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Abstract: The complexity of torsional load, its three-dimensional nature, its combination with other
stresses, and its disruptive impact make torsional failure prevention an ambitious goal. However,
even if the problem has been addressed for decades, a deep and organized treatment is still lacking in
the actual research landscape. For this reason, this review aims at presenting a methodical approach
to address torsional issues starting from a punctual problem definition. Accidents and breaks due to
torsion, which often occur in different engineering fields such as mechanical, biomedical, and civil
industry are considered and critically compared. More in depth, the limitations of common-designed
torsion-resistant structures (i.e., high complexity and increased weight) are highlighted, and emerge
as a crucial point for a deeper nature-driven analysis of novel solutions. In this context, an accurate
screening of torsion-resistant bio-inspired unit cells is presented, taking inspiration specifically
from plants, that are often subjected to the torsional effect of winds. As future insights, the actual
state of technology suggests an innovative transposition to the industry: these unit cells could be
prominently implied to develop novel metamaterials that could be able to address the torsional issue
with a multi-scale and tailored arrangement.

Keywords: torsional failures; torsional resistance; process model; bio-inspired structures; metamate-
rials

1. Introduction: The Destructive Power of Torsional Load and the Extended Interest
in It

Failure due to torsional loads is a challenging and impactful issue to be addressed: it
is commonly present in several fields and it has been observed and analyzed for more than
two centuries.

Many authors have offered analysis methods for components subjected to torsion,
which involves the use of approximations and simplifications due to the high complexity of
the problem, characterized by a three-dimensional nature and seldom observed as purely
applied, since it is often combined with bending, compression, and tension loads.

Furthermore, different approaches to find torsion-resistance solutions can be used. As
an example, the problem could be faced through a classical mechanical analytical approach,
as done by De Saint-Venant [1] in 1855, who implemented the analysis of a solid linear
elastic homogeneous isotropic beam subjected to torsion. In the last century, different types
of approaches have been exploited. In the first decades of the 1900s, the development
of new technologies and components led to the exploitation of experimental analysis
to face the torsional problem [2,3]. Indeed, for structures with complex geometries and
heterogeneous materials, it was extremely difficult to define an exact mathematical model
and to calculate its accurate solution. The limitation of these experimental approaches,
however, was the low level of accuracy provided by the experimental equipment of those
years [2]. In the 1960s, numerical methods, which exploit the application of a mathematical
model capable of providing an approximation of the problem, have been implemented and
used [4], overcoming the practical limitations of the testing apparatus. In the meantime,
both the results of experimental and numerical analysis and the implementation of more
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complex mathematical models has allowed to confirm and further explore the proposed
theoretical models [5], which have been refined and implemented for different types of
components’ geometries [6] and complex materials such as concrete [7,8].

Starting from the 1980s, a disruptive new approach to solve the torsional problem
has been proposed and includes the understanding and search of torsion-resistant natural
structure strategies, thus engaging bio-inspiration [9-14].

In later years, even complex torsion-related problems such as non-linear analyses [15-19],
dynamic analyses (for structures subjected to vibration or to fatigue) [20-27], and analysis of
shell [28-30] and frame [31] structures have been addressed through analytical and numerical
methods. Recently, solutions to the torsional issue focus on the development of novel meta-
materials [32-34], which can also be bioinspired.

Despite the high variety of strategies used, this wide problem has not been fully and
systematically approached yet, even though torsional load must be taken into consideration
in the design of most components, whether being shafts or far more complex structures as
in the case of ships, buildings, and aircrafts.

The evolution in approaching the torsional problem across years is presented in
Figure 1, which reports the occurrence of publications dedicated to torsional analysis
and a comparison with works dedicated to other more commonly applied loads such as
tension, compression, and bending. It is immediately evident that the research devoted to
the torsional problem is drastically limited in comparison with the more common loads,
specifically because of the already mentioned reasons.
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Figure 1. The infographic presents the evolution in approaching the torsional problem across years and the occurrence of
publications dedicated to torsional analysis from 1850 until today. For each period, the comparison of torsional works with
the papers dedicated to other commonly applied loads (tension, compression, and bending) is reported. The green boxes
focus on the evolution of the analytical approach and their limitations; the light-blue boxes refer to issues related to the
experimental approach. Violet boxes are dedicated to observations concerning the numerical approach, while the purple
rectangle concerns bio-inspiration strategies. In pink, the latest trends in addressing the torsional problem are reported.
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The first point in order to comprehend and deal with the multi-faced and challenging
aspects of this topic is to deeply analyze failure issues generated by torsion, being a pure
or key contribution to failure.

