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Abstract: Improving our understanding of the physical coupling between type-II superconductors
(SC) and soft ferromagnetic materials (SFM) is the root for progressing to the application of SC-SFM
metastructures in scenarios such as magnetic cloaking, magnetic shielding, and power transmission
systems. However, in the latter, some intriguing and yet unexplained phenomena occurred, such as a
noticeable rise in the SC energy losses, and a local but not isotropic deformation of its magnetic flux
density. These phenomena, which are in apparent contradiction with the most fundamental theory
of electromagnetism for superconductivity, that is, the critical state theory (CST), have remained
unexplained for about 20 years, given the acceptance of the controversial and yet paradigmatic exis-
tence of the so-called overcritical current densities. Therefore, aiming to resolve these long-standing
problems, we extended the CST by incorporating a semi-analytical model for cylindrical monocore
SC-SFM heterostructures, setting the standards for its validation with a variational approach of
multipole functionals for the magnetic coupling between Sc and SFM materials. It is accompanied by
a comprehensive numerical study for SFM sheaths of arbitrary dimensions and magnetic relative
permeabilities µr, ranging from µr = 5 (NiZn ferrites) to µr = 350,000 (pure Iron), showing how the
AC-losses of the SC-SFM metastructure radically changes as a function of the SC and the SFM radius
for µr ≥ 100. Our numerical technique and simulations also revealed a good qualitative agreement
with the magneto optical imaging observations that were questioning the CST validness, proving
therefore that the reported phenomena for self-field SC-SFM heterostructures can be understood
without including the ansatz of overcritical currents.

Keywords: critical state; superconducting ferromagnetic metastructures; AC losses

1. Introduction

Due to the novel phenomena and applications that can be envisaged by the use of
metamaterials, in recent years the developing of superconducting-ferromagnetic metas-
tructures has been the object of considerable attention [1–11]. Particular focus has been
played onto the magnetization and demagnetization properties of type-II superconductors
(SC) surrounded or in the near proximity of a soft ferromagnetic material (SFM) [11,12],
the study of magnetic cloaking heterostructures [4–8], and their magnetic shielding proper-
ties [13–22]. Nevertheless, the influence of the physical coupling between the macroscopic
electromagnetic properties of the SC and the SFM on the hysteresis losses of these het-
erostructures is yet to be understood.

Several semi-analytic approaches for the magnetic shielding properties of SC ma-
terials surrounded by soft high-permeability magnets have already been proposed for
some configurations, including infinitely thin superconducting strips [23–31], cylindrical
tubes [5,32,33], and finite rounded filaments [12,34,35]. However, a direct involvement
of the inductive coupling elements between the profiles of current density in SC wires
and finite SFM sheaths is still to be achieved, such that the understanding of the actual
physical mechanism that couples their macroscopic magnetic features is not hindered.
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In fact, a theoretical explanation for the increment of the AC losses in monocore SC-SFM
heterostructures at self-field conditions, that is, under applied transport current but no
external magnetic field, has not been reached for even the simplest configuration of an
SC-SFM wire of a cylindrical cross section, a problem that has remained open for about
two decades [36–38].

Similarly, by Magneto Optical Imaging (MOI) techniques and the indirect calculation
of the SC critical current density by magnetization measurements [39,40], an intriguing and
yet unexplained modification of the magnetic flux distribution within the SC core of Iron
sheathed MgB2 monocore wires has been observed, without introducing additional pinning
centres. In this regard, akin to the concept of overcritical currents originally introduced
for infinitely thin strips in the proximity of an SFM [24], it was initially thought that this
local deformation in the magnetic flux was caused by the occurrence of overcritical current
densities at the so-called flux-free regions [41]. In other words, where the SC can apparently
develop regions where the Bean’s law of the critical state theory (CST), J ≤ Jc0, with Jc0 the
critical current density at self-field conditions, is violated without destroying the SC state.

Nevertheless, although it is true that the shielding properties of the SFM can enhance
the critical current density of MgB2-Fe wires [42], as the MgB2 is known to show a magnetic
field dependence on the critical current density [19], Jc(H), these overcritical current densi-
ties have not been observed by MO techniques [41,43,44] nor by the direct measurement of
Jc0 by electric transport measurements [18], therefore precluding their existence (at least)
in this geometry. However, it is precisely for this geometry where a certain amount of
magnetic field has been observed in regions where no transport current is expected to
flow, at least under the classical conception of the CST regime for a bare SC at self-field
conditions. A significant rise and drop of the local magnetic field within the SC core near
the surface of the SFM sheath has also been observed [41], both of these features being in
apparent disagreement with the CST, despite its largely recognized success for all known
type-II superconductors [10,45–53].

The aforementioned problems have been somehow ignored, partly due to the en-
gineering prospects of reducing the AC losses in multifilamentary superconductors by
the magnetic screening effect of the SFM coatings. Another problem that is still to be
solved [19,54–59] is due to the intrinsic difficulty added by the uncertainty on the physical
mechanism that couples the electromagnetic properties of SCs and SFMs at a local level (i.e.,
inside both materials but within a macroscopical approach). Even in the most ideal of the
cases, a perfectly cylindrical type-II SC wire of infinite length obeying the general CST [45],
that is, a case in which a fully analytic solution for the time dynamics of the flux-front
profiles exists [60], it is apparently impossible to determine the cause of the increment in
the AC-losses for an SC embedded within a closed SFM sheath. This is because the current
distribution inside the SC does not change, at least within the quasi-steady low frequency
regime where the standard CST applies (below radio frequencies of ∼20 kHz) [61–64]) .
Therefore, it is worth mentioning that, for the case of transport current applications in
conventional power systems (∼50–60 Hz), the standard CST allows us to capture all the
electromagnetism of the rounded SC wire under self-field conditions (see Figure 1) by
means of perfectly circular (radial) distributions of uniform current density, for which a
fully analytic equation for the calculation of the AC-losses can be derived [48,49]. Thus, the
cause of these difficulties for the understanding of the AC losses for SC-SFM metastructures
is threefold, as will be explained below.
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Figure 1. Pictorial representation of the analysed Superconducting (SC) Soft-Ferromagnetic (SFM)
metastructure. The main plot shows the distribution of current density, J, in the SC under self-field
conditions for an applied transport current Itr = Ic sin (ωt), with ωt = π/4 (red shadowed area),
and the relative coordinates for a finite-element Ji(ri, φi) as a reference for Equations (5)–(18). The
left-plots show, for illustration, the time dynamics of the superconducting current density J within the
SC-SFM metastructure. Red and blue areas correspond to distributions with Ji = ±Jcûz, respectively.
White areas correspond to regions with no J, and the yellow area corresponds to the SFM sheath
where no Itr is to flow.

