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Abstract: The modern types of concrete are a mixture of aggregates, cement, water and optional
additives and admixtures. In particular, polymer additives seem to be a promising type of component
that can significantly change concrete and mortar properties. Currently, the most popular polymer
additives include superplasticizers, latexes and redispersible powders. Moreover, in order to improve
the properties of concrete-based composite admixtures, which enhance the resistance to cracking,
polymer fibres and recycled polymers have been researched. All the types of polymeric materials
mentioned above are broadly used in the construction industry. This work summarizes the current
knowledge on the different types of popular polymeric additives. Moreover, it describes the correla-
tion between the chemical structure of additives and the macro-behaviour of the obtained concrete.
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1. Introduction

The cement industry, as it provides building materials for the construction industry,
counts among the most significant manufacturers in terms of produce volume. Cement is
not a stand-alone building material, although it is the main ingredient of the standard build-
ing material called concrete. The latter is the most extensively used building material in the
construction industry, has various applications and is mainly used to form structural ele-
ments. The widespread use of concrete results from several reasons, such as the abundance
of substrate resources, low cost and high compressive strength [1]. Concrete is a mixture of
several substances serving different purposes. Typically, concrete contains aggregates such
as gravel, sand and/or stones, as well as an adhesive, which is usually cement and water
(10–15% vol.). Concrete can be divided into different types. Recently, high-performance
concrete is being developed. The high-performance concrete concept started to emerge in
the building industry in the 1990s. This new type of concrete is characterized by a low water
content (low ratio of water to cement) due to the introduction of plasticizers and secondary
binders. Their compressive strength, compared to standard-strength concrete, was raised
by no less than 60 MPa after the standard 28-day period [2]. The first report devoted to
the super-high compressive strength of concrete, exceeding the 150 MPa value after the
standard 28 days, was published by Braunauer et al. [3]. Recently, the rapid development of
very tall buildings and large building structures brought about the increased requirements
for concrete. The most important features of concrete, translating to high-grade quality,
include great compressive strength and exceptional durability. However, the significant
weight and brittleness of cement-based composites greatly limits their application in some
of the required fields. Due to those restrictions, a new type of concrete was developed and
named lightweight concrete (LWC). The typical lightweight concretes are characterized by
a density ranging from about 1400 to 2000 kg/m3. The lower weight results from the inner
voids in their structure. Generally, inner voids can occur when applying cement paste or
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lightweight aggregates, which have a porous structure. The other approach to obtain inner
voids involves the application of coarse aggregate particles [4]. According to previous
experience, the compressive strength of lightweight concrete typically decreases with the
reduction in density [5]. The correlation of high compressive strength and low density
gives the opportunity to potentially use lightweight concrete in the new field of industry,
where the weight of material plays a key role. Enhancing the performance and durability
of lightweight concrete has been currently the main interest of research in this field.

Currently, the new and most commonly used generation of cement-based composites
is ternary and quaternary binder systems, with the addition of different cementitious mate-
rials. The ternary binder systems are based on Portland cement (OPC), composed mainly
of 3CaO·SiO2 (C3S), 2CaO·SiO2 (C2S), 3CaO·Al2O3 (C3A) and 4CaO·Al2O3·Fe2O2 (C4AF),
calcium aluminate cement (CAC), in which the main active constituent is monocalcium
aluminate CaO Al2O3 (CA), and calcium sulphate.. It should be stressed that they can
achieve great early strength, rapid setting and shrinkage compensation better than the
standard OPC-based materials. In the case of such systems, CAC fulfils a composite super-
position effect on the creation of ettringite, whereas gypsum promotes the formation of
ettringite [6]. The introduced additives react simultaneously with the hydration progress of
the Portland cement clinker and influence the resulting hydrates and concrete microstruc-
ture [7–9]. The literature review revealed a number of studies involving the possibilities to
improve concrete mechanical properties by the addition of polymers to the cementitious
matrix. The concrete modified with polymers is called polymer-modified concrete (PMC)
or polymer-modified mortar (PMM). Polymers used in PMC have various forms, such as
latexes, liquid resins, water-soluble polymers and copolymers, fibres and re-dispersible
powders. The type of polymer used depends on the intended application and requirement
for concrete properties [10]. Their influence on the structure leads to the improvement of
many properties, both fresh mortar and concrete, such as flowability [11], setting time [12],
freezing–thawing resistance [13], mechanical properties [14] and anti-penetrability [10,15].
Using polymers to increase the strength and durability of concrete is related to the change
in concrete microstructure and shrinkage reducing effect [16–18]. The polymers used in
this application include film-forming latex polymers, i.e., styrene-butadiene (SBR) copoly-
mer and ethylene-vinyl acetate (EVA) copolymer. The of in the mechanical properties of
PMC, such as flexural strength and brittles, have also been proven [19]. Moreover, the
cementitious-based composites can also be modified by other additives, such as surfactants,
antifoaming systems, viscosity modifiers and stabilizers [10].

Apart from the addition of polymers to the cementitious matrix, scientists are looking
for other solutions aimed at eliminating concrete weaknesses, such as its brittleness and
its low load capacity. In response to the demand for improved concrete, researchers made
an effort to overcome the toughness limitations of plain concrete. In the course of this
study, fibres have been examined as an additive incorporated into the cementitious matrix.
In recent years, most publications in this field suggest the application of polymer fibres
in order to improve the ability to enhance tensile [20–22] and flexural performance of
resulting concrete [23,24]. The methods of concrete reinforcing by the use of fibres are well
known. There are various types of fibres with different chemical structures and Young’s
modulus which can improve the dynamic development of the new cement-based mate-
rials. Moreover, it was proven that fibres reduce shrinkage cracking of concrete, which
affects its durability [25]. Fibre efficiency depends significantly on their chemical nature,
amount, dimensions and shape [25–27]. Currently, a well-known method of reinforcing
cement-based composites involves using polypropylene fibres (PPF). Short- length PPF,
characterized by a low modulus, are able to reduce the shrinkage cracks and increase
the pre-crack strength, provided they are properly distributed in the cementitious ma-
trix [27]. Additionally, the use of PPF can improve many concrete characteristics, such
as fire resistance, abrasive–erosion resistance, tensile strength, bond strength and impact
resistance [28]. Various types of polymeric fibres have sparked the interest of scientists
in the context of concrete reinforcement. To date, polyamide fibres (PAF), polyethylene
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terephthalate (PET) fibres, polyethylene (PE) fibres and polyvinyl alcohol (PVA) fibres, as
well as hybrid fibres, were tested as an alternative to steel fibres, which are still commonly
used in concrete manufacturing technologies. Recently, it was established that synthetic
fibres could be replaced with recycled polymer material. This finding is relevant when
bearing in mind the critical increase in the quantity of polymer waste, which generates
public demand for the reuse of plastic waste. The production of polymer-modified concrete
provides an opportunity for the utilization of polymer waste as filler and/or modifier of
concrete. Currently, concrete researchers tend to study the potential recycling of wastes
originating from industrial post-production scrap, tires, plastic bottles and other materials.
Raffoul et al. [29]. showed that tire waste is proportional to tire production, which exceeded
2.9 billion in 2017, with over 300 million tires reaching their shelf life every year in Europe
alone. The application of tire waste in the concrete industry has been summarized in the
review paper by Siddika et al. [30]. In another paper, Borg et al. [31] have investigated the
properties of concrete reinforced with non-biodegradable PET waste. It was shown that the
addition of shredded recycled polymer fibres reduces the values of compressive strength
between 0.5% and 8.5%. The same study has proven that, due to a 1% addition of 50 mm
long fibres, concrete exhibited reduced shrinkage cracking after 28 days.