1.1. Failure Due to Torsional Load

As above-mentioned, several fields are affected by torsional damage and even failure;
a detailed analysis of sector-specific torsion-related issues is presented in this paragraph
and schematized in Figure 2.
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Figure 2. Failure due to torsional load affect many fields of interest such as civil (A,B), mechanical (C-E), electronic
(F), biomedical (G-1), aircraft (J,K), and marine (L,M) engineering. For each sector, specific torsional-related failures are

reported.
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An area of interest in which torsion is a matter of concern is civil engineering, where
the aim is to better comprehend the behavior of buildings, bridges, or simply concrete
beams under torsional static loads or dynamic loads, as in case of seismic events. In 1969,
the theory of torsion in this sector has been described in more detail by Koll-Brunner and
Basler [5], focusing on methods for the analysis of torsion of single-span or continuous
members through the use of familiar tools for structural engineers. These solid, thin-walled,
open or closed cross section structures are base elements for constructions, which even
actually embrace torsion-related failures. For instance, as explained in the research of
Kawashima et al. [18], piers of a skewed bridge could fail if subjected to extensive torsion
damage (shown in Figure 2A) as a consequence of an earthquake. The damage was a direct
effect of seismic activity and it could be clearly recognized that the torsional fatigue failure
crack had a 45° inclination.

To be more precise, the load generated on bridge columns, foundations, walls, and
in other civil structures is never steady and pure torsion, but usually a combination of
different types of applied loads [16,35], characterized by a cyclic nature as analyzed by
Kelly et al. [36]. Indeed, reinforced concrete beams, which undergo torsion failure, are a
matter of concern even if strengthened with FRPs (fiber reinforced polymers), specifically
designed for constructions. However, research on this topic is extremely limited [16],
even though many authors have focused their research on beams under pure torsion
condition, and specifically on both open section beams as in U-shaped thin-walled analyzed
by Chen et al. [37] (Figure 2B), and closed section beams such as those described by
Chariolis [38], Rao et al. [39], and Mondal et al. [16]. Again, in Figure 2B, the typical
inclination of 45° of torsional fatigue failure cracks could be observed. Note that the
first attempts in investigating concrete beams under torsion loads go back to 1900 [2]:
in the first fifty years of the twentieth century, many suggestions to determine a reliable
analytical criterion and methodology for concrete beams subjected to combined stress due
to bending and torsion were proposed [2,7]. As reported by Fisher [2], who performed
both experimental tests on cylindrical reinforced concrete beams, a suitable failure criterion
in these conditions could be maximum stress theory. As further reported by Kemp et al. in
1971 [7], the major issue related to reinforced concrete subjected to torsional load is that
the applied loading condition is neither homogeneous nor isotropic. This leads to a lack of
mathematical rigor and thus uncertainty in the design phase. Another possible reason for
the lack of studies on torsion in civil structures relies on the fact that buildings are usually
assumed to be composed of articulated simple vertical or horizontal elements specifically
arranged so that torsion could be eliminated in the structural analysis. In case it could
not be completely neglected, torsion is usually included in the safety factor choice in the
design phase. Not only methods to prevent torsion failure, but torsion failure mechanisms
have also been analyzed with the aim to better recognize and characterize them. Indeed,
as previously anticipated, one of the main issues related to torsion analysis is that it is
difficult to isolate, recognize, and observe, usually combined with other types of load (i.e.,
bending [2,6,8]). These usually have shell geometries, characterized by a far more complex
analysis of stresses and strains if compared to beams [5]. To approach this complexity, many
authors have suggested tailored torsion analysis methods, as in the case of Kumari et al. [29],
who analyzed the behavior of a conoidal shell. Similarly, Zheleznov et al. [17] focused their
attention on the issues of the stability of elliptical cylindrical shells subjected to torsion and
internal pressure and solve them from the analytical point of view in the case of nonlinear
deformation.

Another field of interest is mechanical engineering, in which failures of shafts due to
transmission of torque moments are frequently observed. Power transmission shafts are
fundamental components of engines, turbines, and gearboxes, where torque resistance of
shafts must be assured in both static and fatigue loading conditions [40]. In this regard,
there are many fragmented analyses of solid and hollow shafts that failed due to torsional
fatigue [41-44]. It has been observed that the effects of torsional fluctuating stress lead to
unexpected failure, which shortens the predicted usage life: shafts are usually subjected to



Materials 2021, 14, 5368

5o0f22

both torsion and bending loads, so failure may occur either at the maximum bending or
torsional point. Considering the specific case of a crankshaft, failure occurs due to high
stresses in a specific position along the component as a combination of maximal engine
torque and maximal bending stress. Another remarkable fact is that cracks present in shafts
that fail due to the combination of torsion and bending, as in the case of failed transmission
shafts shown in Figure 2C-E, have the inclination of torsional fatigue failure cracks in
brittle materials observed through visual macroscopic analysis, corresponding to 45°, as in
the mentioned case of concrete beam failure cracks.