Firstly, most of the theoretical approaches for the calculation of the AC losses on
type-II superconductors start from the assumption of an established formula for the electric
field inside the SC, also known as the E− J power law or conductive material law for the
SC material [65]. This fact leaves the entire determination of the AC losses to rely solely on
the accurate calculation of the local distribution of current density J, which is bounded by
the CST law, J ≤ Jc. However, the distribution and intensity of the current density inside
an SC sheathed with an SFM is essentially unaltered, which therefore precludes the idea of
obtaining an increment in the AC losses of the SC. Secondly, the fact that the distribution of
the magnetic field outside a cylindrical SC-SFM heterostructure under self-field conditions
is basically the same as that of the non-sheathed SC cylindrical wire [39,40], provides no
reason to think that, under this geometry, the electric or magnetic field patterns inside the
SC material changes, with no apparent change in its critical current density due to the
influence of the SFM. This actually occurs regardless of the magnetic permeability of the
SFM [23], which makes it difficult to understand what the possible cause for an increment
on the AC-losses could be, when the SFM is not the source of these hysteretic losses. Thirdly,
finite element methods based on the solution of the system of partial differential equations
(PDE), established by James Clerk Maxwell—which commonly solve a global PDE system
including the surroundings of the SC-SFM heterostructure, either for the magnetic field H
or the magnetic vector potential A (amongst other PDE models) [66]—are doomed to find
the same local solution at the SC domain regardless of whether the SC is sheathed by an
SFM or not. This is because the attained numerical solution still represents the simplest
and most mathematically valid response for the SC, which simply neglects any possible
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magnetostatic coupling between this and the SFM, unless it had been explicitly included in
the numerical formulation.

Therefore, inspired by the pioneering research on circular magnets for high-energy
particle accelerators at CERN [67–70] and the general CST by Badía, López and Ruiz [45],
in this paper we included a multipole expansion in the integral formulation of the CST
for type-II SC rounded wires [10,46–52], allowing a direct inclusion of the magnetostatic
coupling between the SC and a rounded SFM sheath (Section 2). In this way, we disclose
the electromagnetic behavior of the current density and magnetic field resulting from the
coupling of the SC and the SFM in Section 3, explaining with semi-analytical and numerical
methods the actual causes behind the increment of the AC losses in an SC-SFM cylindrical
metastructure in Section 4. It has allowed us to conclude how the AC losses of rounded
SC-SFM metastructures in self-field conditions can be affected by the amplitude of the
transport current and the magnitude of the relative magnetic permeability of the SFM, as
part of the main conclusions of this study (Section 5).

2. Multipole Expansion of the CST in Rounded SC-SFM Heterostructures

The fundamentals of the variational theory of the electromagnetic modeling of type-II
superconductors [71,72], and therefore SC-SFM heterostructures, are rooted in the applica-
tion of the optimal control theory for the minimization of the electromagnetic Lagrangian,
Min{L} ≡ Max{J · p}, which is equivalent to the maximum projection rule of the power
density, the electromagnetic Lagrangian multiplier being defined as p = −∆A = E∆t for
arbitrary variations of the magnetic field ∆B = −∇× p [45].

Thus, based upon this framework, a small linear path-step between two successive
profiles of the magnetic field, ∆B = Bn+1 −Bn, can fulfill Ampère’s law,∇×Bn = µ0Jn, as
well as the continuity conditions ∇ · Bn = 0 and ∇ · Jn = 0, by imposing the minimization
of the step variation for the magnetic field profile integral across the whole <3-space,

F [B(·)] = Min
∫
<3

1
2
|∆B|2 , (1)

where the SC domain, ΩSC, is conditioned either to the E − J material law or to the
inequality constraint J ≤ Jc within the SC critical state model. Likewise, the minimization
functional must be solved within the excitation dynamics, which in the case of an applied
transport current, Itr, corresponds to satisfying the condition,∫

SC
J · n̂ dΩ = Itr . (2)

Then, for a 2D system of Ω-domains (SC, SFM, EXT) like that considered in Figure 1,
where the elements of current density can only flow along the z-axis within the SC domain,
that is, where the dynamics of flux front profiles are restricted to the x − y plane, the
minimization functional can be rewritten as,

F [A(·)] = Min
∫
<2
[∆Az · J +∇Φ · J∆t] . (3)

In this case, the gradient of the scalar electric potential ∇Φ = Ctûz is different to zero
only if Itr 6= 0, with the electric field and magnetic vector potential directed along the
z-axis, Ez = −∂tA + Ct; Ct being the integration constant. Thus, as the AC-losses of the
system are determined by the integral of the instantaneous power density losses across the
material domains, over a hysteresis cycle of the transport current excitation of frequency ω,
that is,

L = ω
∮

t

∫
Ω

E · J dΩ dt , (4)

then the problem simply reduces to determining the magnetic vector potential across the
different material domains with the current density. Therefore, in a first approach to a
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cylindrical wire of radius RSC, it seems impossible to predict a rise in the AC-losses of
SC-SFM metastructures under self field conditions, as not only can magnetic losses induced
by the non-hysteretic SFM be neglected [12,35], but also no current sharing is to be seen
between the SC and the SFM material [73].

Thus, with no magnetization losses nor current profiles within the SFM, and with
exactly the same distribution of current density inside the SC, the boundary of the flux-
front profile for a cylindrical SC wire can be determined by exact analytical methods [60],
following the area enclosed between the surface of the SC and a circumference of radius

r f = RSC

√
1− Itr

Ic
, (5)

r f being the inner boundary of the flux-front profile as shown in Figure 1. Then, any
possible change in the losses of the system will be restricted to the definition of the electric
field invoked in the SC domain.

The above result allows us to immediately identify why conventional PDE solvers
such as COMSOL Multiphysics cannot predict the increment in the AC losses in the SC
domain, as the material law that governs the physics of the macroscopic magnetic behavior
of an SC is directly entered by the empirical ansatz known as the E− J power law. This so-
called law, although widely acknowledged for reproducing the electromagnetic behavior
of practical type-II superconductors and its applications, also forces the electric field to be a
known function which is primarily measured at the condition of self-field critical current
density. Therefore, it does not take into consideration any intrinsic variance within the
magnetic vector potential (A), nor any possible contribution by other materials such as
an SFM.

