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Abstract: Using butyl titanate and absolute ethanol as raw materials, TiO2 was prepared by a
hydrothermal method with different hydrothermal times, and the influences of hydrothermal time
on the structure and photocatalytic performance of TiO2 were investigated. The obtained samples
were characterized by XRD, SEM, TEM, BET, PL and DRS, separately. The results show that TiO2

forms anatase when the hydrothermal time is 12 h, forms a mixed crystal composed of anatase and
rutile when the hydrothermal time is 24 h, and forms rutile when the hydrothermal time is 36 h.
With the extension of hydrothermal time, anatase gradually transforms into rutile and the surface
area decreases. Although TiO2-24 h and TiO2-36 h show lower photoinduced charge recombination
and higher light source utilization, TiO2-12 h exhibits the highest photocatalytic activity owing
to its largest surface area (145.3 m2/g). The degradation degree of rhodamine B and tetracycline
hydrochloride reach 99.6% and 90.0% after 45 min.

Keywords: TiO2; hydrothermal time; surface area; photocatalytic activity

1. Introduction

Employing photocatalytic technology to degrade pollutants is an effective route for
environmental governance. TiO2 has received extensive attention due to its advantages
such as chemical stability, low cost, mild reaction conditions and high photocatalytic
activity [1–5]. The crystal structure, crystallinity, surface morphology, specific surface
area and optical property of TiO2 are closely related to the preparation method. The
most commonly used methods are mainly sol–gel [6–8] and hydrothermal methods [9–12].
Zhu et al. [6] used sol–gel methods to synthesize TiO2 under calcination at 540 ◦C. The
particles are spherical with a certain extent agglomeration and the surface area is 40 m2/g.
It is convenient to control the morphology of photocatalyst by a hydrothermal method,
which does not require high-temperature calcination and is conducive to obtaining a
large surface area and high photocatalytic activity [13–18]. Esparza et al. [16] prepared
nanostructured TiO2 by a hydrothermal method. The crystal grain size was 13 nm, and the
particles were composed of nanotubes and nanosheets with a large surface area (269 m2/g).
Methylene blue (MB) was completely degraded under UV light after 120 min. Zhu et al. [13]
prepared Cu-doped TiO2 under the conditions of 200 ◦C for 12 h by hydrothermal method.
It was found that the photocatalyst was anatase/rutile mixed crystal structure and the
surface area was 73.9 m2/g. The decolorization degree of rhodamine (RhB) was 99.4% after
60 min. Nesic et al. [18]. prepared lanthanum and vanadium co-doped titanium dioxide by
a microwave-assisted hydrothermal method. The samples showed high crystallinity and
were all anatase structures. The specific surface area of 0.02V-2La/TiO2 was 125 m2/g, and
the decolorization degree of RhB was more than 90% after 90 min.

Hydrothermal conditions will affect the crystal structure, surface morphology and
specific surface area, thereby affecting the photocatalytic performance [19,20]. Lee et al. [19]
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studied the effects of hydrothermal temperature from 120 to 210 ◦C on the morphology and
photocatalytic performance of TiO2. The results show that the particles gradually change
from granular to nanotube with the increasing temperature and TiO2 prepared at 180 ◦C
displays the best photocatalytic performance. Changing the ratio of reactants can also
affect the structure and photocatalytic performance of the products [21,22]. Li et al. [21]
prepared TiO2 by using different molar ratios of tartaric acid to TiCl3. When the tartaric
acid: TiCl3 is 0.1, the photocatalytic activity is the highest.

In the present study, at the fixed hydrothermal temperature 200 ◦C, TiO2 photocatalysts
were prepared with a hydrothermal time of 12, 24 and 36 h, respectively. The obtained
samples were characterized by XRD, SEM, TEM, BET, PL, DRS and the degradation of
RhB and tetracycline hydrochloride (TC) to study the effects of hydrothermal time on the
crystal structure, morphology, specific surface area, optical property and photocatalytic
performance of TiO2.