Thus, taking into consideration the failure due to torsional load in shafts, similar con-
siderations could be extended to other sectors such as automotive [45-49],
aerospace [43,45,50-53], agriculture [54-56], and energy production industry [57].

In the previous failure examples, the structures subjected to torsion were beams,
with solid or hollow section, and shells. For the sake of completeness, it should be taken
into consideration that the components’ behavior also strongly depends on their size and
geometry. For instance, in the field of electronic engineering, rods with micro and nano
dimensions present in micro-sensors and actuators are typically subjected to torsional
vibrations [20,21] (Figure 2F). This dynamic condition could result in failure for rods with
different shapes and sizes. This specific issue was investigated by Hassannejad et al. [21],
who managed to prove the influence of geometry on the rods” behavior under vibrational
torsional loads.

Another peculiar example is related to the biomedical field, in which rotary endodon-
tic instruments are commonly used. They have a very complex geometry and are highly
subjected to torsional loads [58-60]. These hand-operated instruments are characterized by
reduced dimensions, from hundreds of microns up to a millimeter [61], and have different
cross-sectional shapes, as illustrated in Figure 2G,H [62], according to the specific function
they are designed for. Improving torsion strength and torsion fatigue resistance in all these
instruments could prevent failure, avoiding dangerous and complicated operations related
to their unneeded extraction from teeth [63-65] (Figure 2I).

Another important field of interest is aircraft engineering, in which some shell and
frame structures are subjected to torsional stresses: indeed, both fuselage [3,66—-69] and
wings [53,70,71] must fulfil geometric constraints to be as light as possible and face bending
and torsional loads. To withstand these loads during take-off, flight, and landing, avoiding
fatigue or static failure, these components must be specifically designed, with ad hoc
features that guarantee increased stiffness and structural integrity. Considering wings,
particular attention should be given to the actuation of aircraft flaps and slats (Figure 2J),
which are strongly subjected to torsional loads during the flight phase [70]. In the case of
fuselage panels, the main issue concerns the different possible deformation modes due to
flexure—torsion, as shown in Figure 2K.

Additionally, even marine industry researchers have focused their attention on tor-
sion, trying to identify the effect of shear stresses in thin-walled ships to avoid failure.
Indeed, ship hulls [72] and ultra large container ships [73] are subjected to significant
torsional moments, up to 300 kN-m, due to both an improper distribution of cargo load-
ing and fuel, and the presence of massive oblique waves (Figure 2L) [74]. In the case of
reduced torsional stiffness, torsional loads could lead to failure of the ship, which could
consequently cause environmental disasters as well explained by Shama [74] in his work,
almost entirely dedicated to torsional load effects in ships. Moreover, frame, shell, and
beam structures placed underneath the sea are also interested by torsional loads, as in
the case of subsea foundations and piles or mooring applications analyzed by different
researchers [31,75,76]. Considering the example of shallow foundations, a proper case
study is the interaction between torsional and sliding loads, which might not be supported
by structures such as oil pipeline end manifold and pipeline end termination systems
(Figure 2M), as studied by McDonald et al. [31].
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The impactful failures due to torsional load that have affected several engineering
fields require a systematic discussion, starting from a comprehension of the complex
torsional-related problem.

1.2. Torsion-Resistance: A Complex and Underestimated Issue

Torsional load effects have been preliminarily analytically considered since the 1850s,
focusing on cylindrical elastic corpses described in the theory of Saint-Venant in “De la
torsion des prismes” [77]. It has been known long before this theory that torsion is charac-
terized by some peculiarities, which make its analysis very complex and challenging, even
if this load is applied to cylindrical beams. Indeed, torsional load is not axial-symmetric and
this means that it has a three-dimensional nature. For this reason, it is not possible to ana-
lyze torsion effects on components or design a torsion resistant structure without working
in a complex three-dimensional space. According to this, in the case of components with
more intricate geometries than cylindrical beams, the analysis of stresses and deformations
is articulated to perform, as proven by the analysis and computational models of several
researchers [4,5,25,74,78-82]. To sum up, considering a torque applied on structures with
complex geometries such as those made of different interacting beams or thin walls, as
in the case of the mentioned skirted foundations, the mechanical analysis of stresses and
strains requires high computational cost and needs detailed meshing strategies.

Since the design of a component or a structure must pass through the optimization step,
the complexity of calculating stresses and strains occurring due to the applied torsional
loads is currently a limit. For instance, considering the case in which a lightweight structure
is specifically required, it is not always possible to optimize the weight observing the
structural constraints such as keeping the torsional rigidity constant [83].