However, within the integral formulation of Equation (1), and consequently for
Equation (2), the electric field is seldom calculated by the use of empirical material laws for
the SC state, but instead from the well-established Bean’s theorem for the CST [74], and
from the knowledge of an analytical function for the magnetic vector potential along the
<3 space [71]. This in turn can be transformed into a function of finite elements of current
density Ji, which are multiplied by their inductance matrices, that is, by terms which do
not depend on any physical variable but on the position of the elements of current, ri
(see Figure 1), leading to a reduction in the size and dimensionality of the minimization
integral from the whole <3-space [45,47,75], to just the volume or area of the SC domain,
ΩSC. Therefore, if for the 2D geometry shown in Figure 1 it is assumed that the elements of
current density are to appear only inside the SC domain, then, in the absence of the SFM,
these elements can be treated as infinitely long and thin wires with the vector potential for
the self and mutual inductances defined by:

Ai(ri) = (µ0/4π)πJi , (6)

Aij(rj) = −(µ0/4π) ln (r2
ij)Ji ∀ rij 6= 0 , (7)

rij being the distance between two lines of current each at the positions ri and rj.
Then, in order to formulate the magnetic vector potential in the case of an SC-SFM

metastructure, the starting point is to define the distance rij in the complex or s− plane
as rij = ri − s, with s = rjeiθ (see Figure 1), such that the real part of the vector potential,
Re{A} = Az, is defined by the vector potential created by a line of current Ji at any position
rj 6= ri as:

Aij(rj) = −
µ0

2π
Ji ln

(
κ rij

)
∀ rj ∈ κ . (8)

Here, the index κ = ±1 separates the space into two conditions, one for 0 < rj < ri
when κ = 1, that is, a condition that is commonly found at beam optics computations in
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the case of accelerator magnets [67], and the other, the condition for rj > ri with κ = −1,
the results of which are useful for magnetic computations [68]. Then, the key instrument is
to expand the function ln (rij) = ln (ri) + ln (1− s/ri) into a Taylor’s series, that with the
help of De Moivre’s Formula allows us to rewrite Equation (8) as:

Ai,j = −
µ0

2π
Ji

[
ln (rk)−

∞

∑
n=1

1
n

( rj

ri

)κn
cos(nθ)

]
, (9)

with κ = 1 for rk = ri, and κ = −1 for rk = rj, where it is to be noted that the vector potential
is continuous at rj = ri. Therefore, when considering the SFM medium, the problem can be
solved by means of the Laplace’s equation �2A = ∇2A− ∂2

t A/c2 = −4πc−1µrJ, which in
the magneto quasi-steady approach introduced in Ref. [45], that is, with ∂2

t A = 0, it can be
simplified to c∇2A = 0, as no current sharing can be assumed between the SC and the SFM.
Thus, in the case of an SC-SFM metastructure like that shown in Figure 1, this equation can
be solved in cylindrical coordinates by the method of separation of variables, such that its
solution can be expressed as Ac,m = R(r)Θ(θ), with Θ(θ) a 2π periodic function of θ and
the Laplace equation simplified to:

r
R

∂

∂r

(
r

∂R
∂r

)
= − 1

Θ
∂2Θ
∂θ2 = C , (10)

with C a real constant that does not depend on r nor θ.
Consequently, the most general solution to Equation (10) is a linear superposition for

all possible solutions [70], either with C = 0, C > 0, or C < 0, resulting in the general
definition for the vector potential in the absence of current density for a coupled medium m,

Ac,m = E0,mC0,m + D0,m ln (r) + ...
∞

∑
n=1

En,mcos(nθ)
(
Cn,mrn + Dn,mr−n) , (11)

with the unknown media-dependent parameters C0,m, Cn,m, D0,m, Dn,m, E0,m, and En,m,
all being real integration constants which can be determined by superimposing both the
vector potential created by the mere existence of a media, that is, Equation (11) with the one
created by the existence of a line of current, that is, Equation (9) and, by further imposing
adequate boundary conditions at the interfaces between the different media. Thus, for the
SC-SFM metastructure shown in Figure 1, the magnetic vector potential created by a line of
current Ji located at ri over a point in the space rj 6= ri, that is, Az,m(rj) = Ai,j(rk) + Am(rj),
must be defined within four different regions of the space, two of these within the SC
domain for the conditions κ = 1 (i.e., 0 < rj < ri) and κ = −1 (i.e., ri < rj < RSC), and the
other two defining the space occupied by the SFM layer (RSC < rj < RSFM), and the outer
domain (EXT) defined by the condition RSFM < rj (see Figure 1).

Then, in order to obtain an unequivocal physical solution, this system of equations
must satisfy continuity boundary conditions at rj = RSC and rj = RSFM, that is, at the
interfaces between the two different mediums. In other words, an additional set of equations,
for both the magnetic vector potential Az and the magnetic field vector B = ∇× Az, is
established by taking into consideration the conditions Az,SC(RSC) = Az,SFM(RSC), and
Az,SFM(RSFM) = Az,EXT(RSFM). In this way, the condition of non divergence of the
magnetic field is preserved by satisfying the conditions ∂r Az,SC = µ−1

r ∂r Az,SFM, and
∂r Az,EXT = µ−1

r ∂r Az,SFM, for rj = RSC and rj = RSFM, respectively. This creates a set of a
minimum of six equations at each one of the interfaces between the different media, from
which we can determine the set of six media-dependent constants C0,m, Cn,m, D0,m, Dn,m,
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E0,m, and En,m. Thus, after some algebra, it is possible to demonstrate that the total vector
potential for the different media (SC, SFM, and EXT) in Figure 1 can be written as:

ASC(rj ≤ RSC) = Aj(rj) + ∑
i 6=j

Aij(rj) + Ac,SC(rj) ,

ASFM(RSC < rj ≤ RSFM) = ∑
i

Aij(rj) + Ac,SFM(rj) ,

AEXT(RSFM < rj) = ∑
i

Aij(rj) + Ac,EXT(rj) , (12)

with the vector potentials for the coupled media defined for the conditional µ(±) = µr ± 1 by,

Ac,SC = − µ0

2π
µ(−)Ji

[
µ(+)

∞

∑
n=1

R̄µ1

n

(
rirj

R2
SC

)n

cos(nφj)

]
, (13)

Ac,SFM =
µ0µ(−)

2π
Ji

[
ln

(
RSC
rj

)
−

∞

∑
n=1

R̄µ2−
n

(
ri
rj

)n

cos(nφj)

