIN EN ISO 527-2) of 2 mm thickness and five square plates
(15 × 15 × 2 mm3) were produced in the x–y-plane with a layer height of 100 µm for each
material composition. An alternating hatching was chosen for every layer between the x
and y directions. The aim was to find a set of process parameters that could be used to
process every material composition under the same conditions instead of optimizing the
process parameters towards the best processability, density, or mechanical properties for
individual material composites. In this way, the influence of nanoparticles on the material
behavior and the material limitations of the composites could be examined and evaluated.
However, the same energy density could not be used for 0.05 vol% CNP. Lowering the
energy density of the reference material of pure PA12 was not an option as it led to a lack
of layer bonding. Thus, the laser power was lowered successively to such an extent that
the thermal difference between the material temperature and the laser energy input was
reduced, and curling no longer occurred. To evaluate the performance of the integrated
CO2 laser source, laser power measurements were conducted with a laser power meter
(LM-200, Coherent, Santa Clara, CA, USA). In the onboard software of the LB-PBF machine,
the percentage of the laser power was set in 1% steps from 5% to 10% and in 5% steps from
10% to 100% laser power. In doing so, the nominal and real output power values could
be extracted for the experiments (Figure S1). Table S1 summarizes the process parameters
and resulting energy densities for the different powder composite materials. At the end of
the building process, the IR-emitters were switched off. The pyrometer data of the LB-PBF
machine showed that the powder bed temperature dropped from the process temperature
to 120 ◦C, which is below the endset temperature of crystallization, at a declining cooling
rate of approximately 15 K/min to 1 K/min. The process chamber was allowed to further
cool down and remained closed for at least 12 h.

2.5. Dimensional Accuracy and Tensile Testing of Specimens

The thickness and the width of the measuring range of the tensile bars were measured
with a micrometer with an accuracy of 0.01 mm. Tensile tests were performed according to
DIN EN ISO 527 on the universal testing machine (Quasar 100, Cesare Galdabini, Vigevano,
Italy) at room temperature with a load cell of 10 kN and a contact extensometer. The
Young’s modulus was measured at a speed of 0.5 mm/min until an elongation of 0.3% was
reached, followed by a speed of 20 mm/min to measure the ultimate tensile strength and
the ultimate elongation.

2.6. Polarized Light and Scanning Electron Microscopy (SEM)

The square LB-PBF specimens were cut with a microtome (Leica Biosystems, Wetzlar,
Germany) to 10 µm slices and placed on microscope slides with immersion oil. A light
microscope (Metalloplan, Leitz/Leica, Wetzlar, Germany) with two polarizers was used to
analyze the layer bonding and the birefringence of the crystalline structures. The surfaces
and tensile fractured surfaces of PBF specimens were imaged using a scanning electron
microscope (GeminiSEM 500, Zeiss, Oberkochen, Germany) equipped with an SE2 detector,
an acceleration voltage of 1 kV, and an aperture of 15 µm. Images were taken of the top
surface, as well as the edges and centers of the fractured surfaces of the tensile specimens.

2.7. X-ray Diffraction (XRD) and Infrared (IR) Spectroscopy

X-ray diffraction (Empyrean series 2, Malvern Panalytical, Worcestershire, UK) using
Cu Kα radiation (154 pm, 40 kV, 40 mA) was performed with an Empyrean diffractometer
(Panalytical) in Bragg–Brentano geometry. The incidence beam optics comprised the
Bragg–Brentano-HD module, fixed divergence (1/8◦), anti-scatter (1/8◦) slits, and 0.04 rad
Soller slits. The diffracted beam optics comprised Soller slits (0.04 rad), an anti-scatter slit
(16.8 mm), and a GaliPIX 3D detector (Panalytical). Sample specimens were fixed in the
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sample holder and rotated during measurement. The diffractograms were collected in the
range of 5◦ ≤ 2θ ≤ 90◦ at a step size of 0.014◦ and a measuring time of 25 s per step. Phase
analysis and Rietveld refinements of the obtained diffraction patterns were performed
with Profex 4.3 (Solothurn, Switzerland), a GUI of the BGMN Rietveld Analysis Program
(Dresden, Germany), to determine the phase composition and the unit cell parameters, but
also to quantify the crystallite sizes. Infrared (IR) spectra of the specimens were recorded
in attenuated total reflection (ATR) geometry in the spectral range from 6000 cm−1 to
400 cm−1 at a resolution of 2 cm−1 using a Fourier-transform infrared (FT-IR) spectrometer
(FTS3100, Digilab, Hopkinton, MA, USA). The spectra were normalized to their respective
maximum absorbance. Baseline corrections were performed manually. Pure PA12 and
PA12/CNP specimens were analyzed this way.

