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Abstract: Arcan shear tests with digital image correlation were used to evaluate the shear modulus
and shear stress–strain diagrams in the plane defined by two principal axes of the material orthotropy.
Two different orientation of the grain direction as compared to the direction of the shear force in
specimens were considered: perpendicular and parallel shear. Two different ways were used to
obtain the elastic properties based on the digital image correlation (DIC) results from the full-field
measurement and from the virtual strain gauges with the linear strains: perpendicular to each other
and directed at the angle of π/4 to the shearing load. In addition, the own continuum structural model
for the failure analysis in the experimental tests was used. Constitutive relationships of the model
were established in the framework of the mathematical multi-surface elastoplasticity for the plane
stress state. The numerical simulations done by the finite element program after implementation of
the model demonstrated the failure mechanisms from the experimental tests.

Keywords: digital image correlation; Arcan shear test; wood; orthotropic shear modulus; elastic-
plastic material; finite element method

1. Introduction

Wood is an organic, naturally grown material and is commonly used for creating all
kinds of goods and structures in many branches of industry. Softwood, which is mainly
used for structural and load-bearing purposes in civil engineering, at a micro-scale level, is
built from axial tracheids connected between themselves by a lignin matrix. The tracheids
(see Figure 1b, which shows a tracheid in a perpendicular cut) are long, thin cells organized
in a way that their length is parallel to the length of the log and are the main source of
the wood strength. They are “glued” by lignin at the edges of its cell walls and create
the annual rings. The micro-scale built is a basis for understanding the macro behavior
and strength of clear wood (i.e., a material considered as without flaws, e.g., resin pores
or knots), which is generally high in the longitudinal direction (denoted as L), where the
tracheid’s generate strength, and low in the two other directions, i.e., radial and tangential
(denoted by R and T, respectively), where the lignin matrix has lower mechanical properties
(see Figure 1b,c for direction denoting). Therefore, the weakest mechanical properties of
wood are those at the direction normal to the fibers during tension (i.e., R and T) or shear
along the longitudinal direction (i.e., L), causing a rupture between annual rings. Exposure
to these types of stresses easily leads to cracking, which usually forms along the grain
direction, choosing the path of least resistance.
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in artificial materials, as well as the complicated internal structure of wood from micro- 
to macro-scale, gives a substantial level of uncertainty in the interpretations of test results 
and model approaches [1,2]. The clear wood is often treated mechanically as an ortho-
tropic material with three specified material axes (Figure 1a), i.e., the longitudinal (L), ra-
dial (R) and tangential (T) ones. Its macroscopic behavior originates from its microscopic 
structure—fibers—and their directional arrangement (Figure 1b,c). Moreover, in one an-
nual ring, the mechanical characteristics are different due to early (spring) and late (au-
tumn) growth characteristics of this ring. The earlywood grows more quickly and is 
weaker, which is in opposition to the latewood. In general, it rises the additional issue of 
material inhomogeneity, which is typical for materials of natural origin (e.g., wood and 
soil). It is also an issue where is the limit of considering wood as a homogeneous material, 
which is a common engineering practice. This is important especially while examining the 
shearing of LR plane of orthotropy with the direction of the shearing load (P) parallel with 
the longitudinal material axis (L). A crack may lie in the LR plane and may propagate in 
one of two directions, from which more practical importance has the one along the lower 
strength path parallel to the grain. This system of propagation, where L is the direction in 
which the crack propagates (the LR,L system), will predominate as a result of the low 
strength and stiffness of wood perpendicular to the grain. The opposite of this is the LR,R 
system, where the crack propagates in the direction R. 

   
(a) (b) (c) 

Figure 1. The wood material axes on a log view (a); scanning electron microscope photograph of a RT plane at 746 times 
magnitude (b); and scanning electron microscope photograph of a LR plane at 533 times magnitude (c). 

In general, the experimental determination of the wood behavior in shear has always 
been influenced by difficulties in obtaining a pure and uniform shear state. This issue re-
sulted in many different experimental methods: the Arcan test, off-axis tests, Iosipescu 
test, four-point bending test, etc. [3]. Numerical simulations, performed for tests, usually 
indicate a combination of normal and shear stresses, making difficult to interpret the pure 
shear behavior. Among the mentioned methods, the Arcan shear test [4] is considered to 
create a rather uniform and pure state of shear stress among the critical cross section. The 
main problem arises with boundary conditions, which are strongly dependent on the type 
of specimen fixture and the distance to the critical cross section, and can influence the 
behavior of the specimen. The Arcan test on wood has been studied (see, e.g., [5–9]), where 
strains are measured using strain gauges [6,9], with video extensometers [5] or not meas-
ured at all [7]. Tests with the digital image correlation were used by the authors of [8,10]. 
The work in [6] is of significant importance because it gives the shear constants in all three 
material planes at two load-to-material axes directions, which are rarely obtained due to 
the labor-intensive nature of such tests. 

