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Abstract: For many applications, TiO2 must have a unique surface structure responsible for its desir-
able physicochemical properties. Therefore the fast and easy methods of TiO2 surface characterization
are of great interest. Heated TiO2 samples and dye-modified TiO2 samples were analyzed by laser
desorption/ionization mass spectrometry. In the negative ion mode, two types of ions were detected,
namely (TiO2)n

− and (TiO2)nOH−. It has been established that the samples can be differentiated
based on the relative ion abundances, especially with respect to the free hydroxyl group population.
It indicates that laser desorption ionization mass spectrometry has the potential for the investigation
of the surface properties of various TiO2 materials.

Keywords: titanium dioxide; laser desorption/ionization; mass spectrometry; surface analysis;
hydroxyl group

1. Introduction

TiO2 is one of the world’s most common material, widely used in many fields of
science and branches of industry as well as in everyday life. For example, it has been
applied as a pigment (e.g., in toothpaste [1]), as semiconductors (e.g., in solar cells [2]), as
catalysts (e.g., in biodiesel production [3]), as gas sensors (e.g., as alcohol vapor sensor [4]),
etc.

For many of its applications, TiO2 must have a unique surface structure that provides
desirable physicochemical properties of TiO2, necessary for its effective use. One of the most
important features of the TiO2 surface is the number and distribution of the hydroxyl groups
present on it [5–9]. For example, it has been demonstrated and discussed in detail, that the
surface hydroxylation degree is of crucial importance for selective adsorption of Cr(VI) [10],
photocatalytic oxidation/degradation of methyl ethyl ketone [11], phenolphthalein [12],
methyl orange, rhodamine B, p-chlorophenol [13], methylene blue [14], adsorption of CO2,
SO2, NO2 [15]. The most common method for the study of surface hydroxylation degree, or
more precisely the tool which enables comparison of the TiO2 hydroxylation degrees, is the
Fourier-transform infrared spectroscopy (FTIR) [8–15], which sometimes is supported by
X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption or surface
acid–base ion-exchange reactions method [7,10,13].

A specific TiO2 application is in the mass spectrometry, namely as a substrate (solid
matrix) in the surface-assisted laser desorption/ionization mass spectrometry [16–19].
There are also a number of papers reporting TiO2 surface modification or generation
of interesting gas-phase titanium-oxide clusters by subjectingTiO2 surface to laser beam
action [20–24]. The goal of this work is to check if laser desorption/ionization mass
spectrometry (LDI-MS) may be used for TiO2 surface characterization, namely to evaluate
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the TiO2 hydroxylation degree. For this purpose, the samples of TiO2 prepared at different
temperatures and dye-modified TiO2 samples have been analyzed by LDI-MS.

2. Materials and Methods

Samples of heated TiO2 were prepared by solvothermal hydrolysis of titanium tetraiso-
propoxide (Aldrich, Poznań, Poland) and heating (calcination) of the obtained material at
different temperatures (100, 200, 300, 400, 500 and 600 ◦C) according to the procedure de-
scribed elsewhere [25]. The obtained samples were characterized by FT-IR spectra recorded
on an IFS-66/s spectrometer (Bruker, Billerica, MA, USA) using KBr powder as a diluent.

The dye-modified TiO2 samples were prepared from commercially available P25 TiO2
Aeroxide (Evonik, Essen, Germany) by using four different dyes (Scheme 1) according to
the procedure described elsewhere [26–28].
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Scheme 1. Structures of dyes used for modification of P25 TiO2.

The LDI TOF MS (laser desorption/ionization time of flight mass spectrometry, was
used to generate the gas-phase clusters. Portions of 1 µL of TiO2 suspension in methanol,
were spotted onto the target (MTP 384 ground steel, Bruker Daltonics, Bremen, Germany).
During MS experiments, an Ultraflex TOF/TOF spectrometer (Bruker Daltonics, Bremen,
Germany) was operated in reflection mode (both positive and negative) in the range of m/z
50–1500. For m/z > 1000, the clusters were characterized by low intensity. This spectrometer
is equipped with a SmartBeam II laser (λ = 355 nm). Metastable fragmentation of selected
ions was induced by laser without further use of collision gas. The LIFT technology was
employed [29]. The software flexControl v.3.4 was used for data acquisition and collection,
whereas flexAnalysis v.3.4 was used for data manipulation, evaluation, and processing.

3. Results and Discussion

Figure 1 shows the FTIR spectra of heated TiO2 samples. The intensities of the absorption
bands at about 3400 and 1630 cm−1 indicate that the number of hydroxyl groups decreases in
the order TiO2100 > TiO2200 > TiO2300 >> TiO2400 >> TiO2500 ∼= TiO2600.
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Figure 1. FTIR spectra of TiO2 samples.

