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Abstract: The current work centers on multi-scale approaches to simulate and predict metallic
nano-layers’ thermomechanical responses in crystal plasticity large deformation finite element
platforms. The study is divided into two major scales: nano- and homogenized levels where Cu/Nb
nano-layers are designated as case studies. At the nano-scale, a size-dependent constitutive model
based on entropic kinetics is developed. A deep-learning adaptive boosting technique named
single layer calibration is established to acquire associated constitutive parameters through a single
process applicable to a broad range of setups entirely different from those of the calibration. The
model is validated through experimental data with solid agreement followed by the behavioral
predictions of multiple cases regarding size, loading pattern, layer type, and geometrical combination
effects for which the performances are discussed. At the homogenized scale, founded on statistical
analyses of microcanonical ensembles, a homogenized crystal plasticity-based constitutive model
is developed with the aim of expediting while retaining the accuracy of computational processes.
Accordingly, effective constitutive functionals are realized where the associated constants are obtained
via metaheuristic genetic algorithms. The model is favorably verified with nano-scale data while
accelerating the computational processes by several orders of magnitude. Ultimately, a temperature-
dependent homogenized constitutive model is developed where the effective constitutive functionals
along with the associated constants are determined. The model is validated by experimental data
with which multiple demonstrations of temperature effects are assessed and analyzed.

Keywords: multi-scale; metallic nano-layer; crystal plasticity; deep-learning; single layer calibration;
homogenization; temperature effects

1. Introduction

Crystalline nano-layers are formed by alternating nanoscale metallic lamellae where
the reduction of size to the order of nanometers instigates physicochemical attributes
notably departing from those of the bulk counterparts. Metallic nano-systems exhibit
exceptional mechanical properties in which the layer size is comparable with the electron
or phonon mean free path [1]. Size effects are pivotal aspects in copiously modulated ther-
modynamically non-equilibrium metallic nano-composites where the rigid body relaxation
is limited due to the constraints of neighboring nano-phases [2]. The salient, differentiating
traits in mechanical responses are assigned to the primary role of layer thicknesses and
significant density of interfaces. These features are considered the controlling parameters
to modify and modulate the strength and multi-functionality of metallic nano-structures [3]
where the dynamic characteristics of the atomic energy with local non-equilibrium multi-
valley potentials [4,5] promote the performances of nano-metals to be governed and altered
towards desired applications.

Typically, interfaces function as sources, sinks, and barriers for defects, particularly
dislocations. Dislocations, with anisotropic mobility and spreading cores throughout inter-
faces, describe various aspects of metallic nano-layers physical properties [6,7] and repre-
sent them as tunable structures with remarkable responses in extreme environments [8,9].
Interfaces of distinct atomic structures supply glissile dislocations into contiguous building
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blocks by virtue of inelastic deformation. The reduction of activation volume induces dislo-
cation mechanisms at a shorter distance [10,11] where the amplified emission of interface
dislocations and the onset of plasticity through interphases are of consequence.

The inverse dependence of strength on grain size refinement in metals and metallic al-
loys with an average size in the order of micrometers follows the Hall–Petch relation [12,13]
emphasizing on deformation kinematics rooted from dislocation pile-up against interfaces
along with other transgranular dislocation mechanisms. This quality remains intact re-
gardless of synthesizing approaches such as physical vapor deposition (PVD) [14,15] or
accumulative roll bonding (ARB) [16]. However, once the average grain size is reduced
to the orders of nanometers evincing the participation of fewer dislocations in pile-up,
the inadequacy of this relation conceivably emerges in a reduced Hall–Petch slope. In-
stead, it is governed by the Orowan mechanism [17] especially pronounced at heterophase
boundaries [18].

Hereby, a more detailed governing relation including the main features of size and
constituent effects must be accommodated to analyze metallic nanolamellars responses at
nano-regions. In general, these types of models deliver verifiable, solid results, however,
with complex, nonlinear structures, hence, the elevated cost of computational processes.
Consequently, multi-scale analyses are sought as proper resolutions especially when nonlin-
earity is involved [19]. In circumstances where size effects are crucial to final assessments,
homogenized ensembles inherently possess the governing elements through the variation
of the fundamental thermodynamics behaviors including internal energy and entropy that
are intrinsically nonlinear and can be statistically generalized on a larger scale. In this
sense, capturing temperature effects by homogenization approaches is a significant advan-
tage considering limited experimental results due to a variety of encountered challenges
throughout testing. These difficulties include rigorously controlling the atmosphere under
which tests are performed to prevent specimens’ chemical and microstructural alterations,
precise management of thermal gradients between the sample and fixture during the pro-
cess to avoid thermally misfit deformation and noise in the load and displacement sensors
drifting the results, and challenges as such [20,21].

This work centers on constructing a robust theoretical approach while alleviating com-
putational encumbrance through curtailing partly dependent phenomena into optimized
independent variables. The crystal plasticity finite element (CPFE) approach in the large
deformation platform is utilized due to its high capacity of analyzing anisotropic nature
of crystalline materials, grain interactions, interface abrupt mechanical transitions, mixed
deformation mechanisms, complex boundary conditions, and diverse phenomenological
and physics-based constitutive models [22,23].

The multi-scale computational schemes are pursued leading to the development of
multiple governing relations. At the nano-scale, a size-dependent constitutive model and a
deep-learning approach named the single layer calibration (SLC) method with the ability
to obtain generalized parameters applicable to a broad range of setups are developed.
These models simulate, predict, and design the responses of metallic nano-layers in the
range of 20 nm to 1 µm with any arbitrary geometrical combinations through a single
process. A homogenized crystal plasticity-based model is established with the rendition
of the nano-structural critical features. The effective functionals are realized for which
the associated relations and parameters obtained by way of metaheuristic genetic algo-
rithms. The model is designed consistent with the nano-model backbone remarkably
conducive in simulations of polycrystalline microstructures and significantly expediting
computational processes by several (>4) orders of magnitude, while retaining accuracy. Ul-
timately, a temperature-dependent constitutive model is developed to determine the effects
of temperature on the overall responses of metallic nanolamellars. The validation of nano-
and homogenized models proceeds through the simulation of several copper-niobium,
Cu/Nb, nano-layers compared with experimental data. Accordingly, at each spatial spec-
trum, multiple predictive case studies are assessed and discussed revealing the impacts of
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size, loading patterns, layer type, geometrical combination, elevated temperature, and pro-
cess speed on the overall thermomechanical responses of metallic nano-composites.

All the segments including the developed nano-scale size-dependent constitutive
model, the deep-learning single layer calibration method, homogenized constitutive model,
temperature-dependent constitutive model, genetic algorithms, numerical solvers, and
process optimizers are implemented through three-dimensional crystal plasticity nonlinear
finite element codes in the large deformation platform. A dedicated cluster has been
constructed with specific architecture and orchestration policies compatible with the current
data processing and workloads.