This paper is devoted to the overview of recent developments and research concerning
polymer additives used in concrete-based composites. Introducing different polymers in
the cementitious matrix can improve the parameters of mortar and concrete. The selection
of works discussed in our study focuses mainly on the changes caused in concrete-based
materials by the incorporation of various polymer additives (Figure 1).
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The review specifically concerns superplasticizers, latexes, redispersible powders,
admixtures to enhance crack resistance, fibres and recycled polymers that can play the
role of the additives in concrete-based composites. Particular focus has been placed on
the relationship between the chemical structure of the described additives and the macro-
behaviour of concrete.

2. Plasticizers and Superplasticizers

The rapid development in the concrete industry in the 1990s was accomplished by
the introduction of a new type of chemical admixture referred to as plasticizers. The first
generation was based on lignosulphonate compounds, which decreased the water/cement
ratio by around 5–10% [32]. It is well known that the reduction of water content in mortar
leads to a decrease in the total porosity of concrete [16]. Consequently, decreasing the
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amount of water in mortar benefits durability and workability, as well as causing shrinkage
reduction [33]. Generally, fresh cement paste can be regarded as a suspension dispersion
with chemical reactivity. The cement grains, after exposure to water, immediately start
to dissolve and hydrate, which leads to the accumulation of both positive and negative
charges on the cement surface. Therefore, the flocculation of cement grains occurs as a
result of electrostatic interactions between opposite charges on the surfaces of the grains
leading to water entrapment [34]. Water present in the mixture could be chemically bonded
in hydrates, physically adsorbed on cement grains surfaces, entrapped in the flocculated
structures, or remain non-bonded as free water, becoming a dispersion medium. It is well
known that the macroscopic properties of liquid–solid dispersion, such as viscosity and
flowability, depend on microstructure, which is closely related to liquid–solid interface
properties [35]. The addition of plasticizers or superplasticizers to the cementitious matrix
induces substantial changes in solid–liquid interface properties (Figure 2) [36,37].
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A group of compounds providing further reduction in the water/cement ratio of
around 25% is called superplasticizers [38–40]. The introduction of these compounds
turned out to be a convenient and practical way to improve the properties of concrete.
However, the high fluidity they caused could provide adverse effects, such as bleeding and
phase separation. In order to eliminate these drawbacks of superplasticizers, the addition
of viscosity-enhancing compounds was developed [41,42].

There are a variety of types of superplasticizers differing in chemical structure. They
can be classified into groups, such as lignosulphonates, sulfonates, naphthenates, melamine
sulfonates and polycarboxylates [43]. The collective list of these compounds is presented in
Table 1. In contrast to plasticizers, superplasticizers have a different mechanism of action
and, consequently, different effectiveness in reducing the mixing of water. The details of
this mechanism are discussed later in this review. Different types of reactive groups present
in superplasticizers’ molecules bond the Ca2+ cations with different bonding strengths.
According to the published data, the strength of these bonds decreases in the following
order: phosphate > carboxylate > sulfonate > sulphate > alkoxide and water [44]. Therefore,
polycarboxylate containing -COO− groups shows improved effectiveness in dispersing ce-
ment particles, compared to, for example, plasticizers containing -SO3− groups. Moreover,
attempts were made to research the efficiency of polymers admixtures containing the most
effective groups chelating calcium ions, i.e., phosphonates and phosphate groups [36,45,46].
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Table 1. The most popular superplasticizers.

Name Chemical Structure Mechanism of Action Ref.

Lignosulphonate (LS)
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M = metal; R = Me, H; Me = methyl;
EO = oxyethylene.

Steric hindrance [51]

The phosphated comb polymer superplasticizer was synthesized by J. Stecher and
J. Plank [45] and its dispersing performance in cement was tested by slump tests in cement
paste. They found that the polyphosphate superplasticizers showed improved dispersing
performance over PCEs superplasticizers, as well as less retarding on cement. The authors
of the paper emphasized that the obtained values result from the high calcium complexing
capacity of the phosphate group.

Both plasticizers and superplasticizers are such necessary admixtures in concrete
that they are listed in the European standard PN-EN 206, where they are mentioned as
a possible solution to achieve the right consistency by reducing the amount of water, or
reducing the cement content, or to modify consistency without changing the amount of
water and cement [52].

In order to reduce the water volume and achieve higher solid content while main-
taining proper consistency, superplasticizers, called high-range water reducers, are often
used in the formulation of concrete. Scientists and engineers have determined the ba-
sic properties of superplasticizers and confirmed that their use allows manufacturers to
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improving the workability of fresh concrete [53], chloride binding [54] and durability of
cementitious materials [16]. However, the application of such compounds has brought
many new problems resulting from the poor compatibility of superplasticizers with the
multi-component system of concrete, including cement, fine aggregate and additional
materials. The most significant problems include bleeding, segregation, low initial slump,
flash set and set retardation [55]. Therefore, scientists have started to thoroughly investigate
the interactions between superplasticizers and particles in the cementitious matrix.

N. Roussel et al. [56] have indicated that the rheological properties of fresh concrete
are determined by the interactions among the particles in the cementitious matrix. While
the cement hydration process is ongoing, new rigid phases are created, such as anhydrous
phase at an early stage, ettringite, calcium silicate hydrate (CSH) and gypsum. It leads
to an increase in yield stress, thixotropy and hardening of the cementitious material,
significantly reducing the workability [36,55]. The application of superplasticizer serves to
keep distance among the particles through the distribution of polymer molecules adsorbed
onto the particles’ surfaces, decreasing the strength of the interactions. The improved
workability results from releasing a large quantity of water, which reduces the effective
solid volume fraction during the deflocculation process [34,55].

