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Abstract: Efficient load transmission between concrete and steel reinforcement by bonding action is a
key factor in the process of the design procedure of bar-reinforced concrete structures. To enhance the
bond strength of steel/concrete composites, the impact of graphene nanoplatelets (GnP) on the bond
stress and bond stress–slip response of deformed reinforcement bars, embedded in high-performance
concrete (HPC), was investigated using bar pullout tests. In the current study, 36 samples were
produced and examined. The main variables were the percentages of GnP, the steel reinforcement
bar diameter, and embedded length. Bond behavior, failure mode, and bond stress-slip response
were studied. Based on the experimental findings, the inclusion of GnP had a significant favorable
influence on the bar-matrix interactions due to the bridging action of GnP as a nano reinforcement.
For 0.02 wt.% of GnP, the bond strength was enhanced by more than 41.28% and 53.90% for steel bar
diameters of 10 and 16 mm, respectively. The HPC-GnP mixture displayed a reduction in the initial
slippage in comparison to the control sample. The test findings were compared to the prediction
models created by other researchers and the ACI 408R-12 code.

Keywords: graphene nano platelets; high-performance concrete; bond stress; bond stress-slip
behavior; pullout test; failure mode

1. Introduction

Concrete, the most widely used building material, has long been able to meet the
growing needs of mankind. Concrete buildings have long been made up of many types of
concrete, such as normal concrete, high-strength concrete (HSC), and high-performance
concrete (HPC). For its improved mechanical characteristics and durability, HPC is in-
creasingly used in high-rise buildings, bridges, and offshore constructions. High-strength
concrete is described as concrete with a low water/binder ratio and an adapted aggregate-
to-binder ratio to regulate its dimensional stability (i.e., drying shrinkage) and adequately
water-cured (to control autogenous shrinkage) [1]. The investigation of reinforced HPC
with diverse materials has received much attention. A substantial amount of effort has gone
into researching the different material characteristics of HPC. In this sense, the growing
technique for utilizing industrial products to develop reinforced HPC has motivated the
interest of researchers in recent years.

For optimal design in reinforced concrete structures, effective and dependable force
transmission between reinforcement and concrete is essential [2,3]. Bonded concrete is a key
structural characteristic that ensures strain compatibility and composite action to transmit
stresses between concrete and the strengthening steel [2]. The insufficient connection

Materials 2021, 14, 7054. https://doi.org/10.3390/ma14227054 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-9668-1143
https://orcid.org/0000-0003-2451-4770
https://orcid.org/0000-0002-9496-5430
https://orcid.org/0000-0003-1241-4772
https://orcid.org/0000-0002-7200-4866
https://doi.org/10.3390/ma14227054
https://doi.org/10.3390/ma14227054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14227054
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14227054?type=check_update&version=2


Materials 2021, 14, 7054 2 of 20

might result in a considerable loss of load capacity and structural rigidity [4]. For a
deformed bar, chemical adhesion forces are transmitted from the reinforcing steel to the
surrounding concrete, this bond causes frictional forces between the steel bar and the
adjacent concrete [2]. The mechanical anchorage of the steel bar causes bearing stresses on
the ribs against the concrete surface, as indicated in Figure 1 [5].
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Previous studies have shown that bond strength is regulated by several parameters [2].
For example, the compressive strength of the concrete, tensile strength, the cover thickness
of concrete around the bar, embedded length, reinforcement in the transverse direction that
confines concrete, and the bar shape [6–11]. One approach to analyzing the bond between
concrete and steel is to study the evolution of the bond stress-slip typically achieved using
conventional bar pullout tests [12]. Several researchers examined the bond strength of
HSC and HPC. For instance, Orangun et al. [3], ACI committee 408R [2], Hadi [13], and
Chapman and Shah [14] proposed equations based on the compressive strength, side cover
of the bar, bar diameter, and embedded length. Additionally, Esfahani and Rangan [6]
proposed an equation that considers the side cover of concrete, embedded length, and the
concrete tensile strength.

On the contrary, current research efforts focus on finding new methods to improve
concrete performance by nanoengineering the physicomechanical and chemical character-
istics of cement, which is the major binding ingredient in the mix [15]. Nanomaterials have
been successfully incorporated into various products, as a result of advances in nanotech-
nology, including nano-CaCO3 [16], nano-SiO2 [17], and nano-TiO2 [18], as reinforcing
materials in cement to prevent crack propagation at the nanoscale. Nano-cracks with their
large aspect ratio have proved to be efficiently arrested by carbon nanotubes (CNT) and
carbon nanofibers (CNFs) [19,20]. Konsta et al. [21] reported that due to the ability of
nano-reinforcements to manage nanosized cracks (at the initiation stage) before they grow
into micro-sized cracks, nano-reinforcements in cementitious materials are more effective
than traditional steel bar/fiber reinforcements (at mesoscale).