2. Experimental Section
2.1. Material Preparation

10 mL butyl titanate and 20 mL absolute ethanol were mixed to prepare solution
A. Solution B was made of 30 mL deionized water, 2 mL hydrochloric acid and 2 mL
polyethylene glycol, which was added to solution A dropwise. After stirring for 1 h, the
mixture was transfer into a 100 mL hydrothermal reactor and kept at 200 ◦C for 12 h,
24 h and 36 h. After washing and drying, TiO2 photocatalysts were obtained. No further
calcination process was performed. The samples obtained with different hydrothermal
times were labeled as TiO2-12 h, TiO2-24 h and TiO2-36 h.

2.2. Characterization

The crystal structure was characterized by DX-2700 X-ray diffractometer (XRD). Mor-
phology was observed using Hitachi SU8220 scanning electron microscope (SEM) and
FEI-Tecnai G2 F20 transmission electron microscope (TEM). Surface area was measured by
an ASAP2460 surface area analyzer (BET). The optical property was studied using UV-3600
ultraviolet-visible spectrophotometer (DRS) and F-4600 fluorescence spectrometer (PL).

2.3. Photocatalysis Experiment

To achieve adsorption and desorption equilibrium, 0.1 g TiO2 powder and 100 mL
(10 mg/L) RhB solution or 100 mL (30 mg/L) TC solution were mixed and then stirred
30 min in the dark. Using a 250 W xenon lamp as the light source, the mixture was taken
every 15 min to measure the absorbance and the degradation degree was calculated by the
formula (A0 − At)/A0 × 100%.

3. Results and Discussion
3.1. Crystal Structure

Figure 1 exhibits the XRD patterns of samples. All peaks in TiO2-12 h correspond to
anatase structure, indicating TiO2 forms anatase when the hydrothermal time is 12 h. The
peak intensity of anatase (101) plane in TiO2-24 h drops sharply, and the peaks of anatase
(004), (200), (105), (204) planes disappear. Only the peaks around 25.3 and 48.1◦ ascribing
to the (101) and (200) crystal planes of anatase structure can be detected. Meanwhile, the
rutile diffraction peaks appear and the intensity is much higher than anatase, implying
that TiO2-24 h forms anatase/rutile mixed crystal structure. The mass fraction of anatase
(XA) can be calculated by the following formula [2,21]:

XA = (1 + 1.26(IR/IA))−1

where IA and IR represent the intensities of anatase (101) plane and rutile (110) plane,
respectively. The mass fraction of anatase phase is 7.1% and the mass fraction of rutile
phase is 92.9% in TiO2-24 sample. The anatase diffraction peaks in TiO2-36 h disappear
wholly and all the peaks can be attributed to rutile, which indicates that the transformation
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from anatase to rutile has been completed when hydrothermal time is 36 h [23,24]. The
grain sizes (D) of samples were calculated by the Scherrer formula [2]:

D = 0.89λ/βcosθ

where λ represents the wavelength of Cu Ka, β represents the full width at half maximum
of the XRD peak ((101) plane for anatase and (110) plane for rutile), and 2θ represents the
Bragg diffraction angle. The grain sizes (D) of TiO2-12, TiO2-24 and TiO2-36 are 9.9 nm,
13.2 nm (anatase)/35.0 nm (rutile) and 27.5 nm.

Materials 2021, 14, x FOR PEER REVIEW 3 of 12 
 

 

XA = (1 + 1.26(IR/IA))−1 

where IA and IR represent the intensities of anatase (101) plane and rutile (110) plane, re-
spectively. The mass fraction of anatase phase is 7.1% and the mass fraction of rutile phase 
is 92.9% in TiO2-24 sample. The anatase diffraction peaks in TiO2-36 h disappear wholly 
and all the peaks can be attributed to rutile, which indicates that the transformation from 
anatase to rutile has been completed when hydrothermal time is 36 h [23,24]. The grain 
sizes (D) of samples were calculated by the Scherrer formula [2]: 

D = 0.89λ/βcosθ 

where λ represents the wavelength of Cu Ka, β represents the full width at half maximum 
of the XRD peak ((101) plane for anatase and (110) plane for rutile), and 2θ represents the 
Bragg diffraction angle. The grain sizes (D) of TiO2-12, TiO2-24 and TiO2-36 are 9.9 nm, 
13.2 nm (anatase)/35.0 nm (rutile) and 27.5 nm. 

 
Figure 1. XRD patterns of TiO2-12 h, TiO2-24 h and TiO2-36 h. 