2.8. Micro-Computed Tomography (µ-CT)

The specimens of PA12 and PA12/CNP were examined by X-ray microtomography to
determine the process-induced porosity and the pores’ sphericity. This enabled the analysis
of pore size and morphology in the micrometer range and the statistical evaluation of the
pore characteristics. The type XT H 160 µ-CT system (Nikon, Tokyo, Japan), equipped with
a microfocus X-ray source (tungsten) with a maximum voltage of 160 kV and a 3 µm thresh-
old for the 3D scan, was used for the investigations. The 2D images were reconstructed
into a 3D image using the CT Pro 3D software (Nikon, Tokyo, Japan). Subsequently, it was
loaded into the analyzing and visualizing software VGStudio Max 2.2 (Volume Graphics,
Heidelberg, Germany). The corresponding scanning parameters can be seen in Table 1.

Table 1. Scanning parameters for the computed tomography scans (µ-CT).

Material Beam Energy Beam Current Power Effective Pixel Size Exposure Rates

PA12/ PA12-CNP 99 kV 26 µA 2.5 W 15 µm 1.42 s, 0.707 fps

After the scan, the images were reconstructed and loaded into the VGStudio Max
2.2 analysis and visualization software (Volume Graphics GmbH, Heidelberg, Germany).
Afterwards, algorithm-specific voxels were characterized with the “VGDefX (v2.2)” as
defects based on their grey value compared to a defined local threshold for contrast.
The theoretical resolution of the system is 3 µm; however, due to the dimensions of the
specimens, the minimum accurate detectable pore size increased to 15 µm. By setting the
minimum pore size in the defect analysis program according to the effective pixel size of
the specimens (15 µm) and checking the detected probability of the detected pores, the
pores could be distinguished from the noise.

3. Results and Discussion
3.1. Material Characterization of Polymer Powder Composites

An overview of all measured powder characteristics can be found in Table S2. While
the difference between the flowability values measured with the Hausner ratio is insignifi-
cant, the ring shear test results indicate distinguishable deviations. Figure 1 summarizes
the flowability (ffc-value) results of the differently additivated PA12 powders.

For instance, 0.005 vol% of CNP significantly increases the flowability of PA12 powder
(*; p ≤ 0.05) when additivated with the colloidal approach, while dry coating significantly
(****; p ≤ 0.0001) lowers the free-flowing (ffc > 10) powder properties to easy-flowing
(ffc < 10) [38]. An increase in the CNP dosage to 0.05 vol% does not impair the flowability
by colloidal additivation, while dry coating further reduces the flowability of the powder.
The poorer outcomes can be ascribed to the stronger mechanical forces during the dry
coating process, which lead to an increased inter-particle cohesion due to fines [23,27].
Regardless of the additivation method, 0.05 vol% of CNP leads to poorer flowing powders
than smaller quantities due to an increased amount of CNP agglomerates on the polymer
particle surfaces [23]. In comparison, the colloidal additivation of the same amount of
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Ag-NP slightly increases (ns; p > 0.05) the flowability. Based on these results, the colloidal
additivation process is the more suitable option for the additivation of nanoparticles since
the good flowability of the base powder material is maintained.

Figure 1. Flowability characteristics of PA12 powder and its composites measured by a ring shear
cell at a pre-consolidation stress of 1 kPa. Due to the additional washing step before the colloidal
additivation, colloidal composite powders are compared to washed PA12 powder while dry-coated
composites are compared to PA12 powder as received. An increase in significance is depicted with
an increase in the number of asterisks, while no significant differences are declared as “ns” (p > 0.05).
Results are based on three measurements.

3.2. Thermal Evaluation by Differential Scanning Calorimetry (DSC)

Evaluating the melting behavior of the PA12 powders during the heating stage of
the DSC helps to estimate the processing temperature for LB-PBF-P. Regardless of the
nano-additives, each powder composition exhibits an endothermal increase in heat flow at
around 170 ◦C during the heating phase. This value sets the starting point for the LB-PBF-P
experiments. The processed samples show a second peak around 190 ◦C, which correlates
with the higher melting temperatures of unmolten particles [39]. This peak becomes more
pronounced as more CNP nanoparticles are added (Figure 2), which means that the number
of unmelted particles increases with the dosage of nanoparticles.

Consequently, it provides an initial indication of the poorer expected material prop-
erties of the composites compared to pure PA12 due to reduced part density and layer
bonding. However, the additions of 0.005 vol% CNP and 0.05 vol% Ag-NP retain the curve
characteristics of pure PA12. The exact dimensions of the second peak of every material
were not averaged due to large deviations between the three runs of each composition
(Figure 2). Thus, the quantitative difference between the material compositions and the
additivation methods is insignificant.