]
, (14)

and,

Ac,EXT =
µ0

2π
µ(−)Ji

[
ln
(

RSC
RSFM

)
+ µ(−)

∞

∑
n=1

R̄µ1

n

(
ri
rj

)n

cos(nφj)

]
, (15)

with,

R̄µ1 =
R2n

SFM − R2n
SC

µ2
(−)R

2n
SC − µ2

(+)
R2n

SFM
, (16)

and

R̄µ2± =
µ(+)R2n

SFM ± 2µrr2n
j + µ(−)R2n

SC

µ2
(−)R

2n
SC − µ2

(+)
R2n

SFM
, (17)

such that if the magnetic properties of the SFM are removed, that is, if its magnetic
permeability takes the value of the relative magnetic permeability of the vacuum, µr = 1,
then all the coupling contributions in Equation (12) disappear, returning to the classical
problem where the distribution of the current into a superconductor can be calculated by
the simple knowledge of the self and mutual inductance matrices for finite elements of
critical current density [47]. On the other hand, for understanding the coupling elements
between the SC and the SFM, we have introduced the non-dimensional factors R̄µ1 and
R̄µ2±, where it is to be noticed that R̄µ2± is not a constant but a function of the element
coordinate rj. It is also to be noticed that these contributions are a response of the SFM to
the lines of current density Ji inside the SC, which are calculated through the minimization
functional shown in Equation (2).

Therefore, within the integral formulation in Equation (3) and the vector potentials
obtained in Equations (12)–(15), the system is reduced to the calculation of the profiles of
current density inside the SC only, providing a tremendous advantage against any other
computational method. This is because not only are the coupling between the SC and
SFM explicitly included, but also because the infinite <2-space has been reduced to just
the area occupied by the SC domain, in contrast with the use of the whole <3-space in the
case of the differential formulations. Additionally, although the coupling terms depend
on the reach of the n-index for the introduced Taylor’s series, it is to be noted that the
arguments of these summations are purely geometrical, therefore defining the multipole
coefficients for the coupling inductance matrices between the SC and the SFM materials.
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In this sense, for a given finite element mesh, these matrices can be univocally calculated
outside of the minimization process, with the resulting matrix for the positions ri and rj
being stored as a matrix of constant parameters into the minimization algorithm, thence,
substantially reducing its computing time. Thus, the only limitation of this method lies in
the computational limits and the numerical precision for the calculation of the multipole
coefficients for the coupled-media vector potentials, which refers to the smallest and the
largest positive normalized floating-point numbers in IEEE double precision, that is, 2−1022

and (2− 2−52)× 21023, respectively.
Consequently, if the SC and SFM radii are written in normalized units, such that

RSC = 1 and RSFM = 1.5RSC, for the effects of the minimization process of the functional
of interest, F [A(·)] = FSC[ASC(Ji), Ct], the largest n-index that could be considered is
n = log(1.7977× 10308)/ log(1.5) ' 1750, from which we have found that, within a 10−8

tolerance factor, any n-index greater than ∼ 350 will produce the same results. Then, by
knowing the total magnetic vector potential across the whole space, it is possible to nu-
merically determine the distribution of current density Ji inside the SC-SFM metastructure
for a given time, by solving the minimization functional F [ASC(Ji), Ct] subject to: (i) the
CST condition |Ji| ≤ Jc and, (ii) the applied transport current constraint Itr(t) = I0sin(ωt)
in Equation (2), with I0 the amplitude of the alternating current (AC) of frequency ω.
Likewise, the spatial-constant Ct that appears in the minimization functional must be
introduced as a time-dependent variable into the numerical procedure [47], such that the
correct value for the electric field and the AC losses can be determined by ensuring that the
electric field at the flux free regions satisfy the condition Ez(rj < r f ) ≡ 0.

Only very small increments in the instantaneous magnitude of the electric field in-
side the SC have been observed by the coupling with the SFM sheath (in the order of
1× 10−3(µ0/4π)R2

SC Jcδt−1), such that the local distribution of power density E · J shows
not only the same classical behavior already shown for bare SC wires [48,76], but exactly
the same distribution of local profiles of critical current density that could be calculated by
analytical methods. Thus, although the slight increment in the time-dependent electric field
inside the SC ultimately contributes to the increment on the hysteresis losses of the SC-SFM
system, it does not provide a very rich physics phenomenology, which could reveal the
actual impact of the SFM coupling with the SC current. Nevertheless, as the AC losses
of SC-SFM metastructures fundamentally depend on the relative magnetic permeability
of the SFM, in our attempt to fully answer how the relative magnetic permeability of an
SFM sheath affects the AC-losses of an SC wire, we have conducted a large number of
simulations (330), including ten different amplitudes of I0, ranging from 0.1Ic to Ic. It
includes 33 different SFMs with relative magnetic permeabilities that range from µr = 5
for NiZn ferrites [77] up to the very high magnetic permeability measured for the purest
Iron, µr = 350,000 [77–79]. This comprehensive study has allowed us to unveil the key
fingerprint for the most notorious feature of the SC-SFM coupling, which lies in the anoma-
lous distribution of local profiles of magnetic fields inside the SC, which is caused by the
induced magnetic multipoles created by the interaction between the supercurrents and the
SFM sheath.

Thus, either by calculating the distribution of profiles of current density by the min-
imization functional F [ASC(Ji)], or by directly meshing the distribution of profiles of
current density Ji within the analytically derived flux front boundary r f (Equation (5)), the
magnetic field can be calculated by its general definition B = ∇×A, which for our 2D
cylindrical geometry (see Figure 1) is reduced to B = r−1∂φ Azûr − ∂r Azûφ , where Az is
split into the three continuous media ASC, ASFM, and AEXT at Equation (12). Therefore,
by calculating the corresponding derivatives, we have obtained that at each one of the
domains representing these media, the components of the magnetic field can be calculated
by the functions:



Materials 2021, 14, 6204 9 of 21

BSC =
µ0

2π
Ji



[
ri
r 2

ij
sin(φi − φj) + µ(−)µ(+) ∑∞

n=1
R̄µ1
rj

(
rirj

R2
SC

)n
sin(nφj)

]
ûr

[
rj

r 2
ij
− ri

r 2
ij

cos(φi − φj) + µ(−)µ(+) ∑∞
n=1

R̄µ1
rj

(
rirj

R2
SC

)n
cos(nφj)

]
ûφ

 ,

BSFM =
µ0
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 . (18)

In this sense, we have arrived to entirely analytical solutions for the magnetic vector
potential and the distribution of the magnetic field inside the SC core of a cylindrical SC-
SFM metastructure, it was subjected to an AC transport current under self-field conditions.
This has revealed two important phenomena to be analysed in the following sections.
Firstly, demonstrating that the origin of the deformations of the magnetic field inside
SC-SFM wires reported by MOI techniques [39,41,43,80] is a direct consequence of the
magneto-steady coupling between the SC and the SFM sheath. Secondly, with our extended
CST it will be proven that a straightforward explanation of the intriguing increment in
the AC-losses of SC-SFM metastructures [36–38] can be achieved without the ansatz of
overcritical currents.