2. Materials and Methods

Metallic nano-layers are investigated through crystal plasticity large deformation
finite element platforms to analyze and predict the associated thermomechanical responses.
Deformations up to 10% strain are utilized based on the existing experimental data for
the purpose of training the models, though it is possible to proceed the simulation for
further values. An advanced multi-scale approach is established to expedite computa-
tional procedures while the precision is maintained. Thereby, diverse theoretical domains
including plastic deformation kinematics, entropic kinetics, and statistical mechanics of
a system at two nano- and homogenized level are employed in order to acquire proper
constitutive models addressing the main features of size effects in these types of materials.
Subsequently, the parameters in the developed constitutive models are calibrated and
determined through a deep-learning method.

2.1. Plastic Deformation Kinematics

Finite strain kinematics are accommodated through a multiplicative decomposition of
total deformation gradient, F, into the elastic, Fe, and plastic, Fp, parts as F = FeFp. The rate
dependence is manifested in the rate of the deformation gradient, Ḟ, through the velocity
gradient, l = ḞF−1. The plastic velocity gradient, lp = ḞpF−p, involving plastic shear strain
rate, γ̇α, on the slip systems, α, [24,25], specified with lp = ∑N

α=1 γ̇αsα
0 , are utilized to solve

the indeterminate equation of F = FeFp, where sα
0 = mα

0 ⊗ nα
0 is the Schmid tensor in which

mα
0 and nα

0 are the slip direction and normal, respectively.
The plastic shear strain rate for each slip system is calculated through the Orowan

equation [26], γ̇α = ρα
m b vα, where ρα

m is the mobile dislocation density, b the Burgers
vector, and vα the average mobile dislocation velocity. The integration of Ḟp determines Fp

and, accordingly, Fe through Fe = FF−p which yields the second Piola–Kirchhoff stress, S,
in terms of Lagrangian strain, E = 1

2 (F
eTFe − I), and the anisotropic material elastic tensor,

C , with S = C E. Solving the equilibrium equation in the current configuration requires
the calculation of Cauchy stress, σ = 1

|Fe |F
eSFeT , and its derivative with respect to true

strain to obtain the system stiffness. This relation holds due to plastic incompressibility,
i.e., det Fp = 1.

At this stage, a constitutive model must be incorporated to acquire Fp and further
kinetics representations. The next section describes the rationale behind the developed
constitutive model.

2.2. Entropic Kinetics and Constitutive Model at Nano-Scale

Considering metals and metallic alloys with nanoscale size under generic loading
conditions, stress- and temperature-driven interface and surface evolution phenomena
bear significance in mechanical responses. Dislocation-mediated deformations are entropy
sources compelling a system towards a higher probability state independent of ordinary
thermal fluctuations. Thus, a system kinematics must encompass dislocation-specific ther-
modynamics representation [27,28]. Assuming quasi-static transitions in all configurations,
the contributions due to total dynamic quantities are negligible, however, the system is not
necessarily in thermodynamic equilibrium. Total entropy generation per unit time, Γ(t),
as the difference between the reference rate of change of entropy, Ṡ = DS

Dt , and the rate of
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entropy input, Q̇, of a body with volume Λ and boundary surface ∂Λ follows the global
format in the reference configuration with

Γ(t) = DS
Dt − Q̇ = D

Dt
∫

Λ η(λ, t) dv +
∫

∂Λ H(λ, t) · n ds−
∫

Λ R(λ, t) dv ≥ 0

= D
Dt
∫

Λ η(λ, t) dv +
∫

∂Λ
Q(λ,t)
Θ(λ,t) · n ds−

∫
Λ

R(λ,t)
Θ(λ,t) dv ≥ 0 ,

(1)

where η(λ, t) is the entropy per unit volume as a function of material position vector, λ,
and time, t, H(λ, t) the true entropy flux, Q(λ, t) the material heat flux, n the normal
boundary surface vector, Θ(λ, t) the thermal scalar field, and R(λ, t) the entropy source.
Since the rate of entropy change is always greater than the rate of entropy input, the to-
tal entropy generation is time- and direction-dependent specifying the irreversibility of
thermodynamical processes [29,30] including plastic deformation. The rate of thermal
work involving the total heat flux and source is inversely related to the rate of entropy
input through the thermal scalar field and first Piola–Kirchhoff stress, P(λ, t). Based on the
divergence theorem,

∫
s Ψv · n ds =

∫
v∇ · (Ψv)dv, the local form of the entropy inequality

can be expressed as

η̇(λ, t)− R(λ, t)
Θ(λ, t)

+
1

Θ(λ, t)
∇ ·Q(λ, t)− 1

Θ2(λ, t)
Q(λ, t) · ∇Θ(λ, t) ≥ 0 , (2)

and
Θ(λ, t) η̇(λ, t) +

1
Θ(λ, t)

Q(λ, t) · ∇Θ(λ, t) + P(λ, t) : Ḟ− ė ≥ 0 , (3)

in which the local form of balance of energy, ė = P(λ, t) : Ḟ − ∇ · Q(λ, t) + R(λ, t),
is considered, where ∇ is the differential operator. The heat conduction inequality,
Q(λ, t) · ∇Θ(λ, t) ≤ 0, applies a constraint on the heat flux vector, i.e., there is no heat
flux without a temperature. For elastoplastic behavior of a crystal, the local entropy pro-
duction, Υin, is positive or at least zero where heat flux approaches to zero in reversible
processes, i.e.,

Υin = P(λ, t) : Ḟ− ė+ Θ(λ, t) η̇(λ, t) ≥ 0 . (4)

Therefore, the internal dissipation stems from three sources; the rate of internal
mechanical work per unit volume, the rate of internal energy, and the absolute temperature
coupled with the rate of entropy, respectively. With the aid of the balance of energy,
the lower bound of Equation (4) can be represented by

Θ(λ, t) η̇(λ, t) = Υin + R(λ, t)−∇ ·Q . (5)

The constitutive relation Q(λ, t) = κ∇Θ(λ, t) relates the the material heat flux to
the temperature gradient with thermal conductivity, κ, as a function of deformation
and temperature. The condition of κ∇2Θ(λ, t) ≥ 0 signifies the elliptical nature of the
constitutive equation for which the solutions are accordingly to be realized. For an adiabatic
thermodynamic process, P(a), the thermal power and the rate of entropy input are zero
since thermal energy can not traverse the system boundary surfaces, be generated, or
destroyed. In this circumstance, no decay in the total entropy is possible while that is
not the case for point-wise entropy that degenerates the energy balance equation and
annihilates that for an additional reversibility condition, P(a,r) [31].{

Θ(λ, t)η̇ = Υin ; P(a)

Θ(λ, t)η̇ = 0 ; P(a,r)
(6)

Considering the anisotropic elastoplastic behavior of crystalline materials, internal
variables need to be independently assimilated in any thermodynamical approaches, hence,
the Helmholtz free-energy function, H (F, Θ(λ, t), Vi), is defined as a function of deforma-
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tion gradient, thermal field, and internal variables, Vi ; i = 1, ..., n, respectively. Here, Vi rep-
resents plastic deformation mechanisms, associated with any admissible inelastic phenom-
ena, n, for presumed external thermomechanical loading conditions. Thus, the Helmholtz
free-energy function can be described in terms of the internal dissipation inequality as

Υin = P(λ, t) : Ḟ− ˙H (F, Θ(λ, t), Vi)− Θ̇(λ, t) η(λ, t), Vi) ≥ 0 , (7)

where the chain rule time differentiation of the Helmholtz free-energy function yields