Since the second peak does not change the main peak positions, the temperature onset,
peak, and endset do not change significantly (ns; p > 0.05) by any additivation (Figure 3a).
Yet, the overall crystallinity increases significantly for all additivated samples except for
PA12 colloidally additivated with 0.005 vol% CNP (Figure 3c) due to the broadening of the
second peak. The differences between the two additivation methods are more prominent
for 0.005 vol% CNP (**; p ≤ 0.01) than for 0.05 vol% CNP (*; p ≤ 0.05). Therefore, an
increase in crystallinity is not an initial indication of improved mechanical properties
since the higher crystallinity values may come from an increased number of unmelted,
but highly crystalline, polymer particles. Moreover, the results of the heat of fusion and
crystallinity do not provide information about layer bonding. If an increase in crystallinity
by nanoparticles has macroscopic advantages for the properties of the mechanical part,
further analytic examinations are required. For instance, microscopic investigations need to
be conducted to evaluate the connection between subsequent layers and the crystal growth
behavior at these interfaces.
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Figure 2. Three heating curves of the LB-PBF-P specimens made of (a) pure PA12, (b) PA12 and
0.005 vol% carbon nanoparticles, (c) PA12 and 0.05 vol% silver nanoparticles, and (d) PA12 and
0.05 vol% carbon nanoparticles. The addition of the nanoparticles was performed via colloidal
additivation. The heating rate was 10 K/min.

Figure 3. Averaged thermal values of different material compositions showing their results of (a) peak
melting temperature values, (b) heat of fusion, and (c) crystallinity. The level of significance increases
with the number of asterisks, while “ns” stands for an insignificant difference.
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3.3. LB-PBF of PA12 and Composites

Differences between colloidal additivation and dry coating were noticeable during
powder recoating, where the colloidally additivated powder could be spread more ho-
mogeneously than the dry-coated powder. During processing, specimens of colloidally
additivated PA12 powder of 0.05 vol% CNP required less energy (0.115 J/mm3) to be built
compared to the dry-coated variant (0.127 J/mm3). The temperature had to be decreased
from 171 ◦C to 169 ◦C when increasing the CNP amount to 0.05 vol%. Otherwise, overly
high temperatures and energy densities lead to a displacement of the specimens’ molten
layers, ultimately resulting in a build job failure. Thus, lower temperatures and less en-
ergy were required to process and bond the polymer layers with the addition of minute
amounts of CNP. By contrast, PA12 with 0.05 vol% Ag could be processed without any
curling after raising the temperature by one degree Celsius while maintaining the same
process parameters and energy density as pure PA12. When qualitatively comparing the
spreadability of CNP and Ag-NP at 0.05 vol% during the recoating process, the powder
bed of additivated PA12 powders with Ag-NP appeared more homogeneously distributed
than the CNP counterpart. At a lower dose of 0.005 vol%, the dry-coated CNP powders
exhibited faster curling after powder application than the colloidally additivated ones. It
was found that the reduced process window of CNP additivated powders [23] leads to
faster warpage of specimens during the cooling phase.

3.4. Microscopic Evaluation of LB-PBF-P Samples

Polarization images at low magnification (Figure 4) reveal the quality of the layer
bonds of each processed material composition. The presented images show horizontal
layers built in the z-direction. Pure PA12 shows consistent bonding of individual layers
(Figure 4a) with some unmelted particles, which is a typical phenomenon for LB-PBF-P
results. The degree of particle melt could be increased by higher laser energy inputs, but
the aim of this study was to evaluate the influence of nanoparticles on the processability
and material properties. The first indications of a reduction in particle melting became
apparent when adding 0.005 vol% CNP to the surfaces of the PA12 particles. Even though
the process temperature remained the same, layer bonding was partially disrupted by an
increased number of agglomerated unmelted particles (Figure 4b,c). Visual differences
between the colloidal and dry-coated additivation procedure were non-existent at this low
volume of CNP.

When increasing the dosage of CNP to 0.05 vol%, the laser power had to be lowered
by 15% for dry-coated powders and 24% for colloidally additivated powders (Table S1) to
process 20 layers without build failures. However, this led to a deterioration in bonding
quality between the layers. Although the dry-coated specimens absorbed an energy of
0.127 J/mm3, their microscopic results show larger and longer gaps between the layers
(Figure 4e) than the colloidal additivated specimens (Figure 4f), which received a lower
laser energy of 0.115 J/mm3. More agglomerated CNP from dry coating are most likely
the cause of this outcome. By comparison, good layer bonding is given for the same
amount of Ag-NP (Figure 4d) with occasional smaller gaps. Reasons for the differences
between CNP and Ag-NP are either due to the energy distribution, which is redirected by
the absorptive and emissive properties of the CNP, or the polymer–polymer connection,
which is interrupted by nanoparticle interactions of opposite layers. Another reason could
be the difference in the Hamaker constant between CNP and Ag-NP [40,41]. In addition,
the change of bonding behavior between the polymer and the organic CNP or inorganic
Ag-NP could be the cause.
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Figure 4. Microscopic polarized images of 10 µm sliced LB-PBF-P specimens made of (a) pure PA12,
(b,c) PA12 and 0.005 vol% carbon nanoparticles, (d) PA12 and 0.05 vol% silver nanoparticles, and
(e,f) PA12 and 0.05 vol% carbon nanoparticles. PA12 powders were additivated (b,d,e) with the
colloidal deposition and (c,f) with the dry coating method. The images provide an overview of the
processed layers in a horizontal position, where higher amounts of carbon nanoparticles lead to
poorer layer bonding.