3.2. Morphology and Surface Area 
Figure 2 depicts the SEM images of TiO2-12 h, TiO2-24 h and TiO2-36 h. It is observed 

in Figure 2a that TiO2-12 h is composed of fine particles which further constitute agglom-
erates. The agglomerate size ranges from tens to hundreds of nanometers. The agglomer-
ation of TiO2-24 h in Figure 2b is more obvious. In Figure 2c, the particles of TiO2-36 h are 
flaky and massive. 

Figure 1. XRD patterns of TiO2-12 h, TiO2-24 h and TiO2-36 h.

3.2. Morphology and Surface Area

Figure 2 depicts the SEM images of TiO2-12 h, TiO2-24 h and TiO2-36 h. It is observed in
Figure 2a that TiO2-12 h is composed of fine particles which further constitute agglomerates.
The agglomerate size ranges from tens to hundreds of nanometers. The agglomeration of
TiO2-24 h in Figure 2b is more obvious. In Figure 2c, the particles of TiO2-36 h are flaky
and massive.
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Figure 3 presents the TEM and HRTEM images of TiO2-12 h Figure 3a,b, TiO2-24 h
Figure 3c,d and TiO2-36 h Figure 3e,f. In Figure 3a, the particles are relatively dispersed
and the size of a single particle is around 10 nm. The interplanar spacing in Figure 3b is



Materials 2021, 14, 5674 4 of 11

0.351 nm, corresponding to the (101) crystal plane of anatase [5]. It is observed from Figure
3c that the size of a single particle is 15–30 nm, which is larger than that of TiO2-12 h. In
addition to the granular shape, several particles exhibit rod and block shapes. The length of
the nanorods is about 50 nm and the width is 15 nm. The size of the blocks is 50–100 nm. In
Figure 3d, the marked interplanar spacing 0.348 nm corresponds to the (101) crystal plane
of anatase and 0.320 nm corresponds to the (110) crystal plane of rutile [13,20], indicating
that TiO2-24 h is a mixed crystal composed of anatase and rutile, which is in line with XRD
results. Nanoparticle almost disappears in Figure 3e and the particles are completely made
of rods and blocks. The length of rods is 100 nm and the width is approximately 20 nm.
The size of the blocks is around 120 nm. The interplanar spacing marked in Figure 3f is
0.322 nm, corresponding to the (110) crystal plane of rutile.
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The morphology of TiO2 has a great impact on surface area and adsorption perfor-
mance. It is found in Figure 3 that with the extension of hydrothermal time, the single
particle size increases and the morphology changes significantly, which may lead to the
surface area difference. To clarify the influences of hydrothermal time on surface area and
the porosity of samples, the textural properties of samples have been implemented and the
results are shown in Figure 4 and Table 1. Both TiO2-12 h and TiO2-24 h are mesoporous
materials. The pore size distribution curve of TiO2-12 h shows a narrow peak, and its pore
size distribution is uniform, and the pore size is between 5–15 nm. The pore size distribu-
tion curve of TiO2-24 h shows a broad peak shape, and the pore size distribution is uneven
with a size of 5–50 nm. There is no peak in the pore size distribution curve of TiO2-36
h, indicating that no obvious mesopores can be detected in TiO2-36 h. The BET surface
area, pore volume and average pore size of samples are summarized in Table 1. As the
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hydrothermal time increases, the BET surface area decreases from 145.3 m2/g to 43.0 m2/g
and 13.3 m2/g, and the pore volume is reduced from 0.264 cm3/g to 0.107 cm3/g and
0.029 cm3/g. TEM images show that as hydrothermal time increases from 12 to 24 h, part of
fine nanoparticles aggregate to form nanorods and nanoblocks. When the reaction time is
36 h, all the nanoparticles aggregate to form nanorods and nanoblocks. The agglomeration
phenomenon is further intensified, and the BET surface area and pore volume are reduced.
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Table 1. Textural properties of samples.