˙H (F, Θ(λ, t), Vi) =
(

∂H (F,Θ(λ,t),Vi)
∂F

)
Θ,Vi

: F +
(

∂H (F,Θ(λ,t),Vi)
∂Θ

)
F,Vi

Θ̇(λ, t)

+ ∑n
i=1

(
∂H (F,Θ(λ,t),Vi)

∂Vi

)
F,Θ

: V̇i
(8)

The acquired constitutive equation involves stress, thermal flux, and internal entropy
associated with plastic deformations through internal strain rates, ˙Vi, for which

Υin =
n

∑
i=1

Di : V̇i ≥ 0 ; Di = −
(

∂Hi(F, Θ(λ, t), Vi)

∂Vi

)
F,Θ

, (9)

is deduced in terms of internal dissipations, Di. For the stretch type deformation, compati-
ble with dislocation mechanisms, considering symmetric internal variables, Ui, and stretch
tensor, C, Equation (9) becomes

n

∑
i=1

∂Hi(C, Θ(λ, t), Ui)

∂Ui
: U̇i ≤ 0 , (10)

where the rate of the symmetric internal variables, U̇i, evolves in irreversible mechanisms
with a designated function, E , through Ḋi = E (C, Θ(λ, t), U1, U2, ..., Un). The second
Piola–Kirchhoff stress, S, is involved in the evolution equations due to its dependence on
the free energies of either reversible or irreversible processes which represents that as a
function of external variables, S = S (C, Θ(λ, t)).

The internal states of disorder in a crystalline solid contain the majority of barriers
including point defects, grain boundaries, junctions, intersections, locks, stacking faults,
or combinations of those in dislocation dynamic annihilations and recoveries [28].

The average velocity of dislocations, vd, and the time spent between obstacles, td,
both are functions of applied stress, τ, and absolute temperature, T, which define the dislo-
cation mean free path with ld = td(τ, T) vd(τ, T). The probability function indicating the
possible states of slip due to thermal fluctuation and applied loading is Ps = exp

(
− ∆G

kBT

)
,

where ∆G is the activation free enthalpy and kB the Boltzmann constant. If a dislocation
is effectively vibrating with the frequency of fd, it successfully overcomes barriers at a
rate of Ṗs = fd exp

(
− ∆G

kBT

)
, therefore, the dislocation velocity associated with the mean

free path for each conquered obstacle with the presence of thermal fluctuation will be
vd = ld fd

[
exp

(
− ∆G

kBT

)]
.

The dependence of flow strength on temperature and applied stress is determined
based on the required energy to overcome any types of barriers while dislocations slip.
In a general nonlinear temperature-dependent case it can be demonstrated in terms of the
Helmholtz free energy as

∆G = ∆H

[
1−

(
|τα| − τ

‖
r

τ⊥r

)p]q

, (11)
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where τα is the resolved shear stress and τ
‖
r and τ⊥r are the resistance stresses parallel and

orthogonal to slip surface, respectively. The exponents, p and q, can be initially identified
with mechanistic assessments and finalized through calibration processes.

The rate of Helmholtz energy in Equation (8) is a function of external and inter-
nal dissipative variables. Consequently, the energy needed to overcome hindrances is
manifested in deformation mechanisms controlled by thermal activation and applied
loading [32,33]. Considering the alternating directions of dislocation motion over an
obstacle, thermally activated plastic shear strain rate for each slip system can be ex-
pressed as γ̇ = ρα

m b lα
d f α

d sinh
(
− Va

kBT (|τ
α| − τ

‖
r )
)

exp
(
−∆H

kBT

)
, where Va is the activation

volume. The pre-exponential terms can be merged into the initial plastic strain rate,
γ̇α

0 = ρα
mblα

d f α
d = ρα

mb2 fD, where fD denotes the Debye frequency of constituents. This term
is considered a slow variable since the change of mobile dislocation density is not decisive
relative to that of free energy, yet, not completely uneventful.

The obstacles surmounted by thermal energy and mechanical work are described
by (|τα| − τ

‖
r ) Va [27]. In metals with nano-range sizes, activation volumes decline sig-

nificantly due to diminished local volumes involved in the depinning of a propagating
dislocation [34], thermally activated mechanism generating interface mediated disloca-
tions [35], and so forth. Thereby, considering an increase in a system entropy due to
thermal fluctuations, internal and external state variables, statistical probabilities of dislo-
cation positions, and unidirectional dislocation jumps, a constitutive model is developed
at the size spectrum of 20 nm to 1 µm encapsulating size and constituent effects in the
abrupt variations of activation volume, stress concentration, and complex dislocation
mechanisms with

γ̇α =

γ̇α
0 exp

{
−Qactive

kBT

[
1−

(
(τα

eff)
2

τα
cut

csπ
µb d

)p]q
}

sgn(τα) τα
eff > 0

0 τα
eff ≤ 0

(12)

The model is constructed based on exclusively addressing size effects in d as the
layer thickness and the constituent type and morphology through cs as the material shape
parameter. The effective shear stress is defined as τα

eff = |τα| − τα
pass, where passing,

τα
pass, and cutting, τα

cut, stresses are athermal and thermal shear resistances, respectively,
Qactive is the activation energy, and µ the shear modulus. Long-range athermal resistances
stem from the composition, heat treatment, and dislocation structure of the material
including the stress fields of other dislocations and incoherent inclusions, while short-
range thermal barriers involve sources such as the Peierls-Nabarro force, stress fields of
coherent inclusions, cross slip, climb, and dislocations intersections.

Plasticity initiation is recognized when the effective shear stress is positive while elastic
behavior is resumed otherwise. The athermal resistance is designed with an evolution in
terms of contrasting slip systems, β, by

τ̇α
pass =

N

∑
β=1

hαβ|γ̇β| , (13)

where γ̇β specifies the effect of other N slip systems considering the initial value of the
athermal resistance, τα

pass-init, and hαβ includes both self and latent hardening with

hαβ =


N

∑
β=1

hβ
0

∣∣∣∣∣∣1−
∣∣∣∣∣∣τβ

cut + τ
β
pass

∣∣∣∣∣∣
2

τ
β
sat

∣∣∣∣∣∣
r[

qαβ + (1− qαβ)δαβ
] ∣∣∣∣∣∣τβ

cut + τ
β
pass

∣∣∣∣∣∣
2
≤ τ

β
sat

0
∣∣∣∣∣∣τβ

cut + τ
β
pass

∣∣∣∣∣∣
2
> τ

β
sat

(14)
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in which || x ||2 denotes the Euclidean norm, hβ
0 is the initial hardening, qαβ a magnitude

for self and latent hardening considered 1.0 for coplanar slip systems and 1.4 otherwise,
r the hardening exponent, and δαβ the slip systems Kronecker delta function. τ

β
sat is the

saturation shear stress designed as τsat = csat dm, where csat and m are the saturation
coefficient and exponent, respectively.

In order to utilize the constitutive model in crystal plasticity procedures and solve
system equations, derivation techniques and computational approaches are required to be
carried out as delineated in Appendices A and B. Inevitably, multiple parameters in the
model must be realized, as demonstrated in Table 1, for which the next section is assigned.