With microscopy images of higher magnification (Figure 5), lamellar structures can
be identified. The typical crystalline structures of PA12 with lamellae up to 25 µm are
visible, originating from unmelted particle cores or random impurities (Figure 5a). The
dimensions of these lamellae, which develop during the cooling phase of LB-PBF, correlate
well with the microscopic results of the calorimetric powder measurements [23] since their
lengths lie between the values of the cooling rates at 0.5 K/min and 20 K/min. Spherical
and ellipsoidal structures can be found, as observed in previous studies [23,25]. Adding
0.005 vol% CNP does not increase the frequency of crystalline structures, but seemingly
reduces them. There are no apparent differences between the two additivation methods
at this low dose of nanoparticles (Figure 5b,c). However, formations of agglomerated
nanoparticles to chain-like structures (Figure 5e,f) can be identified at 0.05 vol% CNP. Even
though the nanoparticles occasionally induce lamellar growth across layer boundaries, they
also introduce new interfaces that predetermine mechanical weak points. While there are
larger CNP clusters in the dry-coated specimens, the colloidal additivation leads to a more
homogeneous distribution of the CNP in the melt. It is expected that dry-coated samples
will have poorer mechanical properties due to the higher frequency of clusters. The lamellar
structures cannot be identified in the PA12 sample with 0.05 vol% Ag-NP (Figure 5d). Only
crystalline growth from unmelted particles can be found. As expected from the thermal
powder analyses [20], no nucleation effects of the Ag-NP can be detected by microscopic
evaluations. However, both microscopic and DSC evaluations are limited as they only
represent a small percentage of the total sample. Three-dimensional analysis methods,
such as µ-CT (see Section 3.8), can help to better understand the internal structures of the
entire sample.

Our previous hypothesis [23] that CNP can introduce a certain anisotropy into the
material system, which can be beneficial for increasing the layer bonding, cannot be
confirmed. Instead, a CNP dose of 0.05 vol% is high enough to compromise layer bonding
if the process parameters are not changed. However, lower quantities can be used to tailor
mechanical properties.
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Figure 5. Magnified microscopic polarized images of 10 µm sliced LB-PBF-P specimens made
of (a) pure PA12, (b,c) PA12 and 0.005 vol% carbon nanoparticles, (d) PA12 and 0.05 vol% silver
nanoparticles, and (e,f) PA12 and 0.05 vol% carbon nanoparticles. PA12 powders were additivated
(b,d,e) with the colloidal deposition and (c,f) with the dry coating method. The images provide a
more detailed view of the developed crystalline structures and the positions of carbon and silver
nanoparticles in the cooled polymer melt.

3.5. Dimensions and Mechanical Properties of Tensile Bar Specimens

The dimensions of the reference specimens of pure PA12 were 2.01 ± 0.02 mm in
thickness and 4.66 ± 0.02 mm in width (Figure 6a). The specimens exhibit a Young’s
modulus E of 1.93 ± 0.07 GPa, an ultimate tensile strength σult of 46.4 ± 0.5 MPa, and
an ultimate elongation εult of 5.2 ± 0.2% (Figure 6b,c). These values are well within the
typical range of mechanical properties of specimens produced by LB-PBF-P [4]. The exact
target width of 5 mm was not achieved since no contour exposure was used in this study.
However, since the values are within the range of the DIN standard and show only a small
spread, the process parameters still provide a good reproducibility for pure PA12 powders
in LB-PBF.

The low deviations among the five specimens prove the consistently good process-
ability of the powder composites (Figure 6), especially at low doses of nanoparticles
(<0.05 vol%). However, the deviations increase at higher nanoparticle concentrations,
which corresponds to the poorer processabilities of these powder composites. Further
differences are caused by the additivation methods. When comparing the dry-coated
PA12 containing 0.005 vol% CNP with pure PA12 (Figure 6a), the width of the dry-coated
specimens is significantly (0.9%) (****; p ≤ 0.0001) lower, while the thickness values are
significantly (20.7%) (****; p ≤ 0.0001) higher. Faster warpage of dry-coated specimens
with 0.005 vol% CNP during cooling lead to the specimens’ greater thickness and narrower
width. This results from the reduced processing window due to an increase in crystal-
lization temperatures induced by the nucleation effect of CNP [23]. By comparison, the
colloidally additivated specimens of the same CNP concentration exhibit a significant
(****; p ≤ 0.0001) increase in thickness and width by only 1.2% and 7.8%, respectively.
Since there are no significant thermal differences between these two 0.005 vol% PA12/CNP
powders, the main reason should be ascribed to the quality of the nanoparticle deposition
and an increased expected agglomeration of nanoparticles in the melt. Overall, the speci-
mens built from composites show significantly higher dimensional values than those from
pure PA12. This correlates with the unintentional melting and coalescence of neighboring
particles induced by the CNP (see Section 3.6).
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Figure 6. The overview of the tensile test results shows the LB-PBF-P specimens of different material
compositions with regard to their (a) measured dimensions, (b) exemplary stress–strain curves, and
(c) mechanical properties of the ultimate tensile strength (σult), ultimate elongation (εult ) and Young’s
modulus (E ). The level of significance increases with the number of asterisks, while “ns” stands for
an insignificant difference.