Many studies have shown that the fluidity of fresh cement paste depends on the
amount of superplasticizer adsorbed by a square meter of solid particles [57–59]. The
adsorption of superplasticizer on the solid surface depends on the polymer’s chemical
structure, a solid interface and pore solution containing different dissolved ions [36]. It
should be stressed that the processes of superplasticizer adsorption and cement hydration
occur at a certain point of concrete formation [60]. At the early stage, during the first
period of cement hydration, new phases develop, leading to morphology changes in the
cementitious matrix. Superplasticizers display different adsorption affinity toward the
surface of various hydration products and mineral phases, affecting the hydration process,
including ettringite formation. Therefore, the hydration rate, mortar morphology and
surface properties of the hydration products, as well as their size and amount, greatly
influence the concrete workability [61–63].

In the case of Portland cement hydration, the main composition of solid surfaces is
a result of the hydration of calcium silicate and aluminate phases. Among them, certain
interfaces can be specified separating the ettringite, gypsum, CSH and anhydrous phases.
According to previous studies, ettringite shows the highest adsorption capacity for super-
plasticizers. The CSH phase adsorbs superplasticizers at least 3–10 times less than ettringite.
Consequently, ettringite is considered to be the crucial phase to understand the fresh con-
crete rheology [36]. Marchon [64], in his work, has indicated that the ettringite surface is
entirely covered by the polycarboxylate superplasticizer (PCE). Liu et al. [55] have provided
an elucidatory description of the interaction between polycarboxylate polymer molecules
and the hydration products of OPC. The surface coverage of cement hydration products by
PCE together with the size distribution of the cement particles affects the workability of
the obtained material. Polycarboxylate superplasticizer strongly adsorbs onto positively
charged cement particles. However, the adsorption process could be weakened through
the screening effect of counterions.

The other recently analysed super plasticizer is Welan gum [39]. In the work by
Khayat et al. [65], it was established that Welan gum, at low shear rates, is able to increase
yield stress, enhance rebuilt-up kinetics at rest and increase the viscosity of cement paste.
It is noteworthy that Portland cement is not the only type of cement used in practice;
there are also other types that have different mineral composition. H. Tian et al. [66] have
investigated the effects of polycarboxylate superplasticizers on sulfoaluminate cement
(SAC)systems. SAC contains the calcium sulfoaluminate fraction and various calcium sul-
phates, such as CaSO4, CaSO4·2H2O and CaSO4·0,5H2O, responsible for faster hydration of
SAC as compared to OPC. In the article by H. Tian et al. [66], the effects of polycarboxylate
superplasticizers, obtained via the radical copolymerization of acrylic acid (AA) and a-
methallyl-x-hydroxy poly(ethylene glycol) with a monomer ratio of 4, an ordinary Portland
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cement, have been investigated in the SAC system. The study confirms the differences in
compatibility between the selected superplasticizer and the cement used.

The adsorption of the superplasticizer on the solid surface depends on the chemical
structure of the polymer. The added superplasticizer is adsorbed onto the surface as a
consequence of electrostatic or specific interaction with the interface (Figure 3).
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It is a well-known fact that the type of functional group of superplasticizer is char-
acterised by a different adsorption affinity toward a given surface. This phenomenon
was discussed by J. Stecher and J. Plank [45]. The authors synthesized phosphate comb
superplasticizers based on methacrylate ester and compared their properties with their
carboxylate counterparts. They found that polyphosphate comb polymers outperform the
polycarboxylate ones in terms of their dispersing capacity in cement paste, attach more
readily to the cement surface and impede cement hydration to a less significant degree [45].
Apart from the type of functional group of superplasticizer, other parameters of polymers
that have a significant influence on the adsorption process should be mentioned. These
parameters include the number and the density of the adsorbing groups and the length
of the side-chain, as well as its grafting density [55,68]. Many studies indicate that the
dispersing efficiency of the PCE superplasticizer depends on either the dosage and quantity
of PCE adsorbed on the surface of the cement particles or the charge density and activity of
the long side chain [69–71]. Moreover, it was established that the efficiency of the additive
used in the procedure significantly depends on the adsorption of superplasticizer onto the
cement particles [40].

It has also been noted that superplasticizers impact the setting time of fresh concrete
and the mechanical properties of concrete. Polycarboxylate superplasticizers display the
property of slowing down ettringite formation but increase its total surface area [62]. It was
found that PCE superplasticizers facilitate the formation of nano-sized ettringite, which is
the primary source of incompatibility between cement and additives [61]. Moreover, PCE
adsorbs onto the reactive sites of 3CaO·SiO2 (C3S), inhibiting its dissolution and delaying
the hydration process [64]. Shen et al. indicated that the addition of PCE to SAC could
delay the setting time of cement-based substances [72]. Furthermore, a superplasticizer
can positively affect the mechanical properties of concrete. The reason for an increase in
the compressive strengths of concrete can be explained by a microstructural improvement,
especially due to the reduction in the water/cement ratio. Several studies have investigated
the influence of superplasticizers on the mechanical and rheological properties of mortar
and concrete. Researchers have established that the effect of superplasticizers on the
performance of hardened concrete depends on the type and dosage of the superplasticizer
used as well as the binder [43,68,73]. M. Benaicha et al. [70] have presented the correlation
between the rheology and the strength of self-compacting concrete (SCC). In that case, the
compressive strength decreased with the increase in the amount of superplasticizer.

It is well known that superplasticizers act as dispersants in colloidal particle suspen-
sions that prevent undesired agglomeration and reduce overall viscosity. In order to allow
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the cement paste flow, the yield stress associated with the network of rigid particles has
to be exceeded. The yield stress of cement paste is connected with colloidal and contact
interactions among the particles and it depends on the nature of solid particles and their
volume fraction [55]. Superplasticizers may have a different mechanism of interaction with
cement particles, directly related to their chemical structure. In general, one can distinguish
two mechanisms of their interaction, corresponding to electrochemical and steric hindrance
forces [74,75]. In Figure 4, two different mechanisms of action of superplasticizers in the
cementitious matrix are presented.
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The mechanism based on electrochemical forces was first developed to explain the
properties of plasticizers such as lignosulphonate. Lignosulphonate compounds have a
bipolar structure and display properties typical of polyelectrolytes. The mechanism of
their interaction is based on the physical repulsion of negatively charged cement particles,
leading to the disintegration of cement lumps into smaller particles, which decreases the
surface tension on the surface of the grains wetted by mixing water. Consequently, fine
cement grains move more quickly [47]. Electrostatic repulsion results from an increase in the
zeta potential, which depends on the presence of the negative charges in the cementitious
matrix [76,77]. Both naphthalene and melamine have a similar working mechanism to the
one observed in lignosulphonate plasticizers, providing an electrical dispersing effect [74].