Samples BET Surface Area (m2/g) Pore Volume (cm3/g) Average Pore Size (nm)

TiO2-12 145.3 0.264 7.26
TiO2-24 43.0 0.107 9.93
TiO2-36 13.3 0.029 8.74

Controlling the morphology of TiO2 and increasing its specific surface area is a re-
search hotspot [25–27]. Du et al. [25] prepared porous Sn-doped TiO2 using polystyrene
microspheres as a template. After calcination to remove the template, the porous structure
was fabricated and the surface area reached 71.1 m2/g. Huang et al. [26] used a sol–gel
method combined with a hydrothermal method to prepare TiO2 microspheres by a two-step
reaction. The diameter of the microspheres was about 200–500 nm and the surface area was
91.1 m2/g. TiO2 nanospheres with diameter of 50–100 nm and surface area of 70.0 m2/g
were fabricated by hydrothermal method in Mohamed et al.’s work [27]. In the present
study, TiO2-12 h exhibits a relatively large surface area (145.3 m2/g), which may result in
high photocatalytic activity.

3.3. Optical Property

Figure 5 shows the UV-visible absorption spectra of samples. The absorption edge of
TiO2-12 h is 387 nm [28,29], which corresponds to anatase structure. The absorption edges
are 403 and 402 nm for TiO2-24 h and TiO2-36 h, respectively. The band gap of rutile is
smaller than anatase, thus TiO2-24 h and TiO2-36 h, which mainly consist of rutile, show
red shift compared to TiO2-12 h.

The PL peaks are derived from the recombination of photogenerated electrons and
holes, thus the lower peak intensity and the lower recombination rate [30,31]. The PL
spectra of samples are shown in Figure 6. It is generally believed that the recombination
rate of anatase is lower than rutile [32,33], however, the PL peak intensity of TiO2-12 h is
the highest in the present work. XRD results show that the peak intensity of TiO2-12 h
is low and the half-height width of peak is large, indicating that TiO2-12 h displays poor
crystallinity with plentiful defects and oxygen vacancies. Photoinduced charges will be
captured by defects and oxygen vacancies, which is in favor of retarding the recombination.
However, excess defects or oxygen vacancies will introduce new recombination centers,
enhancing the PL peak intensity [34]. With the increase in hydrothermal time, the crys-
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tallinity of the sample improves and the defects and oxygen vacancies reduce. Moderate
defects and oxygen vacancies are beneficial to the separation of photogenerated electrons
and holes [35,36]. Therefore, the PL peak intensity of TiO2-24 h and TiO2-36 h is lower than
TiO2-12 h.
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The PL main peak originates from photogenerated electrons in the conduction band
returning directly to the valence band and recombining with holes, therefore, the wave-
length corresponding to main peak in PL spectra is related to the band gap [37,38]. The
main peak wavelengths of TiO2-12 h, TiO2-24 h and TiO2-36 h are 400, 415 and 415 nm,
which are right shifted about 13 nm compared to their absorption edges due to the Stokes
shift [39,40].

3.4. Photocatalytic Activity

Figure 7a shows the RhB decolorization curves of samples. Without catalyst, the
decolorization degree of RhB is 2.6%, which indicates that the decolorization of RhB is
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mainly due to the degradation of photocatalysts. The decolorization degrees of TiO2-12 h,
TiO2-24 h and TiO2-36 h are 99.6, 46.3 and 81.8% after 45 min. Figure 7b displays the kinetics
fitting curves of samples. The apparent first-order rate constants k of TiO2-12 h, TiO2-24 h
and TiO2-36 h are 0.125, 0.013 and 0.024 min−1, respectively. TiO2-12 h shows the highest
photocatalytic activity. Although PL spectra and DRS spectra show that TiO2-24 h and
TiO2-36 h exhibit a lower photogenerated charge recombination rate and higher visible light
absorption, their photocatalytic activity is lower than that of TiO2-12 h yet. Morphology
and BET results show that TiO2-12 h is composed of fine particles and possesses a relatively
high surface area (145.3 m2/g), which is much higher than TiO2-24 h (43.0 m2/g) and
TiO2-36 h (13.3 m2/g). A high surface area provides more reactive sites, thus TiO2-12 h
shows the highest photocatalytic activity. Several RhB decolorization data reported by
literatures via hydrothermal method are summarized in Table 2.
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Table 2. The RhB decolorization data of TiO2 photocatalytic materials prepared by hydrothermal method.