The difference between the two additivation methods at minute amounts of 0.005 vol%
CNP can also be recognized in the tensile results (Figure 6b,c). Here, dry-coated specimens
exhibit a σult that is significantly (20.6%) (****; p ≤ 0.0001) lower than pure PA12, and
a εult, which increases insignificantly (5.4%) (ns; p > 0.05). In comparison, the colloidal
additivation of the same quantity of CNP also decreases σult significantly (**; p ≤ 0.01),
but only by 4.4%, while εult is increased significantly (***; p ≤ 0.001) by 56.5%. While the
difference between the dimensional accuracy (Figure 6a) and the mechanical properties
(Figure 6b,c) diminishes when increasing the volume of CNP to 0.05 vol%, there are
small but insignificant (ns; p > 0.05) differences between colloidal additivation and
dry coating. For instance, the width increases significantly (****; p ≤ 0.0001), by 5.4%,
and the thickness increases significantly (****; p ≤ 0.0001), by 14.1%, for dry-coated
specimens. On the other hand, the dimensions of the colloidally additivated specimens
have a smaller, but significant (*; p ≤ 0.05), growth of 1.7% and 10.2% (****; p ≤ 0.0001).
Similarly, every measurand of the mechanical properties is significantly (****; p ≤ 0.0001)
deteriorated at 0.05 vol% of CNP. Interestingly, the colloidal additivation showed a 4.9%
higher tensile strength and a 3.3% higher Young’s modulus than the dry-coated specimens,
even though the colloidally additivated powder received 9.4% less energy during the LB-
PBF-P process (Table S1). However, this difference between the two additivation methods
is insignificant (ns; p > 0.05). When changing the nano-additives to 0.05 vol% silver, the
dimensions increase significantly (****; p ≤ 0.0001) by 3.3% in width and 6.9% in thickness.
At the same time, the mechanical properties are close to values of 0.005 vol% CNP by
colloidal additivation. Finally, all composites have a significantly (****; p ≤ 0.0001) lower
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Young’s modulus than pure PA12 (Figure 6c). The reasons for the decrease in tensile
strength and Young’s modulus, but the increase in elongation, could be due to a weakened
interaction between the nanofiller and the polymer matrix (e.g., low crosslink density) [13].
A low dispersion and, thus, a higher probability of agglomeration of nanoparticles would
explain the overall impairment of dimensions and mechanical properties by dry coating of
0.005 vol% CNP. Conversely, the chances of nanoparticles agglomerating increase at higher
quantities of CNP, limiting the possibility of a better dispersion to induce macroscopic
changes. Other nucleating nanomaterials should be chosen instead of CNP to improve the
interaction between the nano-additives and the polymer matrix.

In general, we could show that small volume fractions of CNP and Ag-NP are already
enough to significantly influence the dimensional and mechanical properties of LB-PBF
specimens. The quality of the dispersion plays a decisive role in this. The impact of
CNP on the dimensional and mechanical properties is greater than that of the same dose
of Ag-NP without nucleation properties. However, for CO2 laser-operated powder bed
fusion processes, the influence of nanoparticles on the material behavior is limited and
usually does not contribute to better mechanical properties. In this case, a compromise
has to be made between introducing new material properties through nanoparticles (e.g.,
plasmonic [31,42] or magnetic properties [10]) and the mechanical properties of additively
manufactured parts. However, if the wavelength of the laser source is in the near-infrared
or visual wavelength range, absorption-enhancing nanoparticles of high dispersion become
inevitable to effectively process polymer powders at these wavelengths [31].

3.6. Tensile Fractography

Images of the top surface of the specimens help to evaluate the quality of the molten
state of the outer layers, while images of the fractured surfaces are used to identify the
fracture behavior under the influence of different amounts of nanoparticles. The pre-
sented images depict the processed horizontal layers perpendicular to the build direction
(Figure 7).