The heating of TiO2 affects not only the hydroxylation degree, but also a number of
other surface parameters, e.g., surface area, pore-volume, surface morphology, oxygen
and titanium vacancies, surface roughness, surface micro-topography, etc. [30–34]. These
parameters have a minor influence on the FTIR spectra, but may significantly affect the
LDI mass spectra (which is easy to justify). Furthermore, the ions observed under LDI
conditions are not only a result of the laser desorption/ionization process but also of the
processes which occur in the laser plume containing energetic ions, neutrals, and electrons
(in this hot cloud of particles, a number of gas-phase reactions can occur). Therefore,
the key question is if moderate differences in the surface chemical composition, e.g., the
hydroxylation degree, are reflected on the LDI mass spectra.

Figure 2 shows the LDI mass spectrum of TiO2400, obtained in the negative ion mode,
in the m/z range 50–200 and 200–1000 (for clarity), as a representative example. The other
LDI mass spectra are shown in the Supplementary Material (Figures S1 and S2). Thanks
to the characteristic isotope signals (e.g., Figure S3), the titanium-containing ions can
be easy identified and the lack of the characteristic isotope signals of titanium indicates
that we deal with background/contaminant ions (e.g., that at m/z 113 most probably
corresponds to [(HCOO)2Na]−, since formic acid is a common contamination of methanol,
other contaminant ions may be PO3

− at m/z 79, CH3SO3
− at m/z 95, H2PO4

− and HSO4
−,

both at m/z 97, [35]). Two types of titanium-containing ions were identified, namely
(TiO2)n

− and (TiO2)nOH− (the formers are open-shell ions). It is clearly seen that with
increasing n, we deal with a decrease in the (TiO2)nOH−/(TiO2)n

− ratio. It may be justified
by the relative electron affinities of (TiO2)nOH and (TiO2)n [5]. The key question is if
the observed relative abundances of the titanium-containing ions depend on the surface
properties of TiO2 samples subjected to the LDI process. The presence of OH-containing
ions suggests that it may be possible to correlate the ion abundances with the hydroxylation
degree of the TiO2 surface.
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The heating of the TiO2 results in an increase of particle size [25]; thus, it is expected
that for TiO2 samples heated at higher temperatures, the ion abundances at a higher m/z
range will be higher. However, the opposite situation was observed. It is visible that for
TiO2 samples heated at higher temperatures, the ion abundances at a higher m/z range are
lower (Figure S2). Thus, it is plausible that this phenomenon may depend on the surface hy-
droxylation degree. Figure 3 shows the breakdown plots of the (TiO2)3OH−/(TiO2)nOH−

ratio against the n number ((TiO2)3OH− is an abundant ion at m/z 257, (the ions TiO2OH−

and (TiO2)2OH− have similar abundances as (TiO2)3OH−). Except for the TiO2300 plot, the
obtained plots, shown in Figure 3, reflect very well the hydroxylation degree, analogically
as the FTIR spectrum shown in Figure 1.

It is worth adding that sometimes the desired specific properties of TiO2 can be
obtained by its calcination at a given temperature. For example, the highest photocatalytic
activity of TiO2 calcinated at 300 ◦C was attributed to the fact that at 300 ◦C the best
trade-off between a few surface properties (including surface hydroxyl groups population)
was reached [11]. In our case (Figure 3), it is clear that the surface properties of TiO2300 are
responsible for the specific plot which deviates from the others.
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Figure 3. The breakdown plots of the (TiO2)3OH−/(TiO2)nOH− ratio against the n number obtained
for heated TiO2 samples..

It can be taken for granted that the dye-modified TiO2 samples have similar free
surface hydroxyl group populations and they differ only in the dye structures. Figure S4
(Supplementary Material) shows the LDI mass spectra of the unmodified P25 TiO2 and dye-
modified samples and Figure 4 shows the breakdown plots of (TiO2)3OH−/(TiO2)nOH−

ratio against the n number obtained for the unmodified P25 TiO2 and dye-modified sam-
ples.
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for the unmodified P25 TiO2 and dye-modified samples.

It is clear that dye-modification yielded similar changes in the course of the plots as
heating (Figures 3 and 4). Namely, a substantial increase in the (TiO2)3OH−/(TiO2)nOH−

ratio was observed for n ≥ 6. Furthermore, the dye structures have minor (or moderate at
most) influences on the character of the plots.



Materials 2021, 14, 6848 6 of 8

We also checked if the (TiO2)nOH−/(TiO2)n
− ratio depends on the hydroxylation

degree. The obtained plots, shown in the Supplementary Material (Figures S5 and S6), can
be used for the comparison/differentiation of the TiO2 samples; however, the comparison
of the hydroxylation degrees has to be performed with caution as briefly discussed in the
Supplementary Material.