This difficulty must be added to another issue related to torsion analysis, concerning
the fact that this type of load is rarely the primary cause of failure: it is often combined with
bending [83] and it frequently does not directly cause failure, even though it contributes to
it. One of the actual challenges is to determine the contribution of torsion and to associate
its effects in terms of strains and deformations.

Another reason that could explain the lack of research progresses in the optimization
of torsional strength might be the complexity of analysis in the case of structures with very
low or large size. On one hand, low size components, as in the case of rotary instruments,
are difficult to observe and monitor under the application of load. On the other hand,
structures such as aircraft wings and fuselages, buildings, bridges, ultra large container
ships, and wind turbines are also difficult to analyze due to the presence of many multi-
axial stress conditions.

2. Common-Designed Torsion-Resistant Structures

According to the specific application, structures and features with specific torsion
resistant features have been designed and are reported in Table 1. Many of these structures
have been commonly applied since the 1970s, as in the case of ship torsion boxes and
torsional energy absorption devices, others have been introduced in the late nineties such
as in the case of composite transmission power shafts. Some, such as the adaptive torsion
wings, have only been conceptually modeled and lately investigated.
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Table 1. Common-designed torsion resistant structures. In the table, the fields of interest, a schematic of torsion-resistant components, their potentialities, and limitations are highlighted.

Structure Field of Interest Schematic of the Structure Potentialities Limitations
Sole specific task to absorb kinetic energy
generated in the structure; High costs;

Torsional energy
absorbing devices [36]

Civil engineering

\ 5

Adapted with permission from [36]. Copyright

Independent device with respect to the
structure as a whole;

Allow the structure to operate under
simpler and less severe conditions: better
distribution of deformation.

Torsional load in cyclic
conditions are entirely
sustained by this device [36].

AR-Brace energy
absorbing devices [22]

Civil engineering

1972]. M. Kelly, R. L. Skinner, A. J. Heine

N

Adapted with permission from [22].

Lower inelastic energy dissipation on the
structure’s framing system, reducing
structural damage;

Reduce floor accelerations and base shear;
Reduce structural torsion adding both
rigidity and dumping.

High complexity of the device,
which is intended for passive
control of vibrations and
vibration-dependent
responses.

Helicoidal steel
reinforcements in
concrete [7,84]

Civil engineering

Overcome the limitations in space and
strength;

If the helical reinforcement varies between
0.4 and 1.0%, torsional strength increases
from 20 to 50%, regardless the fact that of
longitudinal bars are added or not [7,84];
Increase reinforced beam ductility (at least
400-600% more deflection).

Advantages are observed only
if a high compressive strength
concrete (70 MPa) is used
instead of common concrete
(32 MPa) [7,84];

Adjustments do not respect
norms requirements (AS3600);
+250% increase in costs [85].
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Table 1. Cont.

Structure

Field of Interest

Schematic of the Structure

Potentialities

Limitations

Composite power
shafts [47,51,52,85-89]

Mechanical
engineering

Increase in torque capability of 160% with
respect to hollow conventional shafts;
Mass reduction of 75% with respect to
hollow conventional shafts;

Elastic properties can be tailored to increase
torque and rotational speed.

Stress intensity factors at crack
tip and holes must be studied
for inhomogeneous materials.

Wings internal
struts [90]

Aircraft engineering

Adapted with permission from [90].

Increase in torsional stiffness, up to 7 times
the open cell foam structure;

Lightweight structure;

Limited deformability.

Complexity of stress analysis
in frame structures;

Struts must be placed exactly
where combined torsion and
bending are most dangerous.

Active aeroelastic
structure devices [91]

Aircraft engineering

Torsional stiffness can be reduced while
limiting shear center shift through
translation of both front and rear web
inwards.

Very high complexity in the
design and control;

Increase in system weight
(+2-5% of the structural wing
weight) [91].

Torsion boxes [74,92]

Marine engineering

Adapted with permission from [92].

Lower stresses generated in the hull thanks to:

large torsional stiffness in the cellular
configuration;

reduction of huge stress concentrations
caused by axial or shear stresses in torsion

Introduction of geometric
discontinuities in the hull of
ships;

Complex torsional and flexural
loads characterization.
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It can be observed that the common-designed torsion-resistant structures are char-
acterized by some limitations. For instance, many of them are quite complex from the
geometrical point of view: on one hand, this leads to the high complexity of numerical
stress analysis and can affect the stress distribution, eventually causing local stress con-
centrations. On the other hand, the complexity of structures increases the costs of design
and production of up to more than 250% if compared to conventional structures. The other
main issue is weight increase, which could affect the performance of the components.

It is important to highlight the necessity to overcome these evident limitations through
a transversal approach, considering the impressive power of nature-designed solutions [74].