3. SC vs. SC-SFM Metastructures: Differences on the Current Density and Magnetic
Field Profiles

In Figure 2, the norm of the magnetic field is shown as a function of the non-
dimensional time argument ωt of the applied transport current, Itr = I0 sin(ωt), with
maximum amplitude, I0 = Ic, illustrating its behavior during the first ramp of the AC
current at ωt = π/4 (1st column), as well as during the hysteretic period observed be-
tween the peaks ωt = 2π (2nd column) and ωt = 3π/2 (6th column), as it suffices for
the calculation of the AC-losses when the time integral in Equation (4) is defined between
these time-steps and is then multiplied by a factor 2.

For the sake of comparison, the results presented are shown under two different
considerations: (i) the first (top two rows) refers to the case when µr = 1, that is, in the
absence of the SFM sheath; and (ii) the second (bottom two rows) makes reference to the
case where the SFM sheath in Figure 1 is defined by a relative radius RSFM = 1.5RSC and a
magnetic permeability µr = 46, this being a typical magnetic permeability encountered
for MgB2-Fe wires [12,34,39,80]. Thus, it is to be noticed that, as a consequence of the
magnetic coupling with the SFM sheath, a remarkable deformation of the local density
of magnetic flux inside the SC has been found (bottom pane in Figure 2). This is despite
the fact that the distribution of current density still follows the circumferential evolution
observed for unsheathed SC wires, that is, delimited by the flux front analytically derived in
Equation (5), and which has been shown for illustration purposes in Figure 1. Notoriously,
this observation is in remarkable qualitative agreement with the experimental evidence
of a characteristic “elevation” and “dip” of the magnetic flux at self-field conditions. It
measured near the SC-SFM interface at the line-angle r∠0, that is, at the x-axis from
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the observer’s perspective by Magneto Optical Imaging (MOI) techniques [39,41,43,80].
Reproducing these experimental results will be the aim of this and the following section,
although to understand how the experimental results are reconstructed, it is first necessary
to understand the entire dynamics of the electromagnetic quantities along the cross section
of the SC-SFM metastructure.

Figure 2. Dynamics of the norm of magnetic flux density |B| in units of (µ0/4π)JcRSC in (a) an SC wire (without SFM
sheath) of radius RSC = 1 (in arbitrary units) whose cross section lies on the plane xy and which is subjected to an applied
transport current Itr = Ic sin(ωt). (b) shows the same distribution of field but in a 2D representation that focus on the local
flux dynamics inside the SC, |BSC|. Analogously, (c) shows the flux distribution |BSC−SFM| for the SC-SFM metastructure
with RSFM = 1.5RSC and µr = 46, where the impact of the SFM on the SC can be seen clearer in the 2D representation shown
in (d), that is, the bottom pane of subplots. The time interval between columns is ∆t = (π/4)ω−1, such that the dynamics
shown between the second column (ωt = 3× π/2) and last column (ωt = π/2) represents the minimum hysteresis period
for the calculation of AC Losses, in accordance with the distribution of profiles of current density shown in Figure 1.

The MOI observations were initially thought to be in apparent contradiction with
the critical state regime, as not only did some magnetic fields appear at the so-called
flux-free regions, that is, regions where no current density is expected to be flowing, but
also because it does not have a qualitative resemblance to the angular invariant pattern
for the magnetic field outside the SC wire, regardless of whether the SC wire has been
sheathed or not by an SFM. Thus, this intriguing phenomenon, which was believed to
be caused by some mechanism similar to the overcritical state model in thin SC strips
by Genenko et al. [23,25,26], has been a motive of a paradigm in superconductivity, as
the so-called overcritical current densities have not been directly observed by electrical
measurements in rounded SC-SFM wires [18,41,43,44]. Nevertheless, in this paper we
have demonstrated that the inclusion of the magnetic multipoles, created by the physical
coupling between the SC and the SFM, are sufficient to reproduce all the macroscopic
electromagnetic features of SC-SFM rounded metastructures, without violating the most
fundamental principles of the general critical state theory [45].
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Figure 3. Dynamics of the norm of magnetic flux density over the radial directions (r, π/4) and (r, 0) for different
magnitudes of the applied AC transport current, Itr = Ic sin (ωt), it measured inside the SC during (a,b) the first ramp
of the applied current (top legend-box) and (c,d) the peak-to-peak hysteretic period (bottom legend-box) as described in
Figures 1 and 2. The panel of subplots at the right shows the corresponding profiles for the first ramp of current at (e) inside
the SFM and (f) outside the SC-SFM wire, respectively. Dashed-dot lines at each subplot refer to the left axes |BSC| showing
classical Bean’s behaviour, whilst the solid lines must be read accordingly with the right hand axes |BSC−SFM|. The arrows
show the ’time’ evolution of the field profiles, and units for B are (µ0/4π)JcRSC.

All the above can be seen in better detail from Figure 3, where we have displayed
the local profiles for the norm of the magnetic field along two different radial directions,
that is, along the (r, φ) lines with φ = 0 and φ = π/4, respectively, either (i) inside the
SC wire (0 < r < 1), (ii) inside the SFM (1 < r < 1.5), or (iii) outside the SC-SFM
metastructure (1.5 < r). The magnetic behavior of the SC-SFM (solid lines) is compared
with the classical critical-state behavior computed for an unsheathed SC wire (dashed lines),
where, besides the rapid rise of the magnetic field at the interface between the SC and the
SFM, no disturbance of the magnetic field has been observed along the y-axis (φ = π/2).
This is in good agreement with the experimental measurements for Fe (µr = 46) sheathed
MgB2 wires [39,41,43,80], where it has systematically reported an unusual “elevation” and
“dip” of the magnetic flux only around the interface between the SC and the SFM when
φ = 0 (or π). In fact, the non-divergence and continuity conditions of the magnetic field
can be directly observed in this figure, as the “elevation” in the flux free regions develops
symmetrically from the condition φ = ±π/2 towards φ = 0, already showing a rise in
the magnetic field along the line (r, φ/4) inside the SC (Figure 3a) with the “dip” being
evident at φ = 0 (Figure 3b), either from the first ramp of the applied transport current
(0 < ωt < π/2), emulating the DC behavior, or during the hysteretic period shown in
Figure 3d,e for the angles φ = 0 and φ = π/4, respectively.