Refs Method Photocatalyst Light Source Decolorization Degree k (min−1)

[10] hydrothermal method TiO2 Mercury lamp (500 W) 96.0% in 90 min -
[13] hydrothermal method Cu-TiO2 Xenon lamp (250 W) 99.4% in 60 min 0.076 (RhB)
[17] hydrothermal method TiO2 Mercury lamp (450 W) 92.0% in 30 min 0.083 (RhB)
[41] hydrothermal method Ag-TiO2 Xenon lamp (800 W, >420 nm) 96.0% in 270 min 0.011 (RhB)
[42] hydrothermal method TiO2 Mercury lamp (300 W) 58.0% in 15 min 0.104 (RhB)
[43] hydrothermal method SDBS-TiO2 Xenon lamp (500 W) 90.0% in 120 min 0.0185 (RhB)
[44] hydrothermal method C-TiO2 Xe lamp (500 W, >400 nm) 94.3% in 120 min 0.022 (RhB)
[45] hydrothermal method Ag-TiO2 Xenon lamp (500 W) 80.0% in 240 min -
[46] hydrothermal method Ag-TiO2 Xenon lamp (350 W) 100% in 45 min -
[47] hydrothermal method ZnO-TiO2 Xenon lamp (350 W) 85.5% in 60 min 0.039 (RhB)

present work hydrothermal method TiO2 Xenon lamp (250 W) 99.0% in 30 min 0.125 (RhB)

To study the degradation effect of the prepared photocatalyst on pharmaceutical
waste, tetracycline hydrochloride (TC) was selected as the target pollutant. The results
are shown in Figure 8. The degradation degree of TiO2-12 h, TiO2-24 h and TiO2-36 h are
90.0, 39.1 and 62.4%. The apparent first-order rate constants k of TiO2-12 h, TiO2-24 h and
TiO2-36 h are 0.050, 0.011 and 0.022 min−1, respectively. The photodegradation results of
RhB and TC confirm that TiO2-12 h is an efficient photocatalyst, which shows potential
application prospects in the field of dye wastewater and pharmaceutical wastewater.
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3.5. Photocatalytic Mechanism

To verify the free radicals generated during the photocatalytic reaction, nitro-blue
tetrazolium (NBT) and salicylic acid (SA) tests were carried out on TiO2-12 h sample. The
detailed processes of NBT and SA experiments are as follows: Add 0.1 g TiO2-12 h powder
into 100 mL NBT solution (0.05 mmol/L) and 100 mL SA solution (0.02 mol/L), respectively,
keep stirring, and test their absorbance every 15 min after light irradiation. The results are
shown in Figure 9. The photoinduced electrons are excited to conduction band and react
with O2 to produce O2

− radicals, which further react with NBT. SA react with ·OH radicals,
forming 2,3-HBA. Therefore, the decrease in NBT absorbance and the increased 2,3-HBA
absorbance suggest that O2

− and ·OH radicals are generated under irradiation [48,49].
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The active species in photocatalytic reaction process were investigated through adding
benzoquinone (BQ), ammonium oxalate (AO) and isopropanol (IPA) as scavengers. The
detailed processes of active species experiments are as follows: in the photocatalytic
experiment, 2 mL (0.1 mol/L) BQ, AO and IPA solutions were added, respectively, keeping
other test conditions unchanged. The results are shown in Figure 10. The decolorization
degree of RhB for TiO2-12 h declines from 99.6 to 58.8, 93.6 and 94.0% in the presence of BQ,
AO and IPA, respectively. Meanwhile, The degradation degree of TC for TiO2-12 h declines
from 90.0 to 46.5, 83.4 and 80.3% in the presence of BQ, AO and IPA. Since BQ, AO and IPA
capture ·O2

−, h+ and OH species, it can be concluded that O2
− radicals are the main active

groups in the degradation process, and h+ and OH radicals play a secondary role.
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4. Conclusions

In summary, the influences of hydrothermal time on the structure and photocatalytic
performance of TiO2 were studied systematically. TiO2-12 h forms anatase, TiO2-24 h
forms anatase/rutile mixed crystal, and TiO2-36 h forms rutile. As the hydrothermal time
increases, TiO2 gradually transforms from fine particles to lumps and the surface area
decreases. TiO2-24 h and TiO2-36 h show a lower photogenerated charge recombination rate
and higher visible light absorption, however, their photocatalytic activities are lower than
that of TiO2-12 h, which can be attributed to the relatively high surface area (145.3 m2/g)
of TiO2-12 h. Active species tests confirm that·O2

− radicals are the main active groups in
the degradation process.
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