In contrast to linear polycondensates, which disperse cement particles via electrostatic
repulsion, PCE molecules, having comb-shaped structures, achieve the dispersing effect
mainly via steric hindrance [46,65]. In general, polycarboxylates-based superplasticizers,
including polyacrylates, acrylic esters and sulfonated polystyrene, consist of negatively
charged backbone carboxylic groups and lateral grafted chains. The latter ones are com-
posed of ethylene oxide units (EOUs) [78]. The steric hindrance effect results from the
oriented adsorption of the superplasticizer molecules on positively charged cement sur-
faces and leads to the weakening of the attraction between the cement particles. The
negatively charged carboxylate anions at the polymer backbone adsorb on the positively
charged surfaces of the cement particles. At the same time, grafted side chains hinder the
aggregation of cement particles, introducing a steric repulsion and a fluidizing effect. Once
the adsorption of polycarboxylate superplasticizer occurs, the particles’ zeta potential, from
positive, becomes negative, or zero [75]. As a result of attaching superplasticizers to the
cement particles, they cannot approach each other and the attraction forces among the
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cement particles are weakened. Numerous studies have shown that the fluidity of mortar
depends on the amount of superplasticizer adsorbed on the particles’ surfaces [57,58].

A different approach to superplasticizers and their interactions with cement has been
presented in the works by Flatt and Hust [79] and Flatt et al. [80]. According to their theory,
the introduced superplasticizer is divided into three parts. They have established that the
first part of the superplasticizer is utilized during chemical reactions. The second part is
adsorbed onto the cement surface, while the last part constitutes the superplasticizer, which
forms a saturated system after the introduction of an adequate volume of the additive.
Moreover, according to the work of Qian et al. [34], it should be stressed that the increase
in the PCE superplasticizer concentration leads to the increase in both the adsorbed part
and the remaining part of the additive.

3. Redispersible Powders and Polymer Dispersions

The rapid development of the construction industry induced the pursuit to improve
the basic properties of concrete and to overcome its limitations, such as brittleness, low
durability and insufficient strain capacity, through modifications of the microstructure of
hydrated cement. In recent years, the innovations in building construction have progressed
considerably and the research on high-performance cement-based materials has been
furthered to cope with the requirements of the industry. One of the possibilities to improve
concrete performance, including strength and durability, is to introduce polymers into the
cement matrix. Cement–polymer composites are created by substituting all or a part of the
cement hydrate binder with polymers. Polymer-modified concrete was first introduced in
the 1990s and is commonly being used as one of the typical construction materials [10].

Nowadays, various types and forms of polymers are used as chemical admixtures
(Figure 5). Among those widely used additives are polymers with a different chemical struc-
ture, such as lignosulfonates, polyvinyl acetate, ethylene-vinyl acetate, styrene-butadiene
copolymers, styrene-acrylic and polyacrylic ester [81,82], which are presented in Table 2.
Many studies have been reported about these materials [12,83–86]. Currently, polymers
are applied in cement in various forms, such as latexes, liquid resins, redispersible pow-
ders and water-soluble homo- or copolymers [81]. Considering the fact that the type of
the polymer used in the manufacturing process influences the properties of the resulting
composite, the selection of a polymer type and form depends on the intended use of
concrete and is associated with its desired properties, such as strength, chemical resistance
and durability [87].

Initially, polymer-modified mortar and concrete were produced by the addition of
a polymer dispersion in latex or emulsion form to the plain cement-based composition
during the mixing process. The main advantages of polymer latexes are their ability to
create flexible polymer films after dehydration, as well as providing proper adhesion
and cohesion in cementitious materials [12]. As mentioned before, water-based polymer
systems are used in order to improve the properties of ordinary concrete and contribute
to increasing mechanical strength [10], improving workability [10,86] and durability [13],
reducing water absorption [88] and causing a decrease in total porosity [89]. The possi-
bility of re-emulsification in humid alkaline conditions is one of the limitations of these
polymers [10]. Due to their superior properties, cement–polymer composites are used
in various applications, such as repair mortars, waterproofing membranes, self-levelling
compounds and tile adhesives.
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factors and changes caused in concrete-based composites.

Redispersible polymer powders (RDP) are a modern type of substances produced by
spray-drying polymer dispersions and often used for the same purpose as polymer latexes.
They are spray-dried to receive polymer powders [81]. It is important to emphasize that
spray-drying auxiliaries strongly influence the properties of the RDP-modified mortar. It
was observed that polyvinyl alcohol (PVA), which is an example of a colloidal stabilizer
in the production of carboxylated styrene-butadiene latex, tends to screen the negative
charges of polymeric carboxylate groups, which are to react with calcium ions. As a result,
the process of forming a polymer film does not occur properly and the conversion from
stage II to stage III is accelerated, as shown in Figure 3 and described in Section 3.1 [90,91].

Table 2. The chemical structure of polymers.

Name Chemical Structure References

Styrene-butadiene rubber (SBR)
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Table 2. Cont.

Name Chemical Structure References

Poly (styrene-acrylic ester) (SAE)
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The properties of cement–polymer concrete and mortars obtained using RDP powders
are comparable to those formed in the process of polymer dispersion [93]. The major
difference between these two types of concrete is the presence of the spray-dried auxiliaries
in the first of the mentioned concrete types, which affects the composite properties. The
spray-drying compounds adsorbed on the polymer surface need to dissolve or disperse
from the polymer surface to allow coalescence and film formation. This requirement
makes the polymer latexes less viable. Consequently, in many cases, they are replaced by
an admixture of redispersible polymer powders because of their more straightforward
application in concrete production.

3.1. Mechanism of the Polymer Film Formation in a Cementitious Matrix

The incorporation of polymer into the cementitious matrix changes the microstructure
of concrete [94]. The impact of polymer addition on the cement hydration process was
thoroughly investigated in recent years. The nature of the interaction between polymer
and cement particles is a subject of ongoing debate among scientists. Many studies ex-
plain the physical interactions between the binders and the polymeric film formed inside
the cementitious matrix and their contribution to hardened mortar and concrete prop-
erties. Researchers have also reported both chemical and physical interactions between
cement and polymers, theorizing the formation of new complex structures and changes
in the morphology of cementitious materials, such as the composition and quality of
hydrated phases [14].

Polymer film formation is a multistep phenomenon in which four stages have been
distinguished (Figure 6).