Although shearing tests have been performed using many techniques, the increase-
ment in measuring technology makes it possible today to gather more information and 
obtain new results. Technology of the digital image correlation (DIC) enables recording 
and analyzing the whole surface of the specimen, on both sides [11]. The possibilities can 

Figure 1. The wood material axes on a log view (a); scanning electron microscope photograph of a RT plane at 746 times
magnitude (b); and scanning electron microscope photograph of a LR plane at 533 times magnitude (c).

The heterogeneity, orthotropy and high variability of naturally grown wooden ma-
terials makes both modeling and experimental investigations challenging. The natural
origin of wood, being its major advantage, is also a major obstacle in the advancement
of wood research. The lack of manufacturing control of the material properties, as is
possible in artificial materials, as well as the complicated internal structure of wood from
micro- to macro-scale, gives a substantial level of uncertainty in the interpretations of test
results and model approaches [1,2]. The clear wood is often treated mechanically as an
orthotropic material with three specified material axes (Figure 1a), i.e., the longitudinal
(L), radial (R) and tangential (T) ones. Its macroscopic behavior originates from its micro-
scopic structure—fibers—and their directional arrangement (Figure 1b,c). Moreover, in
one annual ring, the mechanical characteristics are different due to early (spring) and late
(autumn) growth characteristics of this ring. The earlywood grows more quickly and is
weaker, which is in opposition to the latewood. In general, it rises the additional issue of
material inhomogeneity, which is typical for materials of natural origin (e.g., wood and
soil). It is also an issue where is the limit of considering wood as a homogeneous material,
which is a common engineering practice. This is important especially while examining the
shearing of LR plane of orthotropy with the direction of the shearing load (P) parallel with
the longitudinal material axis (L). A crack may lie in the LR plane and may propagate in
one of two directions, from which more practical importance has the one along the lower
strength path parallel to the grain. This system of propagation, where L is the direction
in which the crack propagates (the LR,L system), will predominate as a result of the low
strength and stiffness of wood perpendicular to the grain. The opposite of this is the LR,R
system, where the crack propagates in the direction R.

In general, the experimental determination of the wood behavior in shear has always
been influenced by difficulties in obtaining a pure and uniform shear state. This issue
resulted in many different experimental methods: the Arcan test, off-axis tests, Iosipescu
test, four-point bending test, etc. [3]. Numerical simulations, performed for tests, usually
indicate a combination of normal and shear stresses, making difficult to interpret the pure
shear behavior. Among the mentioned methods, the Arcan shear test [4] is considered
to create a rather uniform and pure state of shear stress among the critical cross section.
The main problem arises with boundary conditions, which are strongly dependent on the
type of specimen fixture and the distance to the critical cross section, and can influence
the behavior of the specimen. The Arcan test on wood has been studied (see, e.g., [5–9]),
where strains are measured using strain gauges [6,9], with video extensometers [5] or not
measured at all [7]. Tests with the digital image correlation were used by the authors
of [8,10]. The work in [6] is of significant importance because it gives the shear constants in
all three material planes at two load-to-material axes directions, which are rarely obtained
due to the labor-intensive nature of such tests.
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Although shearing tests have been performed using many techniques, the increase-
ment in measuring technology makes it possible today to gather more information and
obtain new results. Technology of the digital image correlation (DIC) enables recording
and analyzing the whole surface of the specimen, on both sides [11]. The possibilities can
be shown in a simple example presented in Figure 2. Measurements using strain gauge
T-rosettes enable measuring two values at one “point” (this point is distributed along the
strain gauge grid length) (Figure 2a) [7]. The DIC enables measuring the displacements
(and further calculate strains) of approximately 2400 points in the observed area. However,
the accuracy of the system is still studied.

Materials 2021, 14, x 3 of 18 
 

 

be shown in a simple example presented in Figure 2. Measurements using strain gauge T-
rosettes enable measuring two values at one “point” (this point is distributed along the 
strain gauge grid length) (Figure 2a) [7]. The DIC enables measuring the displacements 
(and further calculate strains) of approximately 2400 points in the observed area. How-
ever, the accuracy of the system is still studied. 

  
(a) (b) 

Figure 2. The standard shear modulus test specimen-strain gauge T-rosette and a way of measurement of the shear angle 
(a); and a state of pure shear (b). All dimensions are in millimeters (mm) unless otherwise noted. 