3. Overcoming the Limitations of Traditional Structures from a Natural Perspective
3.1. Nature as a Source of Inspiration

Innovative solutions to face the torsional issue have recently been searched in nature,
interrogated as a source of inspiration [74,93]. Many natural structures are subjected to
torsional loads; some examples are tree trunks and wood cells and every bird and insect
wing. Nature deals with torsion since the first birth species and the result is that there
exist many systems in nature that develop torsion resistance through specific mechanisms
and/or structural arrangements. For this reason, researchers consider nature as a qualified
source of inspiration to develop torsion-resistant structures. Indeed, biomimicry and bio-
inspiration are sciences based exactly on this concept [94], according to which scientists
should respectively mime nature or let their research be inspired by it, lowering as much as
possible the impact on the Earth and obtaining more sophisticated technologies, processes,
and ecosystems [95,96]. Biological materials are able to optimally perform under different
loads due to their complex and hierarchical structures, which go from macroscale to
microscale [97]. Indeed, biological structures vary at different levels [98] and the interaction
between them could provide specific torsional properties to the system as a whole. As
an example, the complex hierarchical structure of wood is illustrated in Figure 3 and is
characterized by more than five levels of hierarchy, as described in International Standard
ISO 18457 (2016) on biomimetics [99,100]. Note that the multi-layer concentric cylindric
structure of wood cells provide torsion resistance [101] and that the helicoidal transitions
at the microscale avoid discontinuities in the change of properties between different levels
of the entire structure [102].

As explained in depth by Huang et al. [103], the analysis of biological materials is
quite intricate from the point of view of the computational analysis, also considering that
some properties could derive from the interaction between structures at different levels
of hierarchy [104]. To shed some light on this complexity, a characterization through
multi-scale computational models can be taken into consideration [105,106].

3.2. Torsional Load in Nature: The Need of a Specific Problem Definition

As mentioned in Section 3.1, in order to overcome the limitations identified in
traditional-designed torsion resistant structures, an interesting key could be bio-inspiration.
However, to find an optimized solution to the torsion complex issue, a methodical ap-
proach should first be implemented. Indeed, natural structures that proved to have specific
properties and functionalities could be investigated through characterization at various
levels of the hierarchical structure, allowing the property of interest to be isolated [107].
Process models to approach bioinspired research have been proposed and analyzed, as
also pointed out by Fayemi et al. [99] and Katiyar et al. [94], who suggested a unified
problem-driven process (Figure 4). Taking into consideration different levels of abstraction,
the problem can be divided in two phases: for each of them there are four steps that allow
the biomimetic complex issue to be solved.
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Figure 3. Hierarchical structure of wood from macroscale to microscale. Multi-layer concentric cylindric architecture and
helicoidal transition are peculiarities that allow for torsion resistance and a progressive transition of properties, respectively.
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Figure 4. A schematization of the process model of biomimetics to address the torsional issue is presented. It is divided into
two phases and eight steps: each of these steps takes advantage from specific tools such as problem analysis, abstraction,

transposition, etc. [99,108]. Adapted with permission from [99].
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To develop torsional bioinspired structures, the problem analysis should be performed
first (i.e., the description of the problem related to torsion resistance). Examples of problem
analysis are reported in Section 1.1, together with a detailed collection of components and
structures commonly subjected to torsional damage or failure. There are many fields of
interest in which the development of an optimal torsion resistant structure might lead to
an improvement in conventionally designed engineering components. For this reason,
potentially prominent biological models were analyzed and critically compared.

3.3. Torsion-Resistant Nature-Inspired Structures: Biomimetic Unit Cells

In order to develop bioinspired innovative structures and prevent failures and damage
due to torsional loading, some potential unit cells and geometries of biological structures
were considered for the analysis and are schematized in Table 2, based on the screening
in the abstraction tool [99]. First, some peculiar structures are present in ivory, a highly
non-isotropic material with complex three-dimensional structures. Indeed, in every tusk, a
core of dentine, usually referred to as ivory, is present: it is made of a matrix of micrometric
cuboid [109] particles in a ground substance that contains dentinal tubules. These are
cylinders aligned in sheets forming micro laminae, which are generally axially oriented,
but could even be radially disposed, angled to the forming face or wrapped to form a
helix [110]. Note that dentinal tubules might be curled into waves or could be straight and
within micro laminae, they can be radial and angled to the axis (Table 2, first unit cell),
specifically varying torsion-resistant properties. Finally, dentinal tubules may have the
same orientation in adjacent micro-laminae, or orientation may change in the presence of a
helicoidal pattern, obtaining a multi-layer concentric cylindrical architecture that is also
present in the osteons of bones [111]. Considering that every kind of ivory has evolved its
own structure to answer different needs such as increased strength and toughness [109],
optimized bending and torsion resistant structure could be inspired by ivory. Many
types of tusks could be investigated, as undertaken by Locke [109], who showed the
macroscopical features of tusks. In the same study, microscopical details of different
species of ivory such as dentine tubule arrangement in micro laminae, were identified.
Focusing on the structure of narwhal tusk, a macroscopic life-handed helix spiral could
be recognized [112]: it is characterized by an angle of inclination of the spiral arc of
66.88 £ 0.61° [113]. Mechanical properties of narwhal tusk have been examined by some
studies [13,114], which established that tusk dentine is not a homogeneous material and is
characterized by anisotropic properties. No specific studies related to the torsional test of
narwhal tusk have been conducted, but an analogous helicoidal structure has been tested
under torsion, exhibiting prominent behavior as in the case of a helix-reinforced composite,
as reported by Porter et al. [86].