In the first stage, the polymer particles are dispersed in water (solvent). The evap-
oration of water leads to the agglomeration of polymer particles and the formation of
the second stage, consisting of a close-packed array with entrapped water in the inter-
stices. The next stage is a consequence of water expulsion from interstices by hydration
and evaporation processes and is characterized by a dense array of hexagonal, deformed
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polymer particles. Some researchers point to an additional, intermediary stage (Stage III*)
occurring between stage III and stage IV, formed of a randomly packed array of deformed
particles surrounded by water-filled interspaces. Finally, stage IV is formed as a result
of the coalescence of polymer particles into a homogeneous polymer film. The transition
from stage III to IV is possible only if the ambient temperature is above the glass transition
temperature (Tg) of the polymer [95,96].
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3.2. Mechanical Properties of Cement–Polymer-Based Materials

Redispersible polymer powders mixed with water produce homogenous dispersion
with characteristics similar to the original polymer dispersed in water. The polymer film
formation is a result of the coalescence of individual latex particles after their dehydration.
These chemicals are designed to be dispersed only once. For this reason, if hardened
concrete becomes wet again, they stay unchanged. In fact, the formed films display
increased cohesion during the fresh state and adhesion in the hardened state [97].

Polymers can improve the basic parameters of concrete such as mechanical properties,
the flowability of fresh mortar, anti-permeability and freezing-thawing resistance, as well
as anti-corrosion. Research results show that the addition of polymers into the cementitious
matrix significantly alters its microstructure and the strength of physical and chemical
interactions in the cementitious phase [15].

It is quite evident that different polymers have a different impact on mortar and
concrete (Table 3). Many works have been published regarding the attributes of polymer-
modified cement materials. According to some reports, styrene-butadiene rubber (SBR)
latex improves the flexural and tensile strength, carbonation resistance and waterproofing
properties, as well as anti-shrinkage, of the mortar. Ethylene-vinyl acetate copolymer latex,
which is the most extensively used polymer in concrete technology, results in an output
similar to SBR, additionally increasing the flexural and tensile bond strength and concrete
durability. Styrene-acrylic ester (SAE) copolymer latex increases the durability but reduces
the elastic modulus of cementitious materials [6,12,15,89,92,98]. Similar results were ob-
tained during the study of the effects of applying redispersible powders in cementitious
materials. Many researchers have confirmed that the application of RDPs improves the
mechanical strength of mortar and concrete, e.g., the compressive strength and flexural
strength, which shows a gradual increase depending on the content of the RDPs used in
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the process. Furthermore, it is generally agreed that the polymer powders’ admixtures
affect several properties of concrete, such as freeze-thaw resistance, water permeability,
elasticity modulus and corrosion resistance [18,98,99].

Table 3. Mechanical properties analysed in the case of cement–polymer materials.

Ref. Type of Polymer Curing Time Dosage in Concrete Compressive
Strength

Flexural
Strength

Tensile
Strength Toughness Shrinkage Bond

Strength

[15] VA/VeoVa powder 3 and 28 days
Powder-to-cement

ratio by mass
of 0–20%

+ + - + + -

[6] SA 3 and 28 days 0, 3, 5, 10 and
15 wt% + + - - - +

[12] SBR. SAE. PAE 1, 7 and 28 days 0, 10 and 20% + + - - + -

[14] EVA and
acrylate copolymer

(1) 28 days in
humid chamber,

14 days in
dry chamber.

(2) 1 day in humid
chamber, 41 days in

dry chamber

0 and 10% + - + - - +

[18]
Redispersible

acrylic
polymer powder

From 2 h to 90 days 0, 2, 6 and 10% + - - - - -

[89] SBR 7, 28 and 56 days 0, 5, 10, 15, 20
and 25% + + - - - -

[92] EVA, SBR and SAE 28 days
Polymer–cement

ratios (P/C) 0, 5, 10,
15 and 20%

- - - - - -

[98] Siloxane-based RPP 1 h; 1, 7 and 28 days
0.117, 0.233, 0.350,

0.467, 0.583
and 0.700%

+ + + - - +

[99] Redispersible
latex powder 3 days 0–4% + + - - - -

+: studied parameters, -: omitted parameters.

Water permeability and curing conditions are among the most important factors that
can lead to the deterioration of mechanical properties and, subsequently, affect the service
life of concrete. Young-Kug Jo [92] has examined the microstructure of polymer-modified
concrete after curing in different conditions and the effect of curing conditions on the
adhesion in the tension of concrete. In the study, three polymers—ethylene-vinyl acetate
(EVA), styrene-butadiene rubber and styrene-vinyl acrylic ester—were tested in standard,
dry, water and high temperature (70 ◦C) curing conditions. The adhesion in the tensile
adhesion of concrete, modified by means of polymers, depends on both the type of polymer
and the curing conditions. The maximum adhesion in the tension of concrete was achieved
using EVA in standard curing conditions. Dry curing conditions provided the proper
drying time for the polymer film-forming. However, in humid conditions, the polymer
film was not uniformly dispersed in the cementitious matrix and did not completely form
a three-dimensional lattice structure. As a result, the adhesion in tension after water curing
was lower [92].

S. Gwon et al. [18], in their study, examined the influence of an acrylic redispersible
polymer powder addition on the microstructure development and mechanical properties
of ultra-rapid hardening concrete. The main aspects of the investigation were compressive
strengths, rheology, hydration phase evolution, porosity and morphological transition,
as well as setting time. The obtained results have shown that the addition of a polymer
delayed the setting time but significantly reinforced the microstructure of the ultra-rapid
hardening cement systems. The researchers specified the optimum polymer-to-cement
ratio as about 10% of polymer-based content in the test results [18].

The increase in compressive tension and direct-shear bond strengths resulting from
the application of EVA or acrylate polymers to cement blends was confirmed by Medeiros
et al. [14]. Silva and Monteiro [100] examined the influence of EVA powder and cellulose
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ethers on the hydration of Portland cement phases, especially C3S and C3A. High-resolution
microscope imagery revealed the effects of polymer addition on nucleation and growth of
hydrates. The EVA copolymer particles tend to agglomerate around C3S grains during the
hydration process and seem to act as nucleation sites for the CSH phase. However, the in-
troduction of EVA into the cementitious matrix also has a significant drawback, preventing
ettringite formation in the first hours of cement hydration [100]. Other studies involving
vinyl acetate and versatate copolymer (VA/VeoVa) have shown that this compound pos-
sesses improved resistance to alkaline hydrolysis compared to other copolymers containing
vinyl acetate groups [101]. Additionally, VA/VeoVa powder has good water-reduction
effects and shows water-retention in the cement mortar. Consequently, the toughness of
concrete is significantly improved and the shrinkage rate is reduced. Furthermore, the
presence of the VA/VeoVa powder facilitates air entrapment, leading to increased total
air content in fresh mortar. In the work of Wang et al., it has been shown that VA/VeoVa
polymer powder depresses the compressive strength of concrete [15].