In this paper, apart from the experimental studies described in Section 2, the results 
of numerical simulations of the performed tests are also presented in Section 3. The sim-
ulations were carried out using the own orthotropic material model of clear wood, as dis-
cussed in [12]. Three basic failure mechanisms in plane stress are distinguished in the 
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Figure 2. The standard shear modulus test specimen-strain gauge T-rosette and a way of measurement of the shear angle
(a); and a state of pure shear (b). All dimensions are in millimeters (mm) unless otherwise noted.

In this paper, apart from the experimental studies described in Section 2, the results
of numerical simulations of the performed tests are also presented in Section 3. The sim-
ulations were carried out using the own orthotropic material model of clear wood, as
discussed in [12]. Three basic failure mechanisms in plane stress are distinguished in
the model: failure due to tensile, compressive and shear stresses. The composite failure
criterion consists of three analytical expressions, each of them being a limit equilibrium
condition of the material in a complex stress state.

2. Experimental Studies
2.1. Background Theory

The 2D strains components, the normal strains εx, εy and the shear strain εxy, are
directly calculated in the software of the digital image correlation system [13] from the
symmetrical material stretch tensor U:

U =
√

FTF =

(
1 + εx εxy

εxy 1 + εy

)
, (1)

where F is the deformation gradient. The shear angle γxy without the rigid rotation is
calculated as:

γxy = γx + γy = arctan
(

εxy

1 + εx

)
+ arctan

(
εyx

1 + εy

)
, (2)

where γx and γy are the corresponding shear angles of the two sides of the deformed
elemental square (see also [7]). Note that the software gives the strains and angles at the
certain points referring to an arbitrary coordinate system (x, y).

The constitutive law of linear elasticity for the orthotropic material is determined by
nine independent material parameters because of the strain and stress tensors symmetries
and the existence of the elasticity energy function. As is the case for the orthotropic
material, the formulas of Hooke’s law depend on the orientation of the coordinate system
in a reference to the principal axes of material symmetry, i.e., the axes of orthotropy. The
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shear moduli in the frame of reference aligned with the orthotropic axes, so-called the
technical moduli, can be calculated independently of other material constants as:

GLR =
τLR
γLR

, GLT =
τLT
γLT

, GRT =
τRT
γRT

, (3)

where τLR, τLT , τRT are the shear components of the stress tensor in the planes LR, LT, RT,
respectively, and γLR, γLT , γRT are the corresponding shear angles.

To determine the shear angle γ in the chosen plane, the following engineering geo-
metrical considerations is used additionally. Let us consider an infinitely small element in
the plane LR, which is in a state of pure shear (Figure 2b). When shearing, the right angles
change by the value γ = γLR. The one diagonal is then lengthened with the strain ε45 and
the second diagonal shortens with the strain ε−45 and:

tan
(π

4
− γ

2

)
=

dl(1 + ε−45)

dl(1 + ε45)
≈ 1− γ/2

1 + γ/2
, (4)

where dl is the diagonal length of the element. From (4), we get:

γ =
2(ε45 − ε−45)

2 + ε45 + ε−45
. (5)

To derive the engineering shear angle γ in the DIC system, the construction of the
virtual strain gauges is required in the same way as for two-element strain gauge rosettes,
e.g., for a 10 × 10 mm2 square, where ε45, ε−45 are the linear strains, perpendicular to each
other and directed at 45◦ angle to the shearing load.

2.2. Specimens, Equipment and Methods

The dimensions of the specimen were preliminarily defined by the basic numerical
tests on several different configurations of the critical cross-section height and curvature.
Nine different shapes were modeled checking stress distribution by means of the finite ele-
ment method. The dimensions modified were: the shear area height h→ {36, 40} mm, the
initial diameter d→ {4, 8, 12} mm and the inclination angle ϕ→ {45◦, 60◦, 75◦, 90◦}
of the cutting lines (see Figure 3a). The aim was to achieve a pure shear state in the middle
section of the specimen; hence, it was sufficient to adopt an isotropic material and perform
the simplified analysis only in the elastic range. The most satisfactory results were obtained
for the following dimensions: h = 36 mm, d = 8 mm and ϕ = 90◦ (all dimensions are
shown in Figure 3d). The obtained tangential stress distribution was characterized by
low variability with practically zero values of the associated normal stresses. The stress
distributions for the middle cross-section are shown in Figure 3e,f.