Another inspiring solid structure is the multi-layer concentric cylindrical cell wall
architecture of plants [101] and bone osteons [115-117] (Table 2, second unit cell): stiff
helicoidal micro-fibers are arranged parallel to each other in every microfibril thick lamel-
lae [14,102,118], each one oriented according to a specific direction with respect to the
cell axis. That direction is referred to as the microfibril or winding angle, in the range of
0 £ 90° [101], and it is the angle between a lamella and the subsequent one. This structure
allows wood and bones to obtain superior mechanical properties to both bending and tor-
sion through the optimization of the plies and angles combination [117]. Helicoidal layers
of fibers arranged according to a multi-layer concentric cylindrical architecture are widely
diffused in other recently investigated biological materials such as in insect cuticle and
skeleton of glass sponges [119]. It is interesting to point out that helicoidal cell walls might
be characterized by a far more complex texture: it might be formed by a mechanism based
on geometrical considerations, which witnesses that the cell is equipped with intrinsic tools
to generate a large variety of load-bearing textures [118]. Macroscopic plant structures are
also characterized by helicoidal features; these structures increase torsion resistance, which
is useful when wind forces are present. Indeed, in Figure 3, the mechanism according to
which the wind can cause torsional load on a tree [120] is schematized; note that stem,
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roots, and soil altogether resist the generated torque. In fact, as explained by Skatter in his
study [121], trees are mainly subjected to torsion due to wind forces, especially when they
have asymmetric crowns: few decimeters of asymmetry can cause shear failure of the stem.

To avoid this, it has been demonstrated that spiral grain (Table 2, third unit cell) in
the direction of wind-induced torque increases the bending and torsion strength of the
stem and thus a beneficial configuration is obtained [121,122]. As a matter of fact, a spiral
grain stem bends and twists more than a straight-grain stem when exposed to strong wind:
through this mechanism of deformation, it offers less wind resistance and is less likely to
break. A similar multi-layer architecture could be found in reinforcement geodetics [123],
which are geometries on curved surfaces given by geodesic lines of which there are four
kinds: the annular model, the single helicoidal thickening model, the double helicoidal
thickening model, and the straight lines parallel and perpendicular to the axis mode. In the
annular model, a series of annuli is arranged in parallel planes and is perpendicular to the
axis of the cylinder, decreasing the buckling possibility. In nature, this reinforcement type is
present in both plant-cells [123] and bird bones [90], where annuli are known as ridges, that,
however, do not have a disruptive impact on the torsion-resistance of the entire structure.
In the single helicoidal thickening model, thickenings have the function of strengthening
the biological walls and preventing their collapse. For example, helical cell-wall thickenings
observed in the root cortex cells of many Asplenium species mechanically stabilize the
cortex tissue [124]. Helicoidal structures are commonly found in the peripheral body
locations of plants and animals to prevent surface failure: indeed, if the beam is bent or
twisted, the greatest stresses are concentrated on the surface, so an external strengthening
mechanism could prevent failure. Furthermore, it has been well established that helicoidal
components act as shearing force protection, that is, a specific point of interest for the
purpose of this review [102]. One proof of this is the helicoidal arrangement of tension-
resisting fibers observed in the stem of young herbaceous plants such as sunflowers.
They provide wrapping for flatworms and roundworms: their outer membrane might
be characterized by two different fiber arrangements. Fibers might run lengthwise and
circumferentially or run helically, with left and right-hand helices, determining utterly
different responses to the various torsional stresses the structures might encounter, as
described by Vogel [125] and Neville [102]. Specifically, the helically reinforced model
smoothly deforms responding to both tension and compression, but strongly resist torsional
stresses: according to Vogel [125], the sets of left and right-handed helically arranged fibers
resist twist in all directions. The value of deformation and torsional strength depends
on the material that characterizes the structure. A fundamental parameter for helically
reinforced surface membranes, and more in general helical torsion-resistant systems, is the
“fiber angle”. It is the angle forming between the fibers and the long axis of the cylinder,
and explains the relationship between the structure and its mechanical behavior, often
derived with the aid of computational models [51,86,101,114,116,121,126-128].
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Table 2. Torsion-resistant biomimetic unit cells are selected, the biological source, and the schematic of the structure is reported. Additionally, specific torsion-resistant features are

highlighted, in accordance with the performed mechanical /numerical tests.