Then, as is shown in Figure 3c,e, besides the rapid change in the intensity of the
magnetic field that occurs at the interfaces between the SC and the SFM at r = 1, and
the SFM and the EXT domain at r = 1.5, which are both caused by the change in the
relative magnetic permeability of the medium, there is an almost negligible change in the
slope or pattern of the magnetic field profile outside the SC-SFM metastructure at self-field
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conditions. It is also worth mentioning than the curves displayed in Figure 3 refer directly to
the calculations made within the numerical minimization framework of Equation (3), that is,
with the profiles of current density directly calculated by our numerical method, and then
used to calculate the magnetic field from our analytical derivations at Equations (16)–(18).
Therefore, the exact position where the sudden rise or drop of the magnetic field near the
interfaces mentioned above is shown can be somewhat overestimated as it depends on
the size of the finite elements considered for defining the local profiles of current density
Ji. Still, such features have been experimentally observed from magneto optical imaging
measurements [41,80]. To prove the general validity of the critical state theory, these results
will be qualitatively compared with our numerical observations in the following section.

4. Experimental Evidences and General Map of AC-Losses for SC-SFM Heterostructures

Visualizing and understanding the magnetic response “inside” of an SC-SFM metas-
tructure, under transport current conditions, is undoubtedly a remarkable challenge from
the theoretical, computational, and experimental points of view. This is not only because
the classical formulation of the CST and the solution of Maxwell equations commonly
do not include the physical coupling between these materials (as explained in Section 2)
but also because the experimental measurement of the local magnetic field at cryogenic
temperatures is generally restricted to purpose-built equipment, tailored within already
sophisticated experimental techniques. In this regard, although it is not our aim to discuss
the diverse magnetic imaging techniques that could be used for this purpose, nor to provide
an in-depth analysis of these [81–83], it is worth mentioning that there are two different vi-
sualization methods for the local imaging of magnetic fields in superconductors that stand
out. The first of these methods corresponds to the use of polarized neutrons, allowing us to
reveal the three-dimensional distribution of magnetic fields in solid materials [84,85]. This
technique provides the best spatial resolution of all the local magnetic imaging techniques
but, to date, there are no reported measurements on monocore superconducting wires un-
der transport current conditions, nor on comparable SC-SFM metastructures. Nevertheless,
there is a second method of interest that corresponds to the so-called MOI technique [43,83],
from which the main observations reported for SC and SC-SFM cylindrical metastructures
have been reproduced via our extended CST.

In simple terms, the MOI technique makes use of the Faraday effect (sometimes called
Faraday rotation) on birefringent doped ferrite garnet films with in-plane magnetization.
This facilitates the real-time visualization of 2D magnetic field distributions of samples
placed in close contact to the film, by detecting the rotation of the angle of a linearly
polarized light beam above the magneto-optical film, which allows the determination of
the local distribution of the magnetic field below it. By the use of this method, experimental
measurements on the local distribution of the magnetic field inside Fe-sheathed and bare
MgB2 wires have been previously reported [40,41,43,80], revealing some of the intriguing
features for SC-SFM metastructures that have motivated this manuscript. These are the
occurrence of magnetic field within a region of the SC core that was expected to be “flux-
free”, leading to an “elevation” of the magnetic field profile around the center of the SC
core, and towards a striking “dip” in the magnetic flux seen near the interface between the
SC and the SFM materials.

These somehow exotic phenomena were originally thought to be caused by some
mechanism similar to the overcritical state model in thin SC strips by Genenko et al. [23,25,26].
From the classical perspective of Bean’s model for the CST, the occurrence of local magnetic
fields in the SC state automatically means the occurrence of superconducting current
densities. Therefore, the fact of having a magnetic field in a region where no current
density was to be expected, plus having localized areas where the magnetic self-field was
even lower than what was seen by a bare SC (see the oval-shadowed areas in Figure 2a),
could be intuitively explained by the occurrence of overcritical currents at those regions
where the magnetic field has decreased; that is if we accept the counter-intuitive idea of
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having regions where violating the condition |J| ≤ |Jc| does not lead to the destruction
of superconductivity.

Nevertheless, direct experimental measurements of the critical current density have
shown no increment on Jc0 between the SC and SC-SFM wires under self-field condi-
tions [18,41,43,44]. However, contrary to thinking that these phenomena could imply a
violation of the CST, we have demonstrated that the inclusion of the magnetic multipoles
created by the SC-SFM coupling (see Section 2) are actually sufficient to reproduce all
the macroscopic electromagnetic features seen by the MOI experiments. In this sense, in
Figure 2, we show the main electromagnetic features captured by the MOI technique, these
are against the theoretical predictions encompassed by our extended CST. It is to be noticed
that, despite having a clear proximity between the experimental and the theoretical results,
a comparison between these data must be understood by, preferably, a qualitative rather
than a quantitative manner. This is simply because of the limitations on the resolution
encountered by the MOI measurements, which do not allow us to have a straightforward
quantitative comparison with our numerical predictions.

Thus, it is worth remembering that, for a proper reading of the experimental results, it
must be conducted by bearing in mind that the magnetic field profile obtained with the
MOI technique (in arbitrary units), is indirectly measured by the relationship between
the spontaneous magnetization vector of the ferrite film, also called the Magneto Optical
Layer (MOL), and the rotation angle of the polarized light. This light is detected by a
crossed polarizer and analyser of the light path, which is placed before and after cross-
ing the MOL. Then, besides the different optical components that can induce unwanted
depolarizing effects when the light beam is reflected from or transmitted through them,
the experimental measurements can be affected by a possible lack of homogeneity on the
in-plane magnetization of the MOL, and also by any other possible defect on the contact
between this and the measurement sample [43]. In consequence, the computation of the
magnetic field profile is not made over a sole cut line, says over the x-axis in the sample
shown in Figure 4, but as a relative third-degree polynomial reconstruction over a 2D line
of approximately 10 µm wide. Thus, the intensity of the light is calibrated by subtracting a
calibration image from the image to be quantified [43], that is, in our case, subtracting the
image of the measured SC wire before being placed within the SFM sheath, |BSC|, from
the image for the SC-SFM metastructure, |BSC−SFM|. Then, the MOI calibration program
return a precision ranging from 2 to 10 mT, which for an MgB2 wire as shown in Figure 4,
with an approximate radius RSC ≈ 280 µm, and Ic ≈ 13 A, implies a minimum relative
tolerance of approximately 1.35 field-units, they defined as (µ0/4π)JcRSC ' 1.48 mT, that
is, accounting for the minimum precision of 2 mT (∼1.35 × 1.48 mT). Therefore, it is not
strange to observe flux jumps within the MOI measurements as shown in Figure 4 (solid
symbols) but what is actually strange, is to recurrently see a certain “elevation” and “dip”
on the magnetic field around the flux-free front boundary (r f ) and the interface between
the SC and the SFM sheath [39,41,43,80].