Storage and processing of wood specimens were performed in normal conditions of
65% relative humidity and temperature of 20 ◦C. The pre-specimens were firstly cut from
16 mm planks (planks cut from the central part of the log) of pine wood (Pinus sylvestris
L.) with rectangular dimensions of 100 mm × 150 mm concerning two perpendicular
directions of LR plane (in Figure 3b,c, the arrows show the shearing directions with
respect to the material axes). Further, the notches were made using a milling-machine
with a down spindle and a saw to create the required shape (Figure 3d). The tests were
performed immediately after the transportation to the testing facility and prepared for the
DIC measurements. Therefore, the surface of the specimens was sprayed using a black
aerosol can to create a more stochastic pattern. Since wood has an inhomogeneous surface,
there little paint was needed. Further, the specimens were inserted into the Arcan fixtures
(Figure 4). The fixture dimensions and shape were designed by the authors and water cut
from an 8mm thick stainless-steel plate. The fixture elements were connected by 8 and
12 mm steel screws with steel plates used as distances, while the specimens were tightened
by steel tooth plates (Figure 4d).
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Figure 3. The specimens: (a) dimensions subjected to variation; (b) LR,L orientation; (c) LR,R orientation; (d) geometry of 
specimen used for shear tests; and (e,f) stress distributions in the middle section for LR,L specimens. All dimensions are 
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The preparation of the DIC system started with choosing the calibration object, here the 
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system calibration was performed. The software options were chosen as: facet size 19 × 19 
pixels and faced step (distances between facets) 15 × 15 pixels, as proposed by the manu-
facturer. The DIC used in this experiment was composed of two 5Mpix cameras (resolu-
tion 2448 × 2050). The starting points for calculations were chosen, as recommended, at 
areas where the displacements were minimal (typically, the lower left part of the speci-
men). The experimental setup of the DIC system is shown in Figure 4e. 

Twelve specimens were tested. Six of them were oriented so that the shear direction 
was parallel to the L axis (LR,L-specimens) and the other six with the shear direction par-
allel to the R axis (LR,R-specimens). Both tests were tracked automatically by displace-
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pression (2)) and for Points 1–4 presented in Figure 4b (indexed as “g”) (from the virtual 
gauges located on the diagonals of the central square of 10 × 10 mm2 and Expression (5)). 
The ultimate shear angle values were taken at the moment of failure. 
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Figure 4. The Arcan fixture: (a) scheme; (b) the explanation of measuring points/sections; (c) physical fixture; (d) distances
and tooth plates; and (e) experimental setup with the DIC system.

The test was performed using the 10 kN nominal force universal testing machine,
equipped with the Arcan fixture. A digital image correlation system [13] was used to
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obtain the full-field displacement distribution and visualize the shear strain uniformity.
The testing machine gave information on the forces, while the DIC system on the shear
angles. The preparation of the DIC system started with choosing the calibration object,
here the manufacturer’s CP90/20 was used, which allowed measuring an area between
78 × 65 mm2 and 130× 105 mm2 (final area was approximately 85× 70 mm2). Afterwards,
the typical system calibration was performed. The software options were chosen as: facet
size 19 × 19 pixels and faced step (distances between facets) 15 × 15 pixels, as proposed
by the manufacturer. The DIC used in this experiment was composed of two 5Mpix
cameras (resolution 2448 × 2050). The starting points for calculations were chosen, as
recommended, at areas where the displacements were minimal (typically, the lower left
part of the specimen). The experimental setup of the DIC system is shown in Figure 4e.

Twelve specimens were tested. Six of them were oriented so that the shear direction
was parallel to the L axis (LR,L-specimens) and the other six with the shear direction parallel
to the R axis (LR,R-specimens). Both tests were tracked automatically by displacement
with a constant value of 0.35 mm/min and an initial force of 130 and 70 N for the LR,L and
LR,R specimens, respectively. The ultimate forces were taken from the testing machine at
the moment of failure (LR,L specimens) and at the moment of first horizontal crack (LR,R
specimens). The values of ultimate shear angle and shear modulus were calculated for
central point of the cross-section (indexed “c”) (Point C in Figure 4b and Expression (2))
and for Points 1–4 presented in Figure 4b (indexed as “g”) (from the virtual gauges located
on the diagonals of the central square of 10 × 10 mm2 and Expression (5)). The ultimate
shear angle values were taken at the moment of failure.

The calculations of the LR shear moduli were performed according to Formula (3) with
the shear angle obtained from (2) for the Gc moduli and with the shear angle obtained from
(5) for the apparent Gg moduli. The shear modulus was determined as a secant modulus in
the range between 25% and 50% of the maximal external force Pult in each specimen. Such
values were chosen due to very small shear angles for the measuring system resolution
(initially 10–40% of the maximal force was considered). The expression for calculating the
modulus from the experimental results can be written as follows:

G =
∆τ

∆γ
=

τ50%P − τ25%P

γ50%P − γ25%P , (6)

where the shear angles are taken as from Equation (2) or (5) for G = Gc and G = Gg,
respectively. The nominal shear stresses τ were computed as a ratio between the force P
and nominal cross-section Anom, i.e., τ = P/Anom.