PA12 shows overall good layer bonding without visible layer boundaries in the
body of the sample (Figure 7b), while some lack of bonding exists around the edges
(Figure 7a). The reason for this is the absence of contour parameters in this study, which
are usually used in LB-PBF-P to mitigate this phenomenon. The layer bonding and, thus,
the mechanical properties can be further improved by increasing the degree of particle melt
with higher laser energy densities. However, this usually sacrifices the parts’ resolution and
dimensional accuracy due to unwanted sintering of adjacent loose powder particles [26].
The fracture surface images primarily reveal brittle regions with some ductile areas around
the edges of the sample (Figure 8a), which are believed to be the origin of fracture during
tensile testing [26]. Upon closer inspection, the ductile areas consist of mainly spherical
fibrillated structures indicating broken particle cores (Figure 8b). The condition of the
top surfaces (Figure 7c) is typical for processed PA12 powder with partially molten and
unmolten particles from the surrounding powder due to bleeding of thermal energy [43].
However, this has no adverse effect on the dimensional accuracy of the specimens since the
thickness of the final parts is at the target value of 2 mm (Figure 6a). The seamless bonding
of the layers further supports the good dimensional accuracy of the PA12 specimens.
Optionally, the surface quality could be improved by an additional post-processing step
involving grinding or polishing [44].
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Figure 7. Collection of scanning electron microscopy images of the fractured surfaces of the tensile
bars and of the top surface of the specimens. The left column (a,d,g,j,m,p) depicts the edges, and
the middle column (b,e,h,k,n,q) shows the center of the fractured surface. The condition of the
specimens’ top surface can be seen in the right column (c,f,i,l,o,r). The quantity of nanoparticles
increases from top to bottom. Exemplarily, the red arrows mark unmelted polymer particles, while
the red circles highlight voids.

Figure 8. (a) Scanning electron microscopy images of the ductile area of fractured surfaces of the
PA12 specimens. A more detailed view of the spherical fibrillated structures responsible for the
ductility can be seen in (b).

Adding 0.005 vol% CNP by colloidal additivation leads to more distinct layer bound-
aries of partially unmelted particles near the edges and in the center of the specimens
(Figure 7d,e), while interlayer bonding is still present. The same quantity of CNP, but
additivated by dry coating, results in enlarged gaps between individual layers near the
edge and inside of the specimens (Figure 7g,h). These interrupted transitions are due
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to partially or fully unmelted particles, which correlate with the second peak, at around
190 ◦C, observed in DSC (Figure 2). The frequency of ductile areas is the highest for
PA12 with 0.005 vol% CNP by colloidal additivation compared to pure PA12 and other
specimens. This can be ascribed to the increased ultimate elongation of the tensile spec-
imens (Figure 6c). Due to the same amount of CNP being present, the reasons for these
differences are either the quality of dispersion [23] or the change of powder flowability
during additivation, which influence the processability of the composite powders. These
apparent differences in fractured surfaces between the colloidal additivation and the dry
coating of 0.005 vol% CNP are reflected in their dimensional accuracy (Figure 6a) and
mechanical properties (Figure 6b,c). The higher number of gaps explains the significant
increase of 20.7% in thickness for the dry-coated specimens. However, the top surface
structures show no evident differences between the two additivation methods for the
specimens additivated with 0.005 vol% CNP (Figure 7f,i) and are equivalent to the pure
PA12 results. The difference in fracture behavior between the two additivation methods is
undistinguishable when increasing the dosage of CNP to 0.05 vol% (Figure 7j,k,m,n). These
findings coincide with the insignificant differences (ns; p > 0.05) in mechanical properties
between the two differently additivated specimens (Figure 6c). The number of unmelted
particles between the layers increases, further impairing the mechanical properties of the
specimens. The only noticeable difference in the top surface structure is a higher number
of voids within the molten surface. These voids are more pronounced for the dry-coated
specimens than for the colloidally additivated ones. This could be an indication of an
increased amount of escaping gas or polymer chain scission.

By contrast, the same quantity of Ag-NP leads to very similar results as pure PA12
with regard to layer bonding and layer boundary conditions (Figure 7p,q). Since Ag-
NP do not induce crystal growth, in contrast to CNP, under LB-PBF cooling conditions
(Figure 5d) [20], they can maintain the good processability of pure PA12 powder. Finally, a
dispersion of good quality is particularly important for nucleating nanoparticles below a
dose of 0.05 vol% if a shift in mechanical properties is desired.

3.7. X-ray Diffraction (XRD) and Infrared (IR) Spectroscopy

Polyamide 12 is known to crystallize depending on the acting stresses, temperature,
and pressure in different polymorphic forms. Four crystalline phases, namely the alpha (α),
alpha’ (α’), gamma (γ) and gamma’ (γ’) phases, are known [26,45–47], with the gamma
phase being the most stable form at ambient conditions and the alpha form observed
for PA12 annealed at elevated pressures [48]. In addition, an intermediate α” form was
observed prior to the transformation of γ PA12 to the γ’ polymorph by drawing [49],
respectively, the (intermediate) crystallization of PA12 from the melt in the α’ form with a
subsequent transition to the γ form while cooling to room temperature [50]. The γ’ phase
can be produced by melt quenching [47]. Precipitated PA12 powders have been reported in
the literature to frequently show an ‘intermediate’ structure between the alpha and gamma
phase that is characterized by two distinct reflexes found at 2θ around 20.9◦ and 22.0◦