Bio-Inspired Structure

Biological Organism

Unit Cell Structure

Torsion Resistant Features

Performed Tests

Helicoidal laminae in solid or
hollow cylinders
[86,110,112,114,128,132]

Tusk of narwhal, hippopotamus,
African and Indian elephant, sperm
and killer whale, boar, walrus

Fibers tangential to cylinder’s axis
are helicoidally arranged.

Helix-reinforced composite, ZrO,
and epoxy (60:40), 45°:

e  Shear strength: 5.5 £ 0.7 GPa
Ivory:

e  Flexural strength: 378 MPa

e  Fracture toughness: 2 MPa
ml/2

Multi-layer concentric cylindric
architecture
[100,101,115,118,133,134]

Wood cells, bone osteons, insect
cuticle and skeleton of glass sponges

Adapted with permission from [14]

Cylindric layers can have:

° aligned fibers in each layer
with cylindrical helicoidal
grading;

° helical fibers with variable
angles of pitch with a more
complex texture.

0Wood cell-wall with cellulose
microfibril angle of 50° — fracture
strain: 13.5%;

Bone osteons — compressive
modulus of lamellae: 20 GPa
Wood-inspired composite —
compressive modulus variation for
a winding angle of 45°: +150%

Helically reinforced cylinder
[14,90,102,121,122,124,125,135,136]

Root cortex cells of most Asplenium
species, herbaceous plants
(sunflower), tree stem

Fibers arranged according to single
or double helices on a cylindrical
surface.

Tree stem (14 cm of diameter) —
breaking load in torsion test:
275 MPa

Twisted plywood (Bouligand’s
structure) [102,129-131,134,137-143]

Arthropod cuticle (crab, lobster,
mantis shrimp, arachnids and
myriapods),

crack bridge

Adapted with permission from [143]

Layered and twisted structure in
which consecutive layers of parallel
fibers have a constant angle of
twisting.

Bouligand composite structure,
RGD720 and polyester (22:78) —
Peak torque: 7.5 Nm, Rotation:

2.0 £5.3 x 1072 rad

Impact forces repetitively endured:
<1500 N
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A different example of a natural torsion-resistant unit cell in which helices are present
is Bouligand’s structure [129] (Table 2, fourth unit cell), largely diffused in most arthropod
cuticle. Indeed, the arthropod epidermal cells are characterized by a periodic architecture,
with a helicoidal stacking of unidirectional chitin-protein fibrils set in an amorphous ma-
trix [102,130]. The name of this structure comes from Bouligand, who dedicated his studies
on the description of this twisted fibrous arrangement, which has then been largely ob-
served in biological materials and tested under torsion [129]. Typically, Bouligand’s model
could be recognized by a characteristic parabolic pattern that can be geometrically inter-
preted as an oblique section visualization of the layered and twisted structure resembling
plywood [131], where consecutive layers of fibrils have a constant angle of twisting.

Bouligand'’s structure has been proven to have a remarkable fracture toughness [140],
well beyond its constituents, thanks to a combination of two main propagation modes
controlled by that arrangement of chitin—protein: crack twisting and bridging (Table 2).
Indeed, before the fracture begins, the twisted plywood allows reorientation and deforma-
tion of fibers in response to torsional loadings [144]. In other words, Bouligand’s structure
ductility and toughness are biologically designed to prevent fracture through changes in
the structural arrangement. Furthermore, Bouligand’s structure has exceptional stiffness
and hardness [143,145,146] and, similar to that discussed for ivory, optimized bending and
torsion resistance can be inspired by this structure, as proven by works such as the one by
Nikolov et al. on high-performance composite structures [141]. To provide an idea of the
wide diffusion of this architecture in nature, it is worth mentioning that arthropods are a
kind of invertebrate animal that covers more than half the classified species [138], prov-
ing that their biological structures, and specifically their torsion-resistant properties, are
highly performing and adaptable [129,130,139-143,147-149]. Arthropods include insects,
arachnids, myriapods, and crustaceans that have a cuticle with a twisted plywood. Further-
more, Bouligand'’s structure can be associated with micro- and nanoscale architecture (i.e.,
cholesteric liquid crystal), which, as explained by Mitov [150], are omnipresent in nature:
chitin, cellulose, collagen, and silk are characterized by the Bouligand arrangement [102].