Table 1. Material parameters to be determined from a deep-learning method and experimental data.

Constitutive Model Parameters

γ̇α
0 p q r cs csat m τα

cut τα
pass-init hβ

0

2.3. Deep-Learning Single Layer Calibration (SLC) Method

In order to acquire constitutive parameters a deep-learning single-layer calibration
(SLC) method is developed. This technique is able to reduce the experimental data, rec-
ognize and distinguish dominant and trivial patterns, and efficiently decide trade-offs
between bias and variance paths along with some other optimization, recognition, and
decision capabilities.

Training and Learning Techniques in The SLC Approach

This approach is based on adaptive boosting technique [36] over a committee of
models. The operation proceeds through combining classifiers, Mj ; j = 1, 2, ..., m, by se-
quentially training n models and concluding the final prediction based on the ultimate
outcome. One of the main advantages of this procedure is obtaining favorable results even
if the base classifiers are not strong learners. However, the possibility of achieving solid
outcomes exponentially increases in the cases of moderate or advanced classifiers that are
believed characterizes the current work features. Boosting can be extended to regression
problems [37] which in some optimization stages is employed as well.

Here, the classifiers are trained using a weighted array in which the coefficient val-
ues depend on the performances of the previous classifiers. The descending sorted co-
efficients are proportional to the level of the misclassification of data and are key in
the final decision. At the beginning, each of n weighting coefficient, c(i)w , in the array
is uniformly initialized based on the data point vectors, vi, and binary target values,
ti ∈ {−1, 1} , i = 1, 2, .., n, among the classifiers as c(i)(j)

w = 1
n . Then, each model is

trained while the associated weighted error function, ej = ∑n
i=1 c(i)(j)

w N (Mj(vi) 6= tn),
is minimized, where N (Mj(vi) 6= tn) is the indicator function. Weighting coefficients are
continuously adjusted for succeeding models by a modifier,

ψj =

1−∑n
i=1 c(i)(j)

w N (Mj(vi) 6= tn)

∑n
i=1 c(i)(j)

w

 , (15)

allocating larger weighting values to more precise classifiers. Afterwards, the weighting
coefficient array is updated by

c(i+1)(j)
w = c(i)(j)

w

 ∑n
i=1 c(i)(j)

w

∑n
i=1 c(i)(j)

w N (Mj(vi) 6= tn)
− 1

N (Mj(vi) 6=tn)

. (16)
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The exponential error function [38] is defined as E = 1
2 ∑n

i=1 ∑m
j=1 exp

[
−tiψj Mj(vi)

]
which is sequentially minimized in terms of ψj and Mj(vi). This relation holds with the
assumptions of fixed base classifiers and their modifiers.

The boosting framework is illustrated schematically in Figure 1 where each base
classifier is trained according to the assigned weighted function acquired in terms of the
precision of previous classifiers in data allocation with the error function between two
consecutive classifiers as

E =
n

∑
i=1

m

∑
j=1

exp
(
−1

2
[
tiψj−1Mj−1(vi)− tiψj Mj(vi)

])
. (17)

Figure 1. Demonstration of adaptive boosting technique where base classifiers with simple thresholds are trained according
to the assigned weighted function acquired relative to the precision of the previous classifier in data allocation. Each sample
shows the number of classifiers, m, trained up to that point. The solid and dashed lines in the domains are the decision
made and revised choices, respectively, based on the weight of the misplaced data illustrated with expanded boundaries.

If data points are divided into proper, C+
j , and improper, C−j , categories, Equation (17)

can be restated by

E =
√

ψj − 1 ∑i∈C+
j

c(i)(j)
w +

√
1
ψj
− 1 ∑i∈C−j

c(i)(j)
w

=
(√

ψj − 1−
√

1
ψj
− 1

)
∑n

i=1 c(i)(j)
w N (Mj(vi) 6= tn) +

√
1
ψj
− 1 ∑n

i=1 c(i)(j)
w .

(18)

Thus, from Equations (17) and (18) and ti Mj(vi) = 1− 2N (Mj(vi) 6= tn), weighting
coefficients are modified as

c(i+1)(j)
w = c(i)(j)

w exp
(
−1

2
tiψj Mj(vi)

)
= c(i)(j)

w

√
ψj − 1

(
1
ψj
− 1

)N (Mj(vi) 6=tn)
2

. (19)

Finally, when the training of the classifiers are completed, the sign of the combined function
for each data point vector is obtained with

SGN(vi) = sgn

Mj(vi) ln

 ∑m
j=1 c(i)(j)

w

∑n
i=1 c(i)(j)

w N (Mj(vi) 6= tn)
− 1

. (20)

2.4. Statistical Mechanics and Homogenized Crystal Plasticity Constitutive Model

The notion of multi-scale modeling has been of constant interest in the realm of com-
putational mechanics and materials. Despite diverse length-scale-dependent methods,
hierarchical systems are able to resolve the geometrical and physical details of the underly-
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ing mechanisms in lower-scale with higher speed of computation, yet, reasonable precision
and simplicity. The reliability extent of acquired responses is evaluated by the adequacy of
lower scales assessments, that is, these levels exhibit momentous complementary effects.

Classical thermodynamics relations need to be revised for homogenized solids due
to the fundamental differences in the degrees of freedom with gases and fluids especially
when the goal is eliminating fast atomic degrees of freedom and attaining a homogenization
theory. In the case of crystals, elimination is related to the dynamics of crystal defects,
particularly dislocations, leading to an additional coarse-graining with the system of
governing equations that is no longer Hamiltonian, but dissipative. Unlike ergodic systems
characterized by macrovariables and energy parameters, dissipative systems are extremely
diverse [39] for which developing frameworks is possible with specific considerations.

Here, the statistical mechanics of the microcanonical ensemble [40] are utilized for the
lower scale since the upper scale kinematics are to be characterized considering dissipative
transport and nonlinear geometrical models of dislocations [41] along with the independent
point-wise temperature. The Clausius-Duhem inequality is incorporated to link the scales
through entropy flux where the probability of a phase-space invariant measure with
probability density function is assumed plausible.

Dislocation positions are not statistically independent and affect the overall energy of
a nano-structure, however, since the precise instantaneous locations associated with the
initially considered dislocations can not be identified as deformation evolves, energy is
considered as an independent additional characteristic of a dislocation geometrical net-
work [42]. Thereby, the total number of the dislocations, Nd, and associated energy, Ed,
are the independent features of the dislocation network with the priori of equal probability
of the ensemble sub-states.