(Cu Kα) [23,26,50].
Diffraction patterns of the specimen produced from the different composite powders

in comparison to PA12 powder are depicted in Figure 9 below. The experimental pattern
could be described solely by the presence of a crystalline monoclinic (pseudohexagonal) γ
PA12 phase when taking the structural data reported by Cojazzi et al. [51] and a polynomial
background function into account, i.e., there are no indications of the presence of another
crystalline PA12 phase. The specimens were produced by LB-PBF-P, i.e., the powder
was first melted and then allowed to cool at relatively moderate cooling rates. At these
conditions, i.e., the crystallization of PA12 from the melt, the γ form was previously
reported to be formed [50]; however, also in LB-PBF-produced specimens, an intermediate
structure between the α and γ phase was recently reported to be present in the precipitated
feedstock [26]. Consequently, despite an apparent shift of the main reflex of less than 1◦

(Figure 9b), we can also confirm that under the chosen conditions, the CNP present in
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the composite powder do not trigger the nucleation of PA12 polymorphs other than γ in
the built specimens. The unit cell parameters for the γ PA12 phase deduced by Rietveld
refinement of the experimental diffraction pattern are summarized in Table 2. No trend
indicating a dependence of unit-cell parameters or lattice spacings (Table S3) on any amount
of NP present in the powder system could be deduced.

Figure 9. Diffraction patterns of PA12 powder and specimens of different compositions additivated by colloidal deposition
and dry coating, depicted (a) as overviews separated from each other and (b) on top of each other with a zoomed-in picture
of the shifted main reflex positions.

Table 2. Unit cell parameters for the monoclinic gamma PA12 phase as determined from Rietveld
refinements of the diffraction pattern of processed specimens.

Material Composition a in nm b in nm c in nm β in ◦

PA12 0.4838 3.1810 0.9484 121.2
PA12 + 0.005 vol% CNP Coll 0.4838 3.1912 0.9513 120.8
PA12 + 0.05 vol% CNP Coll 0.4838 3.2219 0.9484 121.2
PA12 + 0.005 vol% CNP DC 0.4838 3.1854 0.9498 121.2
PA12 + 0.05 vol% CNP DC 0.4838 3.2213 0.9484 121.2

The crystallite sizes of the γ PA12 phase in the composite specimens were exemplarily
determined from the refinement of the diffractograms for the (100), (002), and (020) ori-
entations, characterized by 2θ angles of 21.4◦, 21.9◦ and 5.5◦, respectively (Table 3). No
preferred crystallite orientation or texture can be deduced from the diffractograms. With
increasing carbon black content, a slight increase in crystallite size in the (001) and (002)
orientation can be noted, although this effect is relatively small.

Table 3. Crystallite sizes in 100, 002, and 020 orientation for gamma PA12 in composite powder specimens as determined
from Rietveld refinement.

Material Composition
Crystallite Size in nm Error Crystallite Size in nm

(100) (002) (020) (100) (002) (020)

PA12 8.21 7.12 6.478 0.15 0.14 0.099
PA12 + 0.005 vol% CNP Coll 8.53 6.58 6.426 0.16 0.14 0.041
PA12 + 0.05 vol% CNP Coll 9.43 8.66 5.503 0.19 0.11 0.057
PA12 + 0.005 vol% CNP DC 6.56 5.92 6.691 0.09 0.14 0.051
PA12 + 0.05 vol% CNP DC 9.29 9.51 5.037 0.20 0.14 0.055

According to Bain et al. [26] and Rhee and White [52], respectively, γ PA12 can be
discriminated from α PA12 by the position of characteristic vibrations in the IR range, e.g.,
the Amide I (1635 cm−1 (α) vs. 1640 cm−1 (γ)) or the Amide II band (1540 cm−1 (α) vs.
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1563 cm−1 (γ)). The band positions for amide I and amide II observed in ATR spectra of
the samples collected at a resolution of 2 cm−1 are summarized in Table 4. Because of
the instrumental resolution and the experimentally observed band positions, e.g., for the
amide I between 1635 cm−1 and 1638 cm−1, respectively, representing very weak amide II
bands, a clear assignment to one of the crystal phases or the deduction of the presence of a
crystal mixture cannot be made from the IR spectra.

Table 4. Positions of the amide I and amide II bands in PA12/CNP composite specimens.

Material Composition Amide I in cm−1 Amide II in cm−1

PA12 1637 1543 and 1566
PA12 + 0.005 vol% CNP Coll 1637 1541
PA12 + 0.05 vol% CNP Coll 1635 1547 and 1566
PA12 + 0.005 vol% CNP DC 1638 -
PA12 + 0.05 vol% CNP DC 1636 1545

3.8. Micro-Computed Tomography (µ-CT)

The effect of the additivation of CNP on the relative density of PA12 specimens is
visible in Figure 10. Relatively large line-shaped defects in the PA12 specimens additivated
with 0.05 vol% CNP and their layer-wise arrangement perpendicular to the building
direction confirm the insufficient diffusion between the scanning layers. However, the
defects are more distinguishable in the dry-coated specimens of 0.05 vol% CNP, where the
lack of diffusion is more visible at the mid-layers of the specimens (Figure 10c,d).