The shear angle maps were generated by the software for stages just before the failure
i.e., rupture for the LR,L specimens and first horizontal crack for the LR,R specimens.
Three different vertical sections were prepared to provide complete information on the
distribution of strains along the cross-section of the LR,L specimens, as shown in Figure 4b:
the “middle cross-section” (red continuous line), the “maximal cross section” (blue dashed
line) and the “symmetrical cross section” (blue dashed line). For the Specimens LR,R, two
sections of different lengths were used: the “middle cross-section” and the horizontal blue
dash-dot one.

In addition, for the obtained τ − γ relationship, a linear approximation of results
was done by the use of the least square method. The method finds the best fit, in this
case the shear moduli itself, which is a tangent of the angle between the linear fit and the
horizontal axes. The shear angles were taken from Expression (2) and the fitting range was
25–100% of the maximal external force Pult (rupture in LR,L direction and first crack in the
LR,R direction).

2.3. Results

The post-processing of strain values was performed in the DIC software. Maps of
the shear angle and charts at the moment just before failure for all six LR,L specimens are
shown in Figures 5 and 6, respectively.
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The LR,L results in the maps of shear angle show different failure sections. The maps
for Specimens L1 (Figure 5a) and L4 (Figure 5d) clearly show that the failure arises not in
the central cross-section as expected, but next to it. This is generated due to the material
inhomogeneity, where most likely a wider strip of earlywood was defining the path of
failure. The strains in Specimens L2–L6 are concentrated around the central part of the
specimen. In addition, Specimens L3, L5 and L6 present more uniform strain distribution
among the others. Figure 6 shows the distribution of the shear angle along vertical sections.
In general, the distribution of deformations in the central part is close to parabolic. However,
in the case of Specimen L3, there is a more even distribution across the width as compared
to sections from the symmetrical to max section (Figure 6a). In Specimen L2 (Figure 6b),
the greater values of the angle, and hence the greater stress intensity, are on the right side
of the central axis.

In Figures 7 and 8, we can find similar information for LR,R specimens. Figure 7
shows the deformation maps. The failure crack occurs horizontally along a line taken from
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the edge of the weakened central section (see Specimens R1, R3, R4 and R6 in Figure 7).
In Figure 8, an increase in the value of shear strains can be noticed in the vicinity of the
initial and end coordinates corresponding to the edges of the specimen (vertical middle
section, black solid line). The red line of the results for the horizontal section also shows
the highest values in the middle, i.e., near the critical edge.
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The obtained results on shear moduli, ultimate strength and strain are shown in
Table 1 for the LR,L specimens and in Table 2 for the LR,R specimens. The apparent shear
modulus Gg and apparent ultimate shear angle γg,ult from Expression (5) the coefficient
of variation (COV) did not exceed 24%, which are quite big but at an acceptable level in
wood. The same values calculated by (2) show acceptable COVs for the modulus (Gc) and
a moderately high value for the ultimate shear angle (γc,ult).
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Table 1. The results from the monotonic test of the LR,L specimens.

Pult τ = Pult/Anom γg,ult Gg γc,ult Gc

(N) (MPa) (10−3) (MPa) (10−3) (MPa)

Mean 2448 ± 404 4.4 ± 0.7 11.5 ± 3.6 392 ± 55 8.73 ± 3.9 470 ± 133
SD 492 0.85 4.37 67 4.75 161

COV 34.3 20.1 38 17.1 54.5 34.3
ult corresponds to the maximum external force; g the values from the virtual gauges; c the values for
central point of the cross-section.

Table 2. The results from the monotonic test of the LR,R specimens.

Pult τ = Pult/Anom γg,ult Gg γc,ult Gc

(N) (MPa) (10−3) (MPa) (10−3) (MPa)

Mean 2904 ± 513 5.16 ± 0.9 6.07 ± 1.1 813 ± 146 5.88 ± 1.2 816 ± 123
SD 673 1.18 1.43 192 1.54 162

COV 23.2 22.8 23.6 23.7 26.2 19.8
ult corresponds to the maximum external force; g the values from the virtual gauges; c the values for
central point of the cross-section.

The values of shear strength for the LR,L specimens had a mean value of 4.4 ± 0.7 MPa,
with a standard deviation of 0.85 MPa and a COV of 19.2%. The ultimate force had a mean
value of 2448 ± 404 N, a standard deviation of 492 N and a COV of 20.1%. The apparent
shear modulus had a value of 392 ± 55 MPa, a standard deviation of 67 MPa and a COV
of 17.1%. In linear elastic orthotropic theory, the LR and RL moduli are considered as
equal. The value of the modulus obtained from LR,L specimens is relatively low. The
reason lies in the high variability of the measured shear angles: a COVs of 34% from the
Expression (5) and 54% for the Expression (2). Hence, they were considered nonrealistic
results and disregarded.