If x denotes the position of a material point in a system at time t with the continuum
mass density, ρ(x, t), divided into Nns, total sub-nano-systems, with identical masses,
mns, and individual volumes, Vi

ns, in the total spatial volume, Λ, the system average
velocity is defined as 〈v〉 = 1

Nns
∑Nns

i=1 vi
ns. Velocity fluctuation is determined through

ṽi
ns = 〈v〉 − vi

ns, where vi
ns is the velocity of each sub-system. The dissipative nature of a

system is characterized via the velocity fluctuation of each sub-system, hence, the system
disorder manifests itself in the total energy of a system from the lower-scale standpoint as

mns

2

(
〈v〉 · 〈v〉+

Nns

∑
i=1

ṽi
ns · ṽi

ns

)
+ U

∣∣∣∣
Ui

ns ; εi
, (21)

where U is the total potential energy acquired from the subsystems. The internal energy,
Ui

ns, is determined over a surrounding volume, Vi
ns, such that the deviation at each in-

finitesimal part of the volume surface, εi, depends on the long- and short-range interactions
considered among dislocations therein, thus, varies by time evolution, heat flux, and active
deformation mechanisms. This relation is associated with the total energy of an ensem-
ble stated by

∫
Λ ρ(x, t)

(
1
2 v̌ · v̌ + e

)
dv, with v̌ as the velocity and e as the internal energy

density of the system. Consequently, the Helmholtz free energy,

H = Us

∣∣∣∣
Ui

ns ; εi
+

mns

2

Nns

∑
i=1

ṽi
ns · ṽi

ns = U − TS , (22)

is obtained in which the entropy, S , is associated with the subsystems velocity fluctuations.
In order to link the lower and upper scale, the statistical Boltzmann entropy principle

is utilized as
S = −kB ∑

i
pi ln pi (23)
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pi =
exp(− Ei

kBT
)

∑
i

exp(− Ei
kBT

)
, (24)

where pi is the probability of the ith subsystem with Ei energy as displayed in Figure 2.
The hypothesis of an ensemble with a uniform probability distribution in phase-space,
necessitates the confinement of a subsystem in a particular volume with constant total
energy, thus, the system entropy has the format of

S = −kB ∑i
exp(− Ei

kBT )

∑i exp(− Ei
kBT )

ln

(
exp(− Ei

kBT )

∑i exp(− Ei
kBT )

)

= −kB ∑i
exp(− Ei

kBT )

∑i exp(− Ei
kBT )

(
− Ei

kBT

)
+ kB ∑i

exp(− Ei
kBT )

∑i exp(− Ei
kBT )

ln ∑i exp(− Ei
kBT ).

(25)

Comparing Equation (25) with Equation (22) results

U = ∑
i

Ei pi = 〈E〉 , (26)

where 〈E〉 corresponds to the average energy of the subsystems. Here, boundary conditions
of the homogenized medium presume no relative fluctuations, thus, the extensive variables
in the upper scale follow the average principles whose the plausibility is proven.

Figure 2. Schematic representation of a microcanonical ensemble with equal probability of state,
pi, and energy, Ei, of each subsystem in the total volume, Λ, with the average velocity of 〈v〉 and
energy U.

The homogenized crystal plasticity-based model is founded upon the continuum
slip theory of generalized Taylor scale-transition [43,44]. It contains parameterized rep-
resentation of the nano-structure features with embedded rate-dependence and latent
hardening effects accounting for thermomechanical properties in both elastic and plastic
responses. The concept of the representative volume element (RVE) statistically represent-
ing the nano-system is incorporated based on retaining the relative dimensions between
the homogenized ensemble and nano-structures as well as the underlying deformation
mechanisms and dominant features. The hierarchical homogenization analysis follows
the Hill–Mandel principle of macro-homogeneity [45,46] where the volume average of the
work increment applied on an RVE is considered equal to the variation of the work on the
homogenized system. In the absence of body forces and inertia, the energy consistency is
stated in terms of the Eulerian strain rate, ė, and Cauchy stress with

1
Vn

∫
Λ

σn : ėn dVn = σH : ėH , (27)
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where Vn is the volume of the RVE and subscripts n and H correspond to nano- and
homogenized systems, respectively. Considering the quasi-static applied strain rates,
the self-equilibrated spatial stress field is achieved by ∇ · σ = 0. In order to solve the
boundary value problem in Equation (27) and equilibrium equations, a homogenized
crystal plasticity-based constitutive model with the identical nano-scale model backbone,
yet, a simplified structure is developed as

γ̇α = γ̇α
0 exp

[
−Qactive

kBT

(
1−

τα
eff

τα
cut

)]
sgn(τα) . (28)

Considering previously defined parameters, the CPFE approach is utilized to solve
the equilibrium equation as described in appendices A and B. The constitutive parameters
are formulated in terms of structural variables and calibrated through the computational
homogenization of the lower scale model and the RVE that consists of layer thicknesses of
stacked nano-layers.

Prior to plasticity, the elastic responses of a homogenized system must be realized, thus,
the equivalent elastic constants, Čij, are attained as a combination of the constituents elastic

constants, Cij, with respect to their thicknesses, dk, in a multi-nano-layer as Čij =
Nmat

∑
k=0

Cij
dk
d

,

where d is the total thickness of the specimen and Nmat the number of materials. The rate
dependence feature is modified for the homogenized ensemble with the total Nl layers by

lp =
Nl

∑
i=1

λi γ̇i (mi
0 ⊗ ni

0) in which λi = Vi
Vtotal

signifies each layer volume fraction.

3. Results and Discussion

In this section, the results are categorized into two nano- and homogenized scale
where Cu/Nb multi-layers are designated as case studies for both regimes.

At the nano-scale, the deep-learning SLC method is utilized to calibrate and validate
material parameters by experimental data where the constitutive model predictive capabili-
ties are demonstrated. Subsequently, the nano-layer responses are predicted and discussed
regarding size and constituent effects, the extent of impacts in variation of layer and/or
loading orientation, and the influence of layer setups in the initial conditions of calibration
settings.

At the homogenized level, deep-learning SLC and genetic algorithms are utilized to
realize and obtain effective functionals relations and constants, then, the results are favor-
ably compared with the nano-scale model while expediting the computational processes
by several orders of magnitude. Further assessments of temperatures effects on the nano-
metals properties are performed for which deep-learning SLC and genetic algorithms are
utilized to realize and obtain effective functionals relations and constants utilizing multiple
experimental results which also incorporated for final validations. Ultimately, several re-
sponses regarding the effects of elevated temperature and the degradation of properties
are predicted.

3.1. Nano-Scale Constitutive Parameters and Predictions

The presented deep-learning SLC approach utilizes the single crystal stress-strain
curve of each constituent and delivers generalized parameters via a single process applica-
ble to a broad scope of setups that are entirely different than those of the calibration ones.
The models in the committee are defined based on the developed constitutive model and
variation of each parameter considered as an independent variable along with the cases
that assume simultaneous parameter variation effects. The developed SLC method is an
identifier of constitutive and effective parameters based on the physics behind the role of
the parameters on the overall behavior of the concerned material. Thereby, it trains and
realizes the best compatible parameters in the constitutive model while applicable to a
broad range of material morphologies.
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Here, several Cu and Nb nano-layers are separately simulated for which elastic
constants are Initially obtained through analytical processes and databases displayed in
Table 2.

Table 2. Material constants of copper and niobium acquired from analytical processes and databases.

Material Elastic Constants Cu Nb

C11(GPa) 168.4 246.0
C12(GPa) 121.4 134.0
C44(GPa) 75.4 28.7
µ(GPa) 48.0 38.0

Qactive(J) 8.05× 10−19 8.9× 10−19

b(m) 2.56× 10−10 2.86× 10−10

Subsequently, the constitutive parameters are obtained, Table 3, via experimental data
of single crystalline Cu [47] and Nb [48]. The exponential error functions, E , associated
with training segments are defined based on the binary target values and classifiers while
minimized iteratively through modifiers, where the range of variation is captured from
0.008% to 0.01% for which static thresholds of ≤0.05% are designated.