3.3. Aging of RDP-Modified Cementitious Blends

The presence of water leads to a partial prehydration of the cement surface and the
polymer film formation. PVA present on the RDP particles’ surface, which is a colloidal
stabilizer in the spray-drying process, might dissolve in humid conditions, allowing poly-
mer powder to coalesce into a film, partially protecting the cement particles from aging.
As a result, the mechanical properties, such as compressive and flexural concrete strengths,
with RDP powder achieve higher values than concrete without RDPs after conditioning in
humid air.

There is little information in the literature pertaining to the long-term performance
and durability of cement–polymer concrete, especially with redispersible powder polymers.
J. Schulze and O. Killermann [102] examined and described a long-term performance of
three different RDPs admixtures, i.e., vinyl acetate-ethylene, styrene-acrylic and ethylene-
vinyl chloride-vinyl laurate. They have established that the morphology of the polymers
in the cementitious matrix does not change over the 10-year long storage, neither in dry
nor humid conditions. The polymer particles were distributed in the matrix and formed
secondary reinforcement in the pores and flaws of cementitious blends. Cement is an
inorganic binder responsible for compressive strength, while the redispersible powder,
which is an organic binder, influences the internal tensile strength and adhesion bond
strength at interfaces. Both cement and redispersible powder act in synergy, improving the
properties of mortar and concrete [19,102].

4. Fibres

The review of the literature revealed a number of studies involving the application of
fibres in cementitious composites. These materials are called fibre-reinforced concrete. An
addition of fibres to a cement-based blend improves the mechanical properties, toughness,
ductility and post-cracking resistance of mortar and concrete. During the last decades, a
variety of different types of fibres have been examined in cement-based materials. Steel
fibres, glass fibre, natural and polymer fibres are the fibres predominantly used in order
to reinforce concrete. The traditional use of steel fibres has many advantages, e.g., it
greatly enhances the tensile strength and flexural strength of cementitious materials. This
phenomenon results from the steel fibres’ capacity to absorb energy and the capability
to control cracks. Moreover, due to their high electric and heat conductivity, steel fibre-
reinforced concrete can be applied in special conditions. However, the corrosion of steel is
a significant disadvantage of these materials and can potentially compromise the durability
of the resulting structure. Glass fibres and natural fibres, such as wood, coconut, palm
and vegetable fibres have a good strengthening effect, but their application has significant
drawbacks. Glass fibres have poor alkali resistance, while natural fibres have poor durabil-
ity. The usage of randomly distributed polymer-based fibres in the cementitious matrix
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has received broad attention because of significant effectiveness in improving the basic
characteristics of concrete (Figure 7).
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Immunity to corrosion and alkaline reactions, salts, chlorine and microorganisms
count among the most beneficial results achieved by applying polymer-type fibres.

R.F. Zollo [103] has published a schematic mechanism of crack arrest for fibre-reinforced
concrete (Figure 8). The schematic diagram shows the potential of the fibres to absorb
energy and control crack propagation. The diagram depicts the fibre rapture (1) and its
pull-out (2), bridging by tension through the fibre (3) and debonding of fibre from the
matrix, which can effectively dissipate energy to prevent crack growth. The presence of
fibre in the matrix (5) helps restrain the cracking area and in consequence, smaller cracks
are distributed in the adjacent space of the cementitious matrix, as is shown in Figure 8.
The reinforcing effect observed in concrete is not the result of the individual fibres, but a
cumulative effect of all fibres. In conventional concrete, micro-cracks are presented even
before the concrete is loaded. Their occurrence is caused by the drying shrinkage, leading
to volume contraction. Some researchers have reported a reduction in drying and plastic
shrinkage cracks because of the use of fibres [25,104]. Generally, the micro plastic fibres,
whose length is 5–30 mm and whose diameter ranges from 5 to 100 µm, can effectively
reduce plastic shrinkage cracking. The blocking of crack propagation in concrete by micro
and macro-fibres is presented in Figure 9. The macro-plastic fibres ranging from 30 to
60 mm in length are used to control shrinkage, mainly drying shrinkage. The formation
of plastic shrinkage cracks can be linked to moisture loss after casting. If the moisture
evaporation rate is greater than 0.5 kg/m2 per hour, it can bring about internal strain
induced by the rising negative capillary pressure inside the matrix. Plastic shrinkage
occurs in the initial stage when the strength of concrete has not developed yet [105]. Kim
et al. [25] tested the influence of fibre geometry and volume fraction on the rate of moisture
loss and plastic shrinkage cracking. They have found that the volume of macro-plastic
fibres and their geometry do not affect the total moisture loss, while plastic shrinkage was
reduced when the fibre fraction equalled 0.25%.
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The literature indicates that the most commonly used synthetic fibres in concrete are
polypropylene (PP) fibres, polyamide (PA) fibres, polyethylene (PE) fibres and polyvinyl
alcohol (PVA) fibres. In Table 4, the basic properties of each of the mentioned synthetic
polymer fibres are summarized and compared with steel and cellulose fibres. All of them
are characterized by a low density, which causes a high volume of fibre content in the
cementitious matrix compared to the relative mass of the fibres.

Table 4. Basic characteristics of fibres.

Fibre Sp. Gravity
(kg/m3)

Tensile
Strength (MPa)

Modulus of
Elasticity (GPa)

Elongation at
Break (%) References

Polypropylene (PP) 0.90–0.91 325–770 3.5–4.2 15–20 [21,23,26,28,106]
Polyethylene (PE) 0.97 2610 79 4–100 [4,107]
Polyamide (PA) 1.14 900–970 3.5–6.8 16–21 [108]

Polyvinyl alcohol (PVA) 1.26–1.30 1529–1600 45 6–7 [107,109]
Steel (ST) 7.80 400–2500 200 3.5–18 [21,26,106]
Cellulose 1.20 300–500 10 - [107]

In the last decades, researchers investigated the influence of synthetic fibres on the
rheology and mechanical properties of cement-based materials. Scientists have studied the
effect of various types of fibres, differing in chemical structure, volume in the cementitious
matrix, size (macro- and micro-) and geometry [25,108]. Moreover, the impact of single and
hybrid (type of length and size) polymer fibres on concrete has been examined [27,110].
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4.1. Rheology Behaviour and Mechanical Properties of Cementitious Materials Containing Fibres