Figures 9 and 10 show the stress–strain relationships for LR,L and LR,R specimens,
respectively. The shear angles were taken from Expression (2) for the central point. The
red lines show a linear fit in the range of results from 0.25 of the ultimate force up to the
moment of failure. The LR,L specimens present a brittle failure (Figure 9), while LR,R
present a linear behavior up to the first crack. After the crack, the specimen is changing
the configuration and the specimen is slightly rotating and deforming, which is why the
experimental points seem to lay on each other, due to stress loss after the crack, especially
on the specimens shown in Figure 10b,e. The obtained LR,L average modulus of shear is
approximately 350 MPa, while that of LR,R is approximately 840 MPa. These results are
similar to those shown above in Tables 1 and 2. This confirms the validity of the previously
adopted methods.
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The results of the LR,L specimens shows a very low average modulus of shear of
approximately 400 MPa, while the LR,R modulus is approximately 800 MPa. It may be
caused by a relatively great ratio of earlywood-to-latewood width in the used wooden
specimens. This ratio depends only on the growth conditions of the tree. The experimental
scheme causes that, in the LR,L direction, the earlywood becomes dominant in material
behavior as the more susceptible material part, whereas, in the LR,R direction, both material
parts, early- and latewood, are working simultaneously.

Another issue lays in system accuracy. Consider the noise of the system; analyzing
the chart of the L3 specimen in Figure 6a, successive points from each line can differ even
by 25%. These values are calculated using Expression (2), which uses a small area to gather
information called facets, i.e., a square defined in pixel size in the software (in this case
19 × 19 pixels) and corresponding true dimensions of approximately 0.5 × 0.5 mm2 (in
this particular case). For homogeneous fields with large strain values, such as plastic flows
in steel or displacements of parts, this is sufficient. However, it may be more complex to
calculate a very inhomogeneous strain field, where early- and latewood particles are mixed,
and strains are very low. Therefore, we can consider the maps as a qualitative source of
information. However, this does not forbid the quantitative analysis—the noise of the
results is relatively high but can be reduced to some level by averaging results, as well
as considering using a greater calculating area—of the aforementioned facets, where it is
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possible to increase such fields to dimensions of even 50 × 50 or 100 × 100 pixels to reduce
the noise at a cost of calculation time, which was already proved by some experimental
works. Moreover, the displacement measuring accuracy can be easily increased by using a
greater length of the measuring base. That is why the apparent values of the moduli and
ultimate shear angles are reliable—the values are calculated using a 10 × 10 mm2 square
and the displacement of these points is seen by the system well.

3. Numerical Simulations of Failure Mechanisms in the Tests

The numerical simulations of timber shearing in the Arcan test (Figure 4a [8]) with the
failure modes and mechanisms are the purpose of this section after the implementation
of the own continuum structural models from [12,14] into the commercial finite element
code [15]. The Arcan test is considered to create a rather uniform and pure state of shear
stress among the critical cross section. However, an appropriate constitutive model and
the analysis by means of the finite element method allow more detailed insight into the
sequence in which crack zones develop. The constitutive relationships of the model have
been established in the framework of the mathematical elastic–plastic theory of small
displacements. The model is based on the three orthotropic failure criteria that were earlier
proposed by Geniev and next incorporated into the plasticity condition as the composite
yield surface [16,17]. This orthotropic failure criteria can be regard as generalization of the
well-known an isotropic maximum principal stress criterion of Rankine extended to the
tension and compression anisotropic regimes and the Mohr–Coulomb strength criterion
for the shear regime. They have the following forms in the plane state of stresses and in the
frame of reference coincided with the axes of the principal stresses:(

cos2 ϕ

Yt1
+

sin2 ϕ

Yt2

)
σ1 +

σ1σ2

Yt1Yt2
+

(
sin2 ϕ

Yt1
+

cos2 ϕ

Yt2

)
σ2 − 1 = 0 , (7)

(
cos2 ϕ

Yc1
+

sin2 ϕ

Yc2

)
σ1 +

σ1σ2

Yc1Yc2
+

(
sin2 ϕ

Yc1
+

cos2 ϕ

Yc2

)
σ2 + 1 = 0 , (8)

σ2
1 − 2(1 + 2µ2) σ1σ2 + σ2

2 + 2µ (C11 + C22)(σ1 + σ2)+
+2(C11 − C22) (|sin 2ϕ| − µ cos 2ϕ)(σ1 − σ2)− 4C11C22 = 0 ,

(9)

where ϕ denotes an angle between the axis of the first principal stress and the first axis
of orthotropy.