Table 3. Material parameters of copper and niobium acquired from the deep-learning SLC and
experimental data.

Material Parameters Cu Nb

γ̇α
0 5.0 × 106 6.0 × 106

p 0.98 1.01
q 1.12 1.14
r 1.115 1.121
cs 0.2 0.002

csat 70,000.0 76,741.0
m −0.50 −0.50

τα
cut (MPa) 4.80 6.30

τα
pass-init (MPa) 5.20 7.10

hβ
0 (MPa) 3000.0 20,000.0

Sequential modeling steps from an actual metallic nano-layer image to a three-
dimensional Cu/Nb nano-layer unit cell discretized into hexahedral elements are demon-
strated in Figure 3.

In order to illustrate the capabilities of the developed models in generic perspectives
and demonstrate the accuracy of the SLC method, additional simulations are performed
utilizing the acquired parameters. The responses of the specimens in the form of true
stress-strain curves are compared with the experimental results in [49,50], Figure 4, hav-
ing entirely different setups than those of the calibrations in [47,48]. The engineering
stress-strain curves in [49] are obtained for the average layer thicknesses of 16 nm, 34 nm,
and 63 nm under the constant strain rate of 10−3/s while a true stress-strain curve is
achieved in [50] involving the average layer thickness of 40 nm with 2× 10−4/s strain
rate. The experimental and simulations are performed with the Kurdjumov–Sachs (KS)
orientation relationships, {111}Cu||{110}Nb.

Since the developed models yield true stress-strain responses, an excellent agreement
with 40 nm experimental data is observed due to the similarity of formats. Small diver-
gences between the rest of the curves are related to the nature of the reported results,
being engineering stress-strain, which naturally placed them in the lower positions than
the true ones. The general trend of the computationally predicted properties is in agreement
with the experimental data, however, the amount of deviation from 16 nm is related to the
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softening phenomenon at the sizes lower than about 20 nm [51,52] due to which this work
is appointed its nano-scale size range from 20 nm to 1 µm.

X

Y

Z

d1
d2

di

dn-1

dn

.

.

.

(a)

(b)

(c)

(d)

Figure 3. (a) A high resolution scanning electron microscopy image of a metallic nano-layer. (b) A gen-
eralized representative structure of a metallic nano-layer with n elements/layers. (c) A 3-dimensional
Cu/Nb nano-layer unit cell discretized into (d) eight-node hexahedral elements with eight integration
points and the local coordinate system of (ξ , η , ζ).
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Figure 4. The verification of the size-dependent constitutive model and deep-learning SLC results
plotted by “SIM” and solid lines with the experimental data [49,50] designated by “EXP” and
symbolic points.

At this stage, considering the models that are validated and also the validities are
solidly tested, several predictive case studies are assessed and discussed.

Emphasizing the size and geometrical effects, four thickness combinations of 34 nm
and 63 nm along with another case with their uniform average thickness of 48.5 nm are
simulated with otherwise identical settings. The outcomes are presented in Figure 5a where
the strain rate of 10−3/s and the KS orientation relationships are considered.

As noted, the strongest pattern is the one with the smallest similar thicknesses signify-
ing the predominant influence of size over the other traits. Among the rest, with a total
thickness of 97 nm, the samples with the lower and higher thickness of niobium exhibit the
strongest and weakest responses, respectively. The curve with the equal average thickness
reveals a trend between the upper and lower bound, however, close to the latter. It is in-
ferred that in cases of bilayers with two different crystal structures, one of the constituents
has more influence on the overall mechanical properties than the other. Here, the effect
of the body-centered cubic niobium with lower activation volumes is more decisive and
almost twice as of the face-centered cubic copper on the whole responses either in the reduc-
tion or promotion of thicknesses. These effects are better recognized through the equivalent

plastic strain defined as Ep
eq =

√
2
3 (E

p : Ep), where Ep = 1
2 (F

pTFp − I) and plotted in
Figure 5b for each case. In the general trends and magnified region, the equivalent strain
curves demonstrate the inverse relation with the layer strengths captured in Figure 5a and
indicate the largest values for the weakest and smallest ones for the strongest case.

To investigate the load or layer direction effects, the simulations are performed for
laminates of 34 nm, 40 nm, and 63 nm under both longitudinal and transverse loading
directions, displayed in Figure 5c. Slight differences at the beginning stages of the plasticity
are detected increasing with subsidence in layer spacing. However, the identical results
in the extended plastic region demonstrate the inconsequential impacts of variations in
the loading or layer orientation especially for detecting the flow strength of bilayers at the
strain of about 10%.
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(a)

(b)

(c)
Figure 5. (a) True stress-strain curves for four thickness combinations of 34 nm and 63 nm as well as
48.5 nm Cu/Nb multi-layers illustrating the effect of layer combinations on the plastic deformation
and flow strength. (b) Equivalent plastic strain versus true strain curves for the cases in (a) clarifying
the size and layer geometrical order effects. (c) True stress-strain curves of 34 nm, 40 nm, and 63 nm
Cu/Nb multi-layers demonstrating the effects of transverse (TRANS) and longitudinal (LONGL)
loading directions plotted with solid and dash lines, respectively.
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The significance of size effects is delineated in Figure 6 where the flow and yield
strength as well as the transition strain in a wide nano-scale interval, 25 nm to 400 nm,
are plotted. Considering the transition strain as the strain sustained from the yield to the
onset of flow, a nonlinear descending trend of flow and yield strength is noted as layer
spacings decline. Yield points are recognized when the resulted data from computational
analyses start to deviate from the linear trend, albeit, with a tolerance consideration,
and transition strains are detected once a hardening trend and the tangential line of a
post-yield curve intersect. The increase in strain transition is primarily due to mechanical
thresholds and dislocation structure evolutions aligned with low strain hardening and
dynamic annihilation-recovery mechanisms. A small variation in thickness results a
dramatic change in flow and yield strengths at the thicknesses of /100 nm.

Figure 6. The variation of flow and yield strength (left vertical axis) as well as transition strain
(right vertical axis), respectively, with respect to layer thickness in the range of 25 nm to 400 nm.
The true stress-strain curves in this range is attached to the top right corner to clarify the overall
constitutive behavior.

This bias has a descending followed by an asymptotic trend whilst the thickness
approaches 1 µm. The similar trajectory in transition strain is indicative of an extended
prehardening phenomenon pronounced especially at this range that continues to shrink
and assume a higher curvature nearing 1 µm.

Although the developed models satisfyingly capture metallic nano-layers responses
over a broad length scale, the time- and energy-consuming feature of the analysis is a
hurdle to be overcome for which the multi-scale concept is sought and implemented for
which effective functionals must be realized as discussed in the next section.