A new possibility for nanosized cementitious additives has emerged with the re-
cent discovery of graphene [22,23], which may be employed in cementitious materials.
Graphene nanoplatelets (GnP) and their oxides, particularly graphene oxide nanoplatelets
(GONPs), are two kinds of graphene-based nanomaterials that are both low-cost nanopar-
ticles [24] made up of graphene stacks [25,26]. Graphene nanoplatelets have a 2D sheet
shape with a nano-scale thickness (less than 10 nm). In addition to their inherited benefits
from graphene, GnP also promises nano-sized additions and perfect reinforcement for
structural materials.

A handful of recent research showed that the inclusion of graphene nanoplatelets
in cementitious composites exhibited excellent mechanical properties. The review study
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of Rehman et al. [27] demonstrated that graphene significantly improved the mechanical
properties of cement-based composites. Additionally, the study of Peyvandi et al. [28]
resulted that the flexural strength of cement matrix may be increased by 27% to 73% by
incorporating different types of GnPs and their oxides into the cement matrix at a rate of
0.13 wt.%. Moreover, Chuah et al. [29] revealed that low concentrations of GONPs could
enhance cement paste’s compressive strength by 46.2%. Furthermore, adding GONPs
to cement at a level of 0.05 wt.% has resulted in a 15–33% improvement in compressive
strength; in addition, the flexural strength has been increased by 41–59% [30]. Additionally,
Gong et al. [31] reported that with GONPs within GONP/cement composite at 0.03 wt.%,
compressive strength and tensile strength might be enhanced by more than 40%; also, the
cement paste’s total porosity was reduced. Furthermore, Mokhtar et al. [32] reported that
with 0.02 wt.% and 0.03 wt.% of GONPs, the compressive and indirect tensile strengths were
improved by 13% and 41%, respectively. Moreover, Rehman et al. [33] indicated that GnP of
0.03% was able to enhance the load capacity and failure strain by 30 and 73%, respectively.
Likewise, Meng et al. [34] examined the impact of graphite nanoplatelets (GNPs) and
carbon nanofibers (CNFs) on the mechanical characteristics of ultrahigh-performance
concrete (UHPC). It was reported that flexural strength and toughness were enhanced
by 59% and 276%, respectively, with the inclusion of 0.30% GNPs. Moreover, the tensile
strength and energy absorption capacity improved by 40% and 187%, respectively, as the
amount of GNPs was raised from 0 to 0.30% [34]. Additionally, Chen et al. [35] indicated
that Graphene Oxide (GO) can improve the compressive strength, flexural strength, and
elasticity modulus of concrete by 4.04–12.65%, 3.8–7.38%, and 3.92–10.97%, respectively.
Furthermore, concrete’s compressive strength may be significantly improved by using GO
nanosheets [35]. Likewise, Rehman et al. [36] revealed that the addition of GO nanosheets
by 0.03% can increase the compressive strength of cement-based composites by 27%.

In accordance with the reported study by Konsta et al. [21], which reported the ability
of nano-reinforcements to manage nanosized cracks. The behavior of GnP can be similar
to CNT; therefore, Qasem et al. [37] examined the effect of CNT on the bond behavior
between UHPC and steel bars, this research showed that 0.02 wt.% CNT enhanced the
maximum bond stress of steel rebars with diameters of 12 mm and 16 mm by 34.7 and
48.5%, respectively.

Reviewing the studies on the impact of graphene nanoplatelets on HPC and bond
strength, no appreciable investigation has been conducted. Therefore, in this study, ex-
perimental tests and mathematical verification according to the available models were
performed. The parameters affecting the bond strength (i.e., bar diameter, embedded
length of the bar, and the effect of different dosage percentages of GnP) were examined. In
order to accomplish this goal, the HPC compressive strength was first obtained at a curing
age of 28 days. Then, 36-cylinder samples were tested for bond-slipping behavior between
HPC-GnP and rebar. Finally, the pullout test results were analyzed, and the reliability of
available models was studied.

2. Experimental Program

In the current investigation, the experimental program was conducted to investigate
the bond stress-slip behavior and pullout strength of reinforcement bars embedded in the
HPC with GnP. The major variables of this study were: (i) different percentages of GnP
by weight of cement (0.00, 0.02, 0.05, 0.10, 0.30, and 0.50%), (ii) the steel reinforcement
bar diameter (db of 10 mm, 12 mm, 16 mm), and (iii) the bar embedded lengths inside the
cylinder (Ld), which were (9 db) and (12 db). Details of concrete designations and variables
are shown in Table 1.
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Table 1. Details of concrete designations and variables.