The addition of fibres to the cementitious matrix influences both the fresh and the
hardened state of concrete. It is well known that polymer fibres reduce the workability of
fresh mortar [106]. This phenomenon results from the formation of a network structure
in a concrete matrix which inhibits the flow of the blend. Furthermore, a high volume
and surface area of fibres can lead to adsorption of water, hence increasing the viscosity
of mortar [105,111]. However, Ramezanianpour et al. [28] considered that the reduction
in workability of mortar with a higher quantity of fibre inside the cementitious matrix
is due to the presence of air entrapped in the inner pores. M. Tabatabaeian et al. [106]
have investigated the rheological properties of fresh concrete reinforced by fibres. Their
study shows that the addition of steel fibres causes a slight decrease in slump flow, while
polypropylene fibres significantly reduce the slump flow. In the study by Yap et al. [112],
the workability of the mortar has been shown to depend on the micro-fibre geometry. The
fibrillated polypropylene fibres have a lower effective surface area, which results in better
workability in fresh concrete compared to multifilament fibres [113]. It was reported that
hydrophobic polyolefin fibres, such as polypropylene and polyethylene, have a similar
influence on concrete properties, including the rheology of the fresh blend. Researchers
have observed that PE fibres decrease the slump flow, to an extent similar to the one
observed in the case of the incorporation of PP fibres [112,114,115]. The presence of PVA
fibres leads to a reduction in workability proportionate to an increase in fibre content. The
effect PVA fibres have on the reduction in flow is more significant than that of PE and PP
fibres, which is explained by the hydrophilic nature of PVA [114].

As mentioned earlier, the fibres’ effect on the mechanical strength of concrete depends
on their size and chemical structure and on the quantity of fibres in the cementitious
matrix (Table 5). The research study by Yin et al. [105] indicates that macro-plastic fibres
in cementitious materials have no significant impact on compressive strength. That is
consistent with what was reported by Behfarnia and Beharvian [116]. However, the research
study conducted by Felekoğlu et al. [117] showed that the addition of PP macro-fibres
increased the compressive strength of foamed concrete.

Furthermore, the improvement of compressive strength of self-compacting concrete
due to the incorporation of PP macro-fibres has been confirmed by Gencel et al. [118].
Ramezanianpour et al. [28] investigated the effect of PP fibres on the mechanical char-
acteristics of concrete intended to be used in sleepers. They reported that the addition
of an increased fibre amount of PP fibres to concrete sleepers gradually decreased the
compressive strength. Moreover, the influence of PP fibres on the mechanical proper-
ties and durability of high-strength SCC in comparison to steel fibres was examined by
M.Tabatabaeian et al. [106]. The tests showed that incorporation of PP fibres led to a deple-
tion of compressive strength in comparison to the control mix. Additionally, a replacement
of steel fibres with PP fibres in hybrid mixes caused a reduction in the compressive strength
in the case of all the hybrid samples.

In recent years, researchers have focused on hybrid fibres because of their superior
effects on composite performance compared to mono fibre blends. Chen and Liu [110]
tested single and hybrid types of fibres in high-strength lightweight concrete. The single PP
fibres caused a decrease in compressive strength with respect to the reference samples, while
hybrid fibres, including PP fibres, showed the smallest impact on concrete properties. Hsie
et al. [119] examined the mechanical properties of concrete reinforced with polypropylene
hybrid fibres. The results revealed that the mixed PP macro- and micro-fibres added to
the cementitious matrix increased the compressive and flexural strength as compared to
mono fibres. Yun has studied the mechanical properties of concrete reinforced with the
PVA/ultra-high molecular weight PE hybrid fibres. The test results showed that a higher
amount of PVA fibres in the hybrid samples improved the compressive performance in
comparison with the samples containing an increased amount of PE fibres [119]. Guler [108]
has investigated the use of PA fibres in hybrid form in cement-based composites. According
to the presented results, the addition of both PA macro- and micro-fibres in either a single
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or hybrid state did not cause a noticeable rise in the compressive strength of reinforced
concrete, whereas the flexural strength increased significantly.

Table 5. Mechanical properties of cementitious materials containing fibres.

Ref. Type of
Polymer Fibres Dosage in Concrete Length

(mm) Shape Specific Gravity Tensile
Strength (MPa)

Elasticity
Modulus (GPa)

[116]
High-

performance
PP fibres

0.4, 0.6 and 0.8%
by volume 48 Continuously embossed 0.90–0.92 550 10

[117] PP and PVA 1% 12 (PP),
8 (PVA)

Circular and smooth (PP),
circular and rough (PVA)

0.95 (PP),
1.3 (PVA)

400–550 (PP),
1600 (PVA)

5.6 (PP),
42 (PVA)

[118] PP 0, 3, 6, 9 and 12 kg/m3 for
cement content 45 Wavy shape 0.91 320 5.88

[119] PP

Mixes of staple fibres at
0.6 kg/m3 with coarse

synthetic monofilament
fibres at 3, 6 and 9 kg/m3

to concrete

60,
10–25

Coarse monofilament and
staple fibres - 320550 5.88

4.2

[28] PP 0.7, 0.9, 1.5, 2 and 4 kg/m3 12 Monofilament 0.91 400 3.5–3.9

[106] PP 0.5% and 1.0% 12 Straight 0.91 400 -

[112] PP Nylon Volume fractions of 0.25,
0.50 and 0.75%

12
19

Fibrillated and
multi-filament

0.90
1.13

300
400 -

[113] PVA 0.1% 6 - 1.26 1600 45

[114] PE 1.0, 1.5, 2.0 and 2.5% 12 - 0.97 19502700 3982

[110] PP 1.0% 15 Straight, round 0.9 800 8

[108] PA 0.25, 0.5 and 0.75% 12
54 - 1.14 900

970
3.5–6.8

5.15

[109] PVA 0, 0.2, 0.5, 0.8 and 1.0% 6 Smooth and straight 1.30 1529.5 -

Cao et al. [109] have created a new multiscale hybrid fibre system consisting of CaCO3
whiskers, PVA and steel fibres. CaCO3 whiskers are a novel type of micro-fibres that are
able to significantly improve the mechanical properties of cementitious materials. The
previous tests proved that cement-based composites reinforced with multiscale hybrid
fibres could improve the flexural strength, energy absorption capacity and reduce the
plastic shrinkage of concrete.

4.2. Microstructure of Synthetic Fibre-Reinforced Cement-Based Materials

The microstructural analysis is an appropriate method that allows us to understand
the physical and mechanical properties of fibre-reinforced cementitious materials. There-
fore, scientists pay considerable attention to the microstructural characterization of concrete.
The literature review has revealed many articles focused on the study of microstructures
present in fibre-reinforced concrete by means of several techniques, such as scanning elec-
tron microscopy (SEM) [28,120–122], energy dispersive spectroscopy (EDS) [123], X-ray
diffraction analysis (XRD) [26,120,121,124,125], infrared absorption spectroscopy (IR) [123],
Fourier transform infrared spectroscopy (FTIR) [120,123] and thermogravimetry analy-
ses (TGA) [124].