3.2. Homogenized Level Effective Functionals and Constants

Sensitivity analyses detect two influential constitutive functionals to be calibrated from
the lower scale; saturation shear stress, τsat, and initial hardening, h0. These are functions
of each constituent layer thickness, e.g., τsat(dCu, dNb) and h0(dCu, dNb) for Cu/Nb nano-
layers. In order to obtain the relations of the effective functionals in terms of each material,
several cases with different layer thicknesses of Cu and Nb are made. Two major sets
of nano-layers are considered in which the thickness of one material is fixed at 34 nm,
63 nm, and 100 nm while the other one varied from 25 nm to 400 nm and vice versa.
Then, the simulations are performed based on the size-dependent constitutive model at
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nano-scale regime, Equation (12), and processed through Hill–Mandel principle resulting
in the calibration plots of τsat and h0 demonstrated in Figure 7.
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acetate, and propylene glycol were from Chempur (Piekary Śląskie, Poland). Dental hydrogel with 
0.2% chlorhexidine digluconate (Elugel, Pierre Fabre, France, series G00526, expiry date 11.2022). The 
80% acetic acid was from Avantor Performance Materials Poland S.A. (Gliwice, Poland). Porcine 
buccal mucosa was received from the veterinary service of the local slaughterhouse (Turość 
Kościelna, Poland) and stored at −20 °C. 
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Figure 7. Variations of effective parameters in homogenized constitutive model with layer thicknesses where one layer
thickness is fixed while the other one changes. Symbolic points signify simulation (SIM) results and solid lines the best
fitted equivalent curves (EQ). Variations of τsat, for (a) fixed Cu layer spacing, d_Cu, and (b) fixed Nb layer spacing, d_Nb.
Variations of h0, for (c) fixed Cu layer spacing, d_Cu, and (d) fixed Nb layer spacing, d_Nb.

The variation of τsat with constant dCu and varying dNb is plotted in Figure 7a where

the best fitted function for simulated data has the form of α1 +
α2√
dNb

. The same process for

Nb yields the similar functional structure with α3 +
α4√
dCu

plotted in Figure 7b. However,

the best fitted functions for h0 is different and has the format of β1 +
β2

3
√

dCu
when dNb
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is fixed and β3 +
β4

3
√

dNb
while dCu is constant as illustrated in Figure 7c,d, respectively.

Consequently, the final formulations of the effective functionals are derived as

τsat =

(
α1 +

α2√
dCu

)(
α3 +

α4√
dNb

)
, (29)

and

h0 =

(
β1 +

β2
3
√

dCu

)(
β3 +

β4
3
√

dNb

)
, (30)

for generalized circumstances when both dCu and dNb are changing. These equations
have four unknowns to be determined. Due to the high nonlinearity of the acquired
equations, ascertaining αi , βi necessitates a thorough, compatible optimization scheme.
Thereby, a metaheuristic genetic algorithm approach is utilized to attain the parameters
which results in the following equations.

τsat =

(
12.6169 +

0.0028√
dCu

)(
9.0473 +

0.0032√
dNb

)
, (31)

and

h0 =

(
48.3222 +

0.4358
3
√

dCu

)(
23.4275 +

0.7791
3
√

dNb

)
. (32)

The homogenized constitutive model enhances the efficacy of computational processes
in diverse aspects. Clarifying this matter, five random microstructures with different layer
thicknesses are simulated; first, with the size-dependent constitutive model at nano-scale,
Equation (12), and second, through the homogenized constitutive model, Equation (28),
along with the realized effective functionals in Equations (31) and (32).

The nano-scale simulations proceed through the model with the explicit representation
of layer thickness while the homogenized model is executed by the implicit impact of
size rendered through effective functionals in Equations (31) and (32). The results and
comparisons shown in Figure 8 exhibit cogent agreements between two models, albeit,
the homogenized constitutive model significantly reduces the computational time and cost
by several (>4) orders of magnitude.

Figure 8. The comparison of the results obtained through the homogenized and nano-scale size-
dependent constitutive model on 25 nm, 40 nm, 48.5 nm, 75 nm, and 300 nm Cu/Nb laminates.
Symbolic points denote homogenized (HM) and solid lines the nano-scale (NS) model results.
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3.3. Homogenized Level Temperature Effects

In general, the elevated temperature induces relative diffusive mass flux due to energy
gradients. Diffusional creep is considered the main deformation mechanism at the vicinity
of the melting point, Tm, in metallic nano-layers [53] where the stress-driven diffusion of
vacancies along grain boundaries compels atomic diffusion of the grain interiors in the
opposite direction. This effect is alleviated by atomic diffusion along grain boundaries
at lower temperature [54] while the dislocation glide along grain boundaries becomes
the dominant mechanism at intermediate and low homologous temperatures. Cu/Nb
cases, at temperatures up to 800 ◦C, exhibit dislocation-based plastic deformation where
diffusion creep can be ignored due to generated thermally stable structures [55,56]. Being
cognizant of the experimental difficulties mentioned in Section 1 for obtaining mechanical
responses of metallic nano-layers at elevated temperatures, a temperature-dependent
constitutive model is developed with the advantages of acquiring responses through fast
and cost-effective performances.

The homogenized constitutive model in Equation (28) works with a mild variation of
ambient temperature; however, generic temperature variations require additional changes
in some of the material constants and constitutive parameters.

The elastic constants can be written as a function of absolute temperature by Cij = χij +
ωijT [57] and shear modulus with µ = m1 + m2T, where the constants, χij , ωij , m1 , m2
are designated in Table 4 for Cu/Nb nano-layers.

Table 4. Elastic parameters of copper and niobium acquired from the calibration process.

Cu Nb

χ11(GPa) 184.13 ω11(GPa/K) −0.05 χ11(GPa) 262.70 ω11(GPa/K) −0.06
χ12(GPa) 133.32 ω12(GPa/K) −0.04 χ12(GPa) 143.33 ω12(GPa/K) −0.03
χ44(GPa) 88.15 ω44(GPa/K) −0.04 χ44(GPa) 40.18 ω44(GPa/K) −0.01
m1(GPa) 52.95 m2(GPa/K) −0.02 m1(GPa) 30.88 m2(GPa/K) −0.01

The effective functionals, saturation shear resistance and initial hardening, also change
in terms of temperature. To achieve the general format of these functionals and obtain
the associated parameters, experimental data in [49,55] are incorporated through the
deep-learning SLC and metaheuristic genetic algorithms. As a result, effective temperature-
dependent functionals are obtained as

τsat =

[
ψ0 exp

(
ζ

T − Tc

)
+ ψ1

](
12.6169 +

0.0028√
dCu

)(
9.0473 +

0.0032√
dNb

)
, (33)

and

h0 = (η0 + η1T)
(

48.3222 +
0.4358

3
√

dCu

)(
23.4275 +

0.7791
3
√

dNb

)
, (34)

where the associated parameters of ψ0 , ψ1 , ζ , Tc , η0, and η1 are calibrated as shown in
Table 5.

Table 5. Saturation shear resistance and initial hardening parameters.

ψ0 ψ1 ζ Tc η0 η1

7.31 −5.72 100.00 1450.00 1.42 −0.0014

For verification, simulations are performed for Cu/Nb multi-layers with thicknesses
of 34 nm, 60 nm, and 63 nm at 25 ◦C, 400 ◦C, and 500 ◦C as demonstrated in Figure 9a.
As observed, the simulations and experimental results exhibit solid agreements in which
dramatic declines in flow stresses by increasing temperature are plainly detected.