On the one hand, the above can be said in a different manner, by remembering that for
currents below Ic, a flux-free core region below r f (see Equation (5)) is expected to be “seen”
under the simplified CST, either for the bare SC or the SFM sheathed SC. However, in the
latter a clear “elevation” of the magnetic flux appears when contrasted against the magnetic
signal of the bare SC, it contrary to the classical predictions of the CST. Thus, if the magneto-
steady coupling between the SC and the SFM is not directly included, just as it is shown in
the case of the bare SC at the top inset of Figure 4, when ωt = π/4 (i.e., when Itr ' 0.7Ic),
no difference between |BSC| and |BSC−SFM| should be seen for r . 0.5RSC, as no magnetic
field is to be seen at this region. However, as it can be observed by the fitting curves for the
MOI measurements (Figure 4), in the case of the SC-SFM metastructure a clear rise in the
magnetic flux for r < r f appears (dashed lines), which can be explained by the extended
CST reported in this paper (solid lines). Moreover, by the extended CST, we have proven
that this anomalous rise in the magnetic flux within the “flux-free core” of the SC, a term
brought up only for bare superconductors, is actually a direct consequence of the coupling
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between the SC and the SFM materials, that is, it is the result of the magnetic multipoles
induced by the interaction between the superconducting currents and the SFM sheath. In
other words, in the case of a rounded SC-SFM metastructure at self field conditions, with
either a DC or AC transport current of magnitude Itr < Ic, the radius r f in Equation (5) is
simply referring to the boundary of a core free of transport current, but not necessarily free
of magnetic flux.
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Figure 4. Magnetic flux difference between an SC wire of radius RSC and the equivalent SC-SFM
metastructure with RSFM = 1.5RSC in units of (µ0/4π)JcRSC. Solid and dotted lines show the
numerical results obtained by the extended CST along two different radial directions, being 0◦ the
line over the x-axis at y = 0 in Figure 1, and 45◦ the xy−plane diagonal. Two set of curves are
shown corresponding to self-field conditions with Itr = Ic sin(ωt), when ωt = 3π/16 and π/4 (i.e.,
Itr/Ic ' 0.5556 and 0.7071, respectively). For qualitative comparison, solid symbols and dashed lines
show the raw and segmented-regression fitted data extracted from MOI measurements [39,41,43,80]
reported for the Fe-sheathed MgB2 monocore displayed at the subplot (a), where the ovals highlight
the regions were an anomalous “elevation” and “dip” of the magnetic flux have been observed. All
other insets show the calculated 2D local distribution of magnetic flux density at different instants
of the AC current for the SC (top) and SC-SFM (bottom) wires. Equally sized ovals as in (a) are
displayed, highlighting thence how the extended CST allows a straightforward explanation of the
non-conventional patterns for the local magnetic flux density in the SC-SFM metastructures.

On the other hand, beyond the r f boundary, which in the case of the SC-SFM metas-
tructure should be better called the transport current boundary, rather than the flux-front
boundary, a pronounced “dip” on the magnetic field has been experimentally observed
near the interface between the SC and the SFM materials. This unique magnetic feature
of the SC-SFM metastructures, which appears in a localized manner, that is, only towards
the sides of the SC wire as shown at the highlighted ovals in the insets of Figure 4, is
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indeed an even more anomalous feature in the distribution of magnetic field inside an SC,
especially if it is seen from the point of view of the conventional CST. However, by means
of our extended CST, these apparently anomalous features have all been duly reproduced
in Figure 4, where the “dip” in the magnetic field profile can be clearly seen at r > r f for a
cut-line at a 0◦ polar angle (solid lines). Then, the magnetic flux intensity diminishes as the
angle of measurement approaches to ±45◦ (dotted lines), with a negligible difference being
observed at ±90◦ (not shown for the easy visualization of the other curves).

Likewise, it is worth mentioning that the rapid change in the intensity of the magnetic
field that occurs at the interface between the SC and the SFM at r = 1, and also at the
interface between the SFM and the EXT domain at r = 1.5, both can be seen from the
experimental or numerical points of view, either at Figure 4, or in greater detail at the
Figures 2 and 3. Thus, notice that this rise is just caused by the change in the relative
magnetic permeability of the medium, and consequently by the continuity condition of
the magnetic field, which applies regardless whether the CST has been extended or not.
Then, outside of the SC-SFM metastructure, it has been found an almost negligible change
in the slope or pattern of the magnetic field profile if compared with a bare SC, reaching
nearly the same value of magnetic field at a distance less than just twice the radius of the
SC-SFM wire.

Finally, the last relevant electromagnetic feature to be reproduced within the extended
CST for SC-SFM wires under self-field conditions, concerns to what is probably the most
important quantity to be measured within the framework of applied superconductivity,
that is, the AC-losses. In this sense, our extended CST also allows to prove that the coupling
between the SC and the SFM sheath is indeed sufficient for explaining the slight rise seen
in the AC-losses of SC-SFM wires [36–38], even when the SFM layer does not add any
electrical nor magnetic losses to the system (see Figure 5). Moreover, it has been found how
the selection of the SFM magnetic properties, that is, its relative magnetic permeability, can
affect the most important observable macroscopic quantities such as the magnetic field
created by the SC-SFM metastructure, and its energy losses.