Figure 10. Results of µ-CT scans for specimens of pure PA12 in (a) top and (c) side view and of PA12
dry-coated with 0.05 vol% CNP in (b) top and (d) side view.

It can be seen in Figure 11a that pure PA12 has the highest relative density of 89.0%.
The addition of 0.005 vol% CNP reduces their relative density to 88.7% and 88.6% for
the dry coating and the colloidal additivation methods, respectively. An increase in CNP
to 0.05 vol% further decreases the relative density of the PA12 specimens to 83.3% and
84.1% for the dry coating and the colloidal additivation methods, respectively. This leaves
comparable densities at 0.005 vol% CNP between dry coating and the colloidal additivation,
while the colloidally additivated specimen shows a slightly higher density than the dry-
coated counterpart. These results can be ascribed to the better layer bonding of lower
quantities of CNP and the higher dispersion of nanoparticles by the colloidal additivation.
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Figure 11. (a) Relative density and (b) pore size distribution of pure PA12 and PA12 specimens with
CNP additivation.

Figure 11b shows the size distribution, average pore size, and the pore counts within
each specimen. In most of the specimens, pore volumes lay between 10 × 104 µm3 and
85 × 104 µm3. The average pore volume also increases as the quantity of CNP in the PA12
specimens increases. The colloidal additivation of 0.005 vol% CNP reduces the maximum
pore size of PA12 from 85 × 104 µm3 to 69 × 104 µm3, while the dry coating method and
higher amounts of CNP increase the maximum pore size by 5 × 104 µm3. Therefore, lower
quantities of CNP are less detrimental for the density of parts, in which case the dispersion
of the nanoparticles plays a crucial role in the final part properties.

Only very small pores in the specimens have high sphericity of up to approximately
0.8; however, it decreases drastically with the increase in the pore volume in all the
specimens (Figure 12). As mentioned, large pores are long void spaces between the scan
layers that are present due to a lack of fusion, which correlates with the increase in the lack
of layer bonding when adding CNP to PA12 (Figure 7). As mentioned before, the process
parameters were not chosen to achieve the highest density for every material composition
but to investigate the influence of the nano-additivation on the material properties.

Figure 12. Sphericity measurements of the pores in specimens of (a) pure PA12, (b) PA12 dry-coated
with 0.005 vol% CNP and (c) PA12 dry-coated with 0.05 vol% CNP.
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4. Conclusions

Well-dispersed nano-additives on polymer powders for laser-based powder bed fusion
show potential for the tuning of material properties, but also pose challenges that must
be overcome. In our study, we processed polyamide 12 powder that was modified with
sub-monolayer quantities of carbon black nanoparticles, by means of two additivation
methods of different dispersion qualities, to standardized tensile bars under the same
process conditions. The two methods of polymer particle nano-coating were the aqueous
colloidal deposition and the dry mechanical mixing.

The differences between the two deposition methods become evident at different
stages of the laser-based powder bed fusion process. During the evaluation of the powder
flowability, only the colloidal additivation procedure keeps the free-flowing characteristic
of pure polyamide 12 powder. This characteristic has an impact on the powder application
of the powder bed fusion process, in which mechanically mixed powders lead to a less
homogeneous powder bed. After processing the nanocomposites under same process
conditions, 0.005 vol% of colloidally deposited carbon nanoparticles show an increase in
the ductile material behavior of manufactured parts at the expense of tensile strength, while
mechanically admixed nanoparticles reduce the mechanical properties of PA12. Despite
increasing the crystallinity, carbon nanoparticles do not change the crystalline morphology
of the intermediate form between the alpha and gamma phases of manufactured specimens.
Higher amounts of nanoparticles than 0.005 vol% result in poorer layer bonding, reduced
part densities with enlarged pores, and thus, worse mechanical properties, regardless
of the deposition method. Ultimately, the quality of the dispersion of minute amounts
of nanoparticles is critical to tailor the mechanical properties of thermoplastic parts by
laser-based powder bed fusion.

Future studies should include optimization of the laser-based powder bed fusion pro-
cess of polymer nanocomposites towards high part densities of carbon nano-additivated
specimens achieved through the adjustment of the powder bed temperature and volume
energy density. Furthermore, lasers other than CO2 (in the near-infrared or visual wave-
length range) should be used to facilitate an improved understanding of the influence of
absorption-enhancing nanoparticles on the laser–material interaction.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14185322/s1, Figure S1: nominal and measured laser power, Table S1: process parameters for
LB-PBF-P, Table S2: powder properties, Table S3: d-spacings (from XRD) of the manufactured specimens.
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