The four uniaxial strength parameters Y∆i, i = 1, 2 appear in the Rankine-type criteria
described by Formulas (7) and (8), which are obtained from the two tensile tests (∆ = t) and
two compressive tests (∆ = c) in the directions of the first and second axes of orthotropy,
respectively. In Formula (9), we can find the parameter of internal friction µ and the shear
strength parameters C11 and C22 obtained from the tests with the predetermined shear
failure planes which are coincided with the orthotropy axes. Three different characteristic
values of the shear stress can be calculated from Criterion (9) for the stress state σ1 = −σ2
and the angle ϕ = 00, 450, 900. The value of the shear stress for the angle ϕ = 450 is of the
particular interest, because the direction of the shearing then coincides with the orthotropic
axes. This shear stress can be helpful in setting the strength parameters in the numerical
simulation of the experimental tests, and it is obtained from the following relationship:

τmax =

√
(C11 − C22) + 4(1 + µ2)C11C22 − (C11 − C22)

2(1 + µ2)
. (10)

Contours of the failure criteria in the principal stress state are presented in Figure 11
for different values of the angle ϕ and in the axes of orthotropy.
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3.1. Implementation of the Model

The more detailed discussion of the constitutive equations of the similar models and
their numerical implementation into the commercial FEM system has been recently pre-
sented [18,19]. The plastic part of the strain tensor is defined by a flow rule associated with
the yield function given by the plasticity (failure) criterion written in the following form:

f∆(σ, α∆,in) =
1
2
σ · P∆ ·σ+ p∆ ·σ− (1 + K∆α∆,in) = 0 (11)

where K∆ is a given constant plastic parameter and αin is an internal hardening variable,
hence the fourth- and second-order symmetric tensor functions P∆ and p∆ are dependent
on the strength parameters of Criteria (7–9). The double contraction of the tensors is
denoted by one dot. The plastic parameter K∆ = 0 for the perfect plasticity, K∆ > 0 for the
hardening and K∆ < 0 for the softening behavior [12]. Since the model consists of three
yield surfaces (11), we identify the material parameters by adding the subscript index ∆,
where ∆ = t is assigned to the tension Condition (7), ∆ = c to the compression Condition
(8) and ∆ = s to the shear Condition (9).

The model was implemented as the user-supplied subroutine into the FE system DI-
ANA [15], in which the nonlinear material behavior is updating over the equilibrium step
within a framework of an incremental-iterative algorithm of the finite element method with
a return-mapping algorithm and a consistent tangent stiffness operator for the plane stress
state. The implementation was a very demanding programming task of the subroutine US-
RMAT in the FORTRAN language, which is described in detail in [18,19]. The formulation
of the model during the implementation was presented based on the assumption that the
principal axes of orthotropy coincided with the Cartesian frame of reference for stresses
and strains in finite element computations. The tensor functions P∆ and p∆ have then the
following matrix representations for tension and compression regimes:

pt ⇒


1

YtL

1
YtR
0

, pc ⇒


1

YcL

1
YcR

0

, P∆ ⇒


0

−1
Y∆LY∆R

0

−1
Y∆LY∆R

0 0

0 0
2

Y∆LY∆R


(12)
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and

ps ⇒



µ

CLL
µ

CRR

CLL − CRR
CLLCRR

sign(τLR)

, Ps ⇒



1
2CLLCRR

−(1 + 2µ2)

2CLLCRR
0

−(1 + 2µ2)

2CLLCRR

1
2CLLCRR

0

0 0
2(1 + µ2)

CLLCRR


(13)

for the shear regime. In Formulas (12) and (13), the frame of reference is denoted as
(xL, xR, xT) and the shear strength parameter, e.g., CLL, is obtained from the direct shear
test in which the normal to the shear plane is predetermined in direction of the first axis
of orthotropy.

Several tests confirmed the correctness of the proposed numerical algorithm for the
anisotropic continuum. The multi-surface model enables the identification of the relevant
macroscopic failure modes. The separated description of the three regimes also allows
the modeling of their respective post-failure behavior with modern hardening/softening
evolution laws, although an intersection of different yield surfaces defines corners that
require special attention in the numerical algorithm.

3.2. FEM Modeling and Results

The finite element mesh was created out of 1321 nodes and 1232 elements. The geom-
etry of FE mesh with boundary conditions is presented in Figure 12a. The type of used
elements was the Q8MEM (isoparametric, cuboid eight node elements). The force was
inducted by displacement of the upper arm of the fixture, so the analyses were carried
out with indirect displacement control. The following material parameters were adopted
based on the tests [10]: the Young’s moduli ELL = 13.7 MPa, ERR = 1.1 MPa, the shear
modulus GLR = 820 MPa and the Poisson’s ratio νLR = 0.45. Other material parameters are
presented in Table 3. When assuming the shear strength, the results from the experiments
discussed above were considered. However, due to their large spread, it was decided to
round the values. It should be noted that in Table 3 the yield strengths are assumed in the
numerical computations, which can be different from the experimental strengths.
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Table 3. Material parameters for numerical simulations.