Further illuminating this phenomenon, Cu/Nb multi-layers with 25 nm, 50 nm,
75 nm, and 100 nm thicknesses are modeled from room temperature up to 700 ◦C where the
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variation of flow strengths in terms of temperature is displayed in Figure 9b. Each curve is
indicative of slight variation in flow stress at initial stages while revealing an appreciable
drop as temperature grows. For instance, in 25 nm specimen, the flow stress notably, about
80%, drops from room temperature to 700 ◦C.

From another angle, the increase of temperature degrades the mechanical responses
of a thin metallic nano-layer to a thicker one at room temperature; this can be clearly
perceived in Figure 9a where a 34 nm Cu/Nb at 400 ◦C exhibits the strength of a 63 nm
Cu/Nb at 25 ◦C.

(a)

(b)
Figure 9. (a) The validation of the temperature-dependent constitutive model with 34 nm, 60 nm,
and 63 nm Cu/Nb laminates at 25 ◦C, 400 ◦C, and 500 ◦C. Symbolic points are the experimental
(EXP) [49,55] and solid lines the simulation (SIM) data. (b) Flow strength versus temperature curves
of 25 nm, 50 nm, 75 nm, and 100 nm Cu/Nb laminates at 25 ◦C up to 700 ◦C demonstrating the
nonlinear effects of temperature growth on flow strength.

4. Conclusions

The current work develops multi-scale constitutive models and deep-learning SLC
approaches in two major scales of the nano- and homogenized levels. CPFE in the large
deformation platform was utilized to reflect the anisotropic and rate-dependent nature of
the metallic nano-systems, simulate, and predict associated responses where Cu/Nb nano-
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layers as case studies were incorporated in diverse three-dimensional thermomechanical
loading conditions.

At the nano-scale, a size-dependent constitutive model founded on entropic kinetics
was developed with the explicit size and constituent effects along with hardening evolution.
The SLC as a deep-learning adaptive boosting technique was established to acquire gener-
alized constitutive parameters through a single process while remaining applicable to a
broad scope of settings regardless of any difference with the calibration setups. The models
were validated through experimental results and utilized for further behavioral predic-
tion in terms of size, loading pattern, layer type, and geometrical effects where size and
constituent effects were plainly captured on flow strength and transition strain.

At the homogenized scale, statistical analyses were employed to develop a homoge-
nized crystal plasticity-based constitutive model for expediting the computational process.
The elastic constants and effective functionals were realized and associated parameters
obtained via metaheuristic genetic algorithms. The homogenized responses were solidly
verified with nano-scale data while the computational processes were accelerated by several
orders of magnitude.

A temperature-dependent homogenized constitutive model was developed for which
elastic constants and effective functionals were constructed. The related constants were ob-
tained and the model was favorably validated with experimental data. Ultimately, the non-
linear effects of temperature on flow strength for several cases were predicted, analyzed,
and discussed.

Author Contributions: Z.M. designed the study, developed the models, implemented the codes,
captured and analyzed the results, and wrote the paper. D.F.B. motivated the study and directed
comparisons to experimental data. Both authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Science Foundation under Grant Number DMR
1709289.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study can be accommodated
upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
nor in the decision to publish the results.

Appendix A. General Steps of Solving Equilibrium Equation—FE

1. Equilibrium Equation
∫

v σ : δe dv−
∫

Γ t δv dΓ = 0
2. Finite Element Discretization

δe =
1
2
(δl + δlT)

v =
nNode

∑
i=1

Niv̂i δl =
∂δv
∂x

=
nNode

∑
i=1

v̂i ⊗∇x Ni = ∇(ξ,η,ζ)Ni

[
nNode

∑
i=1

xi ⊗∇(ξ,η,ζ)Ni

]
v̂

3. Residual Force
R(v̂) =

∫
v(∇x Ni)

Tσdv−
∫

s NitδdΓ = 0
4. Newton-Raphson Solver

v̂n+1 = v̂n −
(∂R

∂v̂

)−1

n
Rn

5. Residual Derivative
∂R
∂v̂

=
∫

v
(∇x Ni)

Tk(∇x Ni)dv +
∫

v
(∇x Ni)

Tσ⊗ (∇x Ni)dv
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6. Material Stiffness
KM =

∫
v(∇x Ni)

Tk(∇x Ni)dv =
∫

v BT DepBdv
7. Geometrical Stiffness

Kσ =
∫

v(∇x Ni)
Tσ⊗ (∇x Ni)dv =

∫
v BT

σ σBσdv
8. Calculation of σ and Dep in Appendix B.

Appendix B. General Steps of Acquiring System Stiffness—CP

1. Kinematics
F(τ) = Fe(τ) Fp(τ) , Ḟp(τ) = lp(τ) Fp(τ)

2. Plastic Deformation Rate Dependence

lp =
nslip

∑
α=1

γ̇α(τ) mα
0 ⊗ nα

0 ⇒ Ḟp =

(
nslip

∑
α=1

γ̇α(τ) mα
0 ⊗ nα

0

)
Fp

3. Second Piola–Kirchhoff Stress

S(τ) =
1
2

C
(

FeT(τ)Fe(τ)− I
)

S(τ) =
C
2

[
nslip

∑
α=1

(
I− ∆γα (mα

0 ⊗ nα
0)

T
)

Fp−T(t)FT(τ)F(τ)F−p(t)
nslip

∑
α=1

(I− ∆γα mα
0 ⊗ nα

0)− I

]

4. Elastoplastic Parts

Sel(τ) =
C
2

(
Fp−T(t)FT(τ)F(τ)F−p(t)− I

)
Spl(τ) = −C

2

(
Fp−T(t)FT(τ)F(τ)F−p(t)

nslip

∑
α=1

(∆γα mα
0 ⊗ nα

0)

)

− C
2

(
nslip

∑
α=1

(∆γα mα
0 ⊗ nα

0)
TFp−T(t)FT(τ)F(τ)F−p(t)

)
5. Nonlinear Solution–Defined Residual Function

G(S) = S(τ)− Sel − C
2

nslip

∑
α=1
F (α)∆γα

6. Nonlinear Iteration Obtaining 2nd Piola–Kirchhoff Stress

S(i+1) = S(i) − J−1

[
S(i) − Str +

nslip

∑
α=1
F (α) ∆γα

]

J = I +
nslip

∑
α=1
F (α)⊗ ∂γα

∂S
7. Updated Constitutive Model and Evolving Parameters

γ̇α = γ̇α
0 exp

{
−Qactive

KBT

[
1−

(
(τα

eff)
2

τα
cut

csπ
µb d

)p]q
}

sgn(τα)

τ̇α
pass =

nslip

∑
β=1

hαβ|γ̇β|

8. Elastic Deformation Gradient
(Converged σ , Fp)→ Fe(τ) = F(τ)F−p(τ)

9. Cauchy Stress

σ(τ) =
1

det Fe(τ)
FeT(τ)S(τ)Fe(τ)

10. Elastoplastic Material Tensor

Dep ↓= W =
∂σ

∂E
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