4. From Nature to Novel Materials: Torsion-Resistant Metamaterials

Eventually, nature-inspired structures have been exploited in the design of novel
metamaterials that are able to actively address the torsion-resistance issue with innovative
and customized solutions. Following the problem-driven approach defined in Section 3.2,
phase 2 is now faced and the biological strategies abstracted from natural torsion-resistant
unit cells are transposed to technology and tested.

Metamaterials are characterized by properties not simply given by their composition,
but arising from their structure [34]; they are usually assembled starting from one or
more basic unit elements that repeat themselves, forming a clinical pattern [151]. An
example is the metamaterial conceived by Zhong et al. [33], which was able to convert axial
compression (or tension) into torsion: the unit cell, the following metamaterial, and the
final tested specimen are illustrated in Figure 5A. Note that the unit cell of this material is
characterized by an arrangement of rods, which resembles the helical structures described
in Section 3.3. The proposed design allows for a promising peak value of 16.2° of torsion
angle to be reached. Possible applications of this metamaterial are wave converters, able to
transform shear waves into longitudinal waves and vice versa, or morphing structures in
aircraft and aerospace engineering [33].
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TORSION-RESISTANT METAMATERIALS

CTC structure composed of inclined and horizontal rods

Compression

'L
Unit cell Metamaterial Specimen

Cylindrical shell type CTC structure, with inclined rods and horizontal circle rods
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Figure 5. Torsion-resistant metamaterials. (A) Compression—torsion—conversion (CTC) structure composed of inclined and
horizontal rods. (B) Cylindrical shell type CTC structure. (C) Chiral hexagon torsion-bending resistant structure.
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Another compression-torsion-conversion (CTC) metamaterial has been proposed by
Wang et al. [32], which focused their attention not only on the properties of the final
structure, but also on the main problem of metamaterials such as inefficient use of space.
Their work introduces a cylindrical metamaterial, increasing the capability of compression
and torsion resistance [32]. Its unit cell has inclined and horizontal circle rods, which
resembles the helical and annular features of natural unit cells, respectively (Figure 5B).
The most crucial benefit of this structure is the tailored torsion resistance coming from the
relationship between rod inclination angle and the torsion angle of the rotation spring: the
larger the rod inclination angle and slenderness ratio, the larger the torsion angle. The
metamaterial consists of three of the cylindrical shells, differing in radius, arranged one
inside the other. Since manufacturing of these structures, also known as rotation springs, is
quite problematic, a continuous structure with curved surfaces has been proposed for tests.
Applications of these metamaterials include structures of machinery and vehicles.

Considering the need to design lightweight components, promising metamaterials
have been inspired by honeycombs. As shown by Haghpanah et al. [152], from the basic
concept of hexagonal honeycomb, more complex hierarchical structures with an improved
efficiency could be developed, as in the case of self-similar hierarchical honeycombs shown
in Figure 5C. An example of structure inspired by honeycombs is the morphing airfoil
designed by Bettini et al. [153,154], where a composite chiral element, which resembles
honeycomb hexagons and spirals (largely diffused in nature [123,155-157]), was used in
the core of the airfoil to resist torsion and bending during flight. To be more precise, this
metamaterial can improve morphing performances by increasing the maximum allowable
displacement, which can reach in tension up to 12% of cell dimension and about 30% in
compression.

5. Conclusions and Future Perspectives

Failure of components due to torsional load is an impactful issue that has been
addressed across the years, starting from a simplified analytical approach and reaching
time-demanding computational simulations. However, the complexity of the problem, its
three-dimensional nature, the combination of torsional load with other kinds of stresses
(i.e., compression, bending or tension) make its systematic analysis particularly hard.

In order to overcome these limitations, a methodical approach was proposed in this
review, starting from a punctual analysis of the problem. Several torsional failures have
been deeply investigated and categorized in different fields of interest. Common-designed
solutions to increase torsional resistance are critically compared and their drawbacks (i.e.,
high complexity and weight) are the preparatory point for a deeper nature-driven analysis.

For this reason, nature is considered as a mine of disruptively novel ideas: helicoidal
laminae cylinders, multi-layer concentric cylindric architectures, helically externally rein-
forced cylinders, cylinders with external helical grains, and Bouligand’s structures have
been identified as prominent candidates to address the torsional problem. These architec-
tures are commonly found in both plants and animals, which should resist torsional load
during their life-cycle without deteriorating their mechanical characteristics.

After this precise screening, a transposition to technology was proposed: biological
strategies commonly implied by torsion-resistant bio-inspired unit cells are exploited in
novel metamaterials, which present a multi-scale specific arrangement to address the
torsional issue. Their properties do not come solely from the characteristics of the base
materials, but from their newly arranged structure. Their precise torsion-resistant bio-
inspired shape, combined with multi-scale architecture and tailored orientation of the inner
fibers make them future prominent candidates to effectively address the design drawbacks
encountered in traditional torsion-resistant structures.
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