Criterion Parameters

Compression YcL (MPa) YcR (MPa) Kc
40.8 7.8 0.0

Tension
YtL (MPa) YtR (MPa) Kt

80.5 3.8 0.0

Shear
CLL (MPa) CRR (MPa) µ

6.0 4.5 0.1

Figures 12–14 present the results of the numerical simulations of the test for the
specimens with different orientations—LR,L and LR,R. Figure 12 presents shear stress
distributions in the elastic state for the displacement level of δ = 0.1 mm. This level
corresponds to values of the external force P = 1.5 kN for Specimen LR,L (Figure 13a,
Line a) and P = 0.75 kN for Specimen LR,R (Figure 13a, Line b). It is seen in Figure 12
that the uniform state of shear stress occurs only in the middle of the specimens and its
distributions are different depending on the orientation of the material axes.
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Figure 13a shows the relationship between reaction and displacement of the upper
support (P − δ) for different values of the plastic parameter. Lines [a] and [b] are for
the perfect plasticity. For the comparison, Lines [c]–[e] are also shown in Figure 13a for
Specimen LR,R and the hardening plasticity with Ks = 10 for Line [c], Ks = 50 for Line [d]
and Ks = 200 for Line [e]. Good agreement was found between numerical and experimental
results of the ultimate external force for the perfect plasticity and Specimen LR,L—2.73
(the numerical simulation) and 2.58 kN (the experiment)—and the worse agreement for
the Specimen LR,R—3.50 and 2.90 kN, respectively.

The value 2.90 kN of the ultimate external force corresponds to the moment of the
first crack appearance. The second crack appears with an average load of 3.30 kN, which is
closer to the numerical result. The hardening effect similar to the experimental results is
visible in Figure 10 and can be easily controlled by the appropriate selection of Ks parameter.
Lines [c]–[e] in Figure 13a are an example of the possibilities offered by the model. The
exact fit will be the subject of further research. Figure 13b shows the relationship between
shear stress and strain in the central point. Red Line [a] is for Specimen LR,L and perfect
plasticity (Ks = 0). The obtained maximum strength was 4.50 MPa, which corresponds
to the adopted value of the shear strength (CRR). Blue Line [b] is for Specimen LR,R and
perfect plasticity (Ks = 0). Again, the obtained maximum strength 6.0 MPa corresponds to
the adopted value of the shear strength (CLL). The slope in the elastic range is consistent
with the adopted value of the modulus. Another path to destruction has been observed.
For the test in the LR,L configuration, the first active was the shear criterion, while, in the
LR,R configuration, the tensile criterion was activated first. Points marked with letters a
and d shown in Figure 13b correspond to the first moments of reaching the failure criterion.

In Figures 14 and 15, we can find maps of the plastic strains at different stages of
the tests. The maps in Figure 14a–c correspond to the test moments marked with points
d–f in the diagram of Figure 13b, respectively. The maps in Figure 15a–c correspond to
the test moments marked with points a–c in the diagram of Figure 13b, respectively. The
obtained mechanisms are compatible with those obtained experimentally and shown in
Figures 14d–f and 15d–f.
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4. Conclusions

The paper presents experimental investigations of wood shearing in the LR plane for
two different directions of loading. Twelve specimens were tested. Forces and shear angles
were measured using a testing machine and digital image correlation. Some of the material
constants and strengths were determined. Shear angle maps and charts for the critical cross
sections are presented.

The usage of the DIC system showed that it is capable of gathering more information
on the experiment than typically used measuring techniques such as strain gauges. The
graphical presentation in the form of maps showed a great inhomogeneity on the specimen
surface in case of the shear angles distribution.

The results on the two different directions of loading show that it may be necessary to
reconsider the specimen shape and border conditions of the test to obtain the homogenized
material parameters. This issue is depending to a very large ratio between earlywood and
latewood among annual rings. This issue may affect the results of specimens of different
species with lower early-to-latewood ratios, to a certain extent.

Our own constitutive model for the analysis of wooden structures in biaxial plane
stress states, implemented into the finite element code, was used to analyze behavior of
wood during shearing in the Arcan test. Experimental determination of the shear behavior
has always been influenced by difficulties in obtaining a state of pure and uniform shear in
test specimens. Model calibration allows adjustment to experimental results. For different
specimen material axis orientations, adequate destruction mechanisms were obtained.
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