To understand the impact of the SFM sheath on the hysteresis losses of SC-SFM
metastructures, in Figure 5 the curve of AC-losses for the rounded SC-SFM wire, LSC−SFM,
has been calculated as a function of the relative magnetic permeability of the SFM, µr.
The results are shown starting from the case of a bare SC, that is, with µr = 1, up to
an extremely high and rare magnetic permeability for SFM materials (µr = 350,000),
which has been observed in pure Iron samples [77–79]. This covers the whole range
of SFM materials available in the market, such as Ni, NiZn, MnZn, Si, C, and Co ferrites
(µr ∼= 5–15,000), providing the first known map of AC-losses for rounded SC-SFM wires.
Thus, our study reveals a saturation of the hysteresis losses caused by the SFM at about
µr = 1000, with even less than 1% difference from µr = 100, but showing a very rapid
change in the hysteresis curve between µr = 1 and µr = 100. This is a remarkable result,
as it discloses that no matter the SFM used, beyond a relative magnetic permeability of
µr ' 100, nearly no increment of the AC-losses of the system could be observed by effect
of the coupling between the SC and the SFM.

Moreover, by analysing in detail the structure of the AC losses curve in Figure 5, it
can be revealed that the dominant factor in the hysteresis losses provided by the coupling
between the SC core and the SFM sheath, comes from the factor R̄µ1 in Equation (13) (see
Figure 5c). Notice that this factor dominates also the contribution to the magnetic field
outside of the SC-SFM metastructure in Equation (18), which appears as long as there is
a locally induced profile of current Ji. Therefore, this might have strong implications in
other phenomena such as the magnetic shielding and magnetic cloaking effects by SC-SFM
metastructures, where an external magnetic field B0 can be entered by the additional vector
potential A0(ri) = B0 × ri. The reason for this is because these phenomena depend on the
screening properties of the SC material, i.e, on the occurrence of local profiles of current
density Ji, whose coupling with the SFM remains defined by the vector potentials for the
couple media in Equations (13)–(15). Consequently, the shielding properties of the SFM in
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the rounded geometry of Figure 1 are also limited by the factor R̄µ1, whose dependence
on the relative radius between the SC and the SFM, as well as the magnetic permeability
of the SFM, show a nearly negligible impact for magnetic permeabilities greater than
µr = 100, which is somehow contrary to the intuitive thinking that by increasing the
magnetic permeability of the SFM sheath or its thickness on an SC cylindrical wire or tube,
then the magnetic shielding properties of this heterostructure will increase too.
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Figure 5. (a) Hysteretic losses ratio between SC-SFM metastructures (LSC−SFM) and the AC losses
produced by an isolated SC wire (LSC) of cylindrical cross section as a function of the relative
magnetic permeability µr of the SFM with RSFM = 1.5RSC. (b) The top inset shows the well known
analytical solution for LSC as a function of Itr [47,51,60]. (c) The bottom outer inset shows the
numerical tendency of the non-dimensional factor R̄µ1 (Equation (16)) valid for any radius of the SFM
sheath up to RSFM = 10RSC and with magnetic permeabilities from µr ∼ 1 up to 1× 105. (d) Finally,
the inner inset shows the dependence of the metastructure losses (LSC−SFM) for different amplitudes
of the transport current itr in units of Ic, and the relative magnetic permeability of the SFM sheath µr.

5. Conclusions

In this article, we have shown that the counterintuitive increment in the AC losses
of monocore SC-SFM metastructures, at self-field conditions, can be explained under the
conventional framework of the general critical state theory without the need for the ansatz
of overcritical currents. For doing so, the variational formulation of the CST introduced
by Badía, López, and Ruiz [45], has been extended in such way that the corresponding
magnetic vector potentials are written within the magnetic multipole approach commonly
used for accelerator magnets [67–70].

In this way, we have proven that the intriguing anisotropy in the magnetic flux distri-
bution inside the superconducting core of an SC-SFM heterostructure, is a straightforward
consequence of the magnetostatic coupling between these two materials. This coupling can
be fully described by analytical methods within the conventional critical state framework
for type-II superconductors, and without the need to consider the occurrence of edge
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currents, overcritical currents, or current sharing patterns which have not been experimen-
tally observed in self-field conditions. Thus, as long as no current sharing between the
SC and the SFM is enabled—that is, when both materials are electrically insulated from
each other—our semi-analytical model shows how, despite there being no alteration to the
distribution of current density in the SC caused by the SFM sheath—it is possible to observe
a certain amount of magnetic field in regions where no transport current is expected to
flow. Likewise, we have shown how this magnetostatic coupling between the SC and the
SFM materials can cause the rather striking “elevation” and “dip” of the local magnetic
field inside the core of SFM sheathed SC wires, which has been previously observed by
way of Magneto Optical Imaging measurements [39–41].

In addition, with the previous knowledge of the flux front profile for the current dis-
tribution inside an SC rod in self-field conditions, which can be calculated not only by fully
analytical methods but also by the numerical minimization of our variational functional,
either with or without the SFM sheath, we have reported fully analytical solutions for the
magnetic vector potential and the magnetic field vector at any region of the space for SC-
SFM cylindrical heterostructures of arbitrary dimensions. With these, we provided a direct
proof of the magneto-coupling physical mechanism that gives rise to the field deformations
inside the SC-SFM heterostructures observed by MOI techniques [39,41,43,80]. Likewise,
the cause of the intriguing increment in the AC-losses in SC-SFM heterostructures [36–38]
is explained as a result of the found magneto-steady coupling between the SC and the SFM
sheath. Thus, we have proven that the sole coupling between the SC and an SFM sheath
is capable of producing the slight rise in the AC-losses in the SC material, even when the
SFM does not add any electrical nor magnetic losses to the system.

Finally, we found how the selection of the SFM magnetic properties, that is, its relative
magnetic permeability, can affect the most important observable macroscopic quantities,
such as the magnetic field created by the SC-SFM metastructure, and its energy losses.
Remarkably, we have found that no matter the SFM used nor its dimensions, for relative
magnetic permeabilities µr & 100, almost no further increment on the AC-losses could be
observed by the effect of the coupling between the SC and the SFM, as the curve of losses
is dominated by the factor R̄µ1 in Equation (13). In this way, we discloses a comprehensive
map of AC-losses for SC-SFM rounded heterostructures. Therefore, the electromagnetic
phenomena shown in this paper can be used as a benchmark for understanding other
technologies that can use SC-SFM rounded metastructures, such as in lossless three phase
power cables and high energy accelerator magnets.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two dimensional
AC Alternating Current
CST Critical State Theory
DC Direct Current
EXT Exterior domain, outside of the SC-SFM metastructure
FEM Finite Element Methods
MOL Magneto Optical Layer
SC Superconductor or Superconducting
SFM Soft-Ferromagnet or Soft-Ferromagnetic Material
PDE Partial Differential Equation
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