It was also found that the TiO2
−/(TiO2)3OH− ratio also may depend on the hy-

droxylation degree, as shown in the Supplementary Material, Figure S7. It may be
argued that the abundances of ions at the low m/z range (TiO2

− at m/z 80) may be
affected by background/contaminant ions. However, it is plausible that the obtained
TiO2

−/(TiO2)3OH− ratios reflect well the hydroxylation degree, especially for heated TiO2
samples (Figure S7). Furthermore, in contrast to the (TiO2)3OH−/(TiO2)nOH− ratio, the
ratio TiO2

−/(TiO2)3OH− does not show any exceptional behavior of TiO2300. Therefore,
Figure S7 can be a good supplement to the plots shown in Figures 3 and 4.

We also obtained the LDI mass spectra in the positive ion mode (Supplementary
Material, Figure S8), but they were found to be useless for the purpose of this work. The
ions (TiO2)n

+ and TiO(TiO2)n
+ were detected but in low abundance. Additionally, a number

of abundant non-Ti-containing ions was detected as well (background/contamination).
There is a number of papers devoted to the gas-phase studies of neutral and charged

titanium oxide clusters [23,24,36–42], since they provide some insight into the properties
of bulk titanium oxide at the molecular level. Therefore, the (TiO2)n

− and (TiO2)nOH−

ions were subjected to further analysis, to get the spectra of metastable ions (LIFT mass
spectra). The gas-phase metastable decompositions of (TiO2)n

− ions were found to be
trivial, namely, the loss of TiO2 molecule occurred (Supplementary Material, Figure S9).
The gas-phase metastable decompositions of (TiO2)n

− ions were trivial; namely, the loss of
the TiO2 molecule occurred (Supplementary Material, Figure S9). It has been reported that
(TiO2)n

− ions are very reactive towards trace of gases inside the instrument and are not
prone to lose TiO2 molecule [23,24]. However, in tandem mass spectrometry, the gas-phase
cluster ions may have different structures and dissociation behaviors [23]. The results
obtained for (TiO2)nOH− ions were quite surprising. In the obtained LIFT mass spectra, we
detected the (TiO2)nH2O− ions (Supplementary Material, Figure S10). Just to note, there
is no doubt that in the full scan mass spectra, we deal with (TiO2)nOH− ions, not with
(TiO2)nH2O− ions (Supplementary Material, Figure S3).

It is difficult rationalize how the (TiO2)nH2O− ions can be formed from (TiO2)nOH−

ions. Most probably, at first (TiO2)nOH− ions lose the OH• radical producing (TiO2)n
− ions.

Such a process has already been observed for (TiO2)3OH− ion [24]. We are aware that the
occurrence of this process may be disputable since it is the formation of two odd-electron
species from the even-electron ion. Furthermore, in mass spectrometry, OH• radical loss is
not a favored process, even in electron ionization conditions. The produced (TiO2)n

− ions
undergo two processes: losses of TiO2 molecules and reactions with traces of water inside
the mass spectrometer, and the processes may occur in any order. In other words, in our
experiments, the (TiO2)n

− ions formed under LIFT conditions are very reactive towards
gas-phase water impurities, in contrast to the (TiO2)n

− ions produced in the LDI source. It
must be added that our results are not contrary to those reported in [23,34], which have
been obtained in different conditions (e.g., with respect to the reaction time). On the other
hand, it indicates that the behavior of the gas-phase titanium oxide cluster is very sensitive
to the conditions used.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14226848/s1, Figure S1: LDI mass spectra of TiO2 samples, obtained in the negative
ion mode, in the m/z range 50–200. Figure S2: LDI mass spectra of TiO2 samples, obtained in
the negative ion mode, in the m/z range 200–1000. Figure S3: The obtained isotope pattern of
(TiO2)7OH− ion, shown as a representative example. Figure S4: LDI mass spectra of the unmodified
P25 TiO2 and dye-modified samples. Figure S5: The breakdown plots of the (TiO2)nOH−/(TiO2)n

−

ratio against the n number obtained for heated TiO2 samples. Figure S6: The breakdown plots
of the (TiO2)nOH−/(TiO2)n

− ratio against the n number obtained for unmodified P25 TiO2 and

https://www.mdpi.com/article/10.3390/ma14226848/s1
https://www.mdpi.com/article/10.3390/ma14226848/s1


Materials 2021, 14, 6848 7 of 8

dye-modified samples. Figure S7: The TiO2
−/(TiO2)3OH− ratios obtained for heated TiO2 samples,

unmodified (P25 TiO2) and dye-modified samples. Figure S8: LDI mass spectra of TiO2 samples
obtained in the positive ion mode. Figure S9: Exemplary LIFT mass spectra of (TiO2)n

− ions. Figure
S10: Exemplary LIFT mass spectra of (TiO2)nOH− ions.
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