Generally, the hydrophobic nature of polymer plastic fibres causes their poor bond-
ing in hydrophilic cementitious materials. The SEM analysis shows the presence of en-
trapped air voids around polyolefine fibres (Figure 10). In order to mitigate this problem,
some researchers modified the surface of fibres using chemical solutions [126–128] and
plasma treatment [129]. Lopez-Buendia et al. [128] have discussed surface modification of
polypropylene fibres by means of alkaline treatment (Figure 11) and cement crystal growth
on the surface of the modified fibres, which resulted in better fibre–cement adhesion. The
literature review shows that surface treatment causes improvement of mechanical param-
eters of hardened concrete, such as flexural strength [127,129], crack strength [126] and
toughness [126,129].
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Another experimentally tested method of surface modification of fibres is thin layer
coating. Hernandez-Cruz et al. [129] have investigated the chemical interactions between
PP fibres covered by ethylene acrylic acid copolymer (EAA) and cementitious matrix. They
have found that, in the cementitious paste comprising the EAA-covered fibres, bonding
is improved because of the hydrophilic carboxyl groups presented in EAA that interact
with the Ca2+ and Na+ cations from the cement paste. The improved bonding enhances
the post-cracking behaviour of concrete reinforced with the modified fibre compared to
concrete reinforced with non-modified PP fibre. C. Signorini et al. [130] have investigated
the effect of silica-coated PP fibres on the mechanical properties of fibre-reinforced concrete.
Polypropylene fibres were covered by silica nanoparticles using the sol–gel technique. They
have found that nano-silica coating is an effective method to improve the bond strength
in the fibre–cementitious matrix. The SEM analysis (Figure 12) shows that the surface of
the fibre in a control sample appears scratched. Only in some places, mortar adheres to its
surface, whereas, on the surface of modified fibres, attached mortar grains are visible.
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4.3. Properties of Recycled Polymer Fibre-Reinforced Concrete

Recently, the possibilities of using recycled plastic waste fibres in concrete have
attracted the attention of many researchers. Literature reviews indicate numerous experi-
mental studies devoted to reinforcing concrete with recycled plastic fibres [131–135]. The
attention is mainly focused on plastics found in wastes in a considerably large quantity.
They include polyethylene terephthalate (PET) fibres, rubber aggregates and polystyrene
wastes. The plastics are tested as a partial replacement for sand in concrete. An exchange
ratio of 10% by volume could save 820 million tons of sand per year [134].

B.S. Al-Tulaian et al. [133] have investigated the effects of recycled PET waste fibres
on the mechanical properties of Portland cement mortar, such as flexural strength, flexural
toughness and shrinkage cracking. They found that the addition of fibres reinforced
concrete, which was observed to display increased flexural toughness, as well as flexural
strength. Moreover, increasing the fibre volume fraction leads to a significant improvement
in minimizing plastic shrinkage cracking. All tested fibres differed in their length and
volume fractions. Nevertheless, they caused a reduction in the total crack areas and
crack widths.

Ochi et al. [134] examined the bond behaviour of concrete reinforced with recycled PET
fibres derived from waste bottles. The samples with fibre content above 1% had a higher
bending strength than the reference ones. A similar effect of enhanced concrete properties
has been observed by Kim et al. [25], who studied the performance of concrete with different
types of shredded, recycled PET. Embossed fibres showed superior mechanical bond
strength, followed by crimped and straight fibres. Moreover, it was noticed that the samples
with the highest bond strength also had the best resistance to plastic shrinkage cracking.

The influence of recycled PET fibres on the reinforced concrete’s early-age performance
and mechanical characteristics has also been investigated. Borg et al. [31] used fibres
shredded from waste plastic bottles of different sizes ranging between 30 and 50 mm and
different fibre geometries (straight and deformed). They found that the addition of recycled
PET fibres to concrete reduced the compressive strength regardless of the fibre profile.
In contrast, the samples containing shorter fibres showed slightly better properties than
the samples containing longer fibres. Furthermore, the addition of recycled PET fibres to
concrete yielded restraints in crack development inducted by an environmental chamber.
The most significant results were achieved in the case of the mixture containing the highest
amount of 50 mm long deformed fibres, which is related to their better anchorage in the
concrete matrix compared to straight fibres.

M. Horgnies et al. [136] studied the effect of PA wastes on the microstructure of
lightweight mortars. In their study, sand was partially replaced by polyamide powder
waste. The obtained results indicate that compressive strength was reduced proportionately
to an increase in the content of polymer wastes. In contrast, the total porosity of lightweight
concrete increased with the quantity of PA powder.
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5. Conclusions

In summary, concrete strengthening by introducing polymer-based additives into the
cement matrix has been studied. For this reason, the effects of the addition of superplasti-
cizers, latexes and redispersible powders, admixtures, fibres and recycled polymers into
concrete have been described. The examination of the literature allowed us to establish the
following conclusions.

The addition of a plasticizer or superplasticizer allows the appropriate consistency to
be achieved mainly by reducing the amount of water or the cement content.

The most important factors influencing the parameters of obtained concrete-based
composites include the type, the number and the density of the adsorbing groups, length
of the side-chain and its grafting density. Moreover, it should be stressed that the dosage
and quantity of the superplasticizer used in the procedure has a significant impact on the
adsorption efficiency of the superplasticizer onto cement particles. Redispersible powders
and polymer dispersions affect the cement hydration process. In various forms, such as
redispersible powders, latexes, liquid resins and water-soluble homo- or copolymers, they
are able to form flexible polymer films after dehydration. Furthermore, they provide proper
adhesion and cohesion in cementitious materials.

Polymeric fibres are known as materials characterized by elasticity, chemical resistance,
high strength and excellent wear resistance. For this reason, cement-based materials
containing fibres are characterized by improved mechanical properties, toughness, ductility
and post-cracking resistance. In addition, it should be emphasized that the low melting
temperature of polymeric fibres leads to the formation of concrete-based composites with
reduced spalling at higher temperatures.

Based on the literature review, it was proved that polymer-based additives constitute
valuable components of concrete that allow its limitations to be overcome. Prospectively,
it is likely that further studies will focus on self-repairing concrete-based composites.
Moreover, the most recent technological advances have been made in order to receive
concrete without reinforcement, in the self-compacting technology, without scratches and
cracks, with high aesthetic values and the highest quality. Most importantly, in the future,
concrete will be lighter, safer, more flexible and durable, as well as environmentally friendly.
The concrete of the future will also have the potential to use solar and wind energy, as well
as capture and consume CO2 and NOx.
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