No Designation GnP db (mm) Ld (mm)

1 HPC0.00 0.00% 10, 12, 16 (9db & 12db )
2 HPC0.02 0.02% 10, 12, 16 (9db & 12db )
3 HPC0.05 0.05% 10, 12, 16 (9db & 12db )
4 HPC0.10 0.10% 10, 12, 16 (9db & 12db )
5 HPC0.30 0.30% 10, 12, 16 (9db & 12db )
6 HPC0.50 0.50% 10, 12, 16 (9db & 12db )

2.1. Materials

In this investigation, Type II Ordinary Portland cement was used to develop the HPC.
The cement was graded (CEM II/B-L 32.5N) and conformed to the requirements of ASTM
C150/C150M [38]. Silica fume (supplied by Elkem Micro Silica, Oslo, Norway) was used
as a replacement for 7% of the binder material. The physicochemical properties of the
cement and silica fume were obtained using X-ray fluorescence (XRF) analysis, as given
in Tables 2 and 3. The fine aggregate passed through a 4.75-mm sieve with a fineness
modulus of 2.86 and a specific gravity of 2.65. Crushed granite with a size grading of 5 mm
to 10 mm [39] was used with a specific gravity of 2.55. A polycarboxylate ether-based
superplasticizer was used to obtain the required workability. Sika Viscocrete-2088 supplied
by Sika (Baar, Switzerland) was used in the HPC mixes. Tensile tests were performed on
the reinforcement bars according to ASTM A370-20 [40]. The yield strength was 520 MPa,
while the failure strength was 620 MPa.

Table 2. Properties of Cement.

Properties Test Result

CaO 81.20%
SiO2 8.59%

Fe2O3 3.18%
SO3 2.78%

Al2O3 2%
K2O 0.72%
MgO 0.68%

Initial time setting 155 min

Compressive strength 7 d 24 MPa
28 d ≤52.5 MPa

Table 3. Properties of Silica Fume.

Properties Test Result

CaO 1.51%
SiO2 94.24%

Fe2O3 1.33%
Al2O3 0.57%
MgO 0.42%

Density (g/cm3) 2.28
Fineness (m2/kg) 22,000

LOI 0.84%

The size of silica fume particles was determined using Field Emission Scanning
Electron Microscopy (FESEM) as shown in Figure 2a. The result of X-ray diffraction (XRD)
analysis is shown in Figure 2b. XRD analysis of silica fume shows the presence of a hump
at the 2-theta range of 15 to 27 degrees. This hump implies that most of the silica fume
particles are amorphous SiO2.
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Commercially available GnP was supplied by XG Sciences, Inc. (Lansing, MI, USA).
Table 4 shows the physical properties of (xGnP-C300). Figure 3 represents the XRD,
FESEM, and TEM patterns of the GnP. The XRD pattern of GnP powder showed that the
characteristic peaks were at 26.50◦, 42.31◦, and 54.60◦ with high intensity. Additionally, the
FESEM and TEM showed the particle size of the employed GnP.

Table 4. Properties of GnP.

Product Density
(g/cm3)

Diameter
(µm)

Thickness
(nm)

Surface Area
(m2/g)

Carbon
Content (%)

Elastic
Modulus (GPa)

Tensile
Strength (GPa)

xGnP-C300 0.20–0.40 ≈2 ≈2 300 99.52 1000 5
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2.2. HPC Mix Proportions

The ACI guidelines 211.1 revised by Aïtcin [39] were considered for the design of
the HPC of M60 Grade. The details of mix proportions are given in Table 5. Figure 4
shows the dispersion process of GnP. To achieve proper GnP dispersion, the required GnP
amount for each mix was added to the weighted required superplasticizer plus 10% of
the required water and mixed using an electric stirrer for 5 min [41–43]. The weighted
aggregate, cement, and silica fume were placed in the mixer and combined for two minutes
to ensure the correct mixing of solid particles. Therefore, the remaining water was added
to the mix and stirred for another two minutes. The superplasticizer and the suspended
GnP were then added to the solution and stirred for an additional two minutes to achieve
the optimal GnP distribution. The mixing was done following ASTM C192/192M [44].

Table 5. HPC M60 mix proportion.
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2.3. Pullout Specime’s Details

Tests were performed on a sample size of 36 to determine the bond stress of the HPC-
GnP combination. Figure 5 shows the cylindrical and cubic samples used in this study.
The specimens consisted of a single reinforcing bar embedded vertically in the middle of
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each of the concrete cylinders. As indicated in Figure 6, the bar was projected from the
top of the cylinder by about 400 mm upwards to provide a sufficient length to grab the
specimen in the testing machine. Steel cylinder molds of size 100 mm (dia.) and 200 mm
(ht.) were used for all test specimens. The molds were cast in three layers and vibrated
adequately along with the embedded steel bar on the vibrating machine. The top level of
the specimen was leveled to obtain a smooth surface. The molds were removed after 24 h,
and the specimens were kept at a lab temperature of 25◦ for 28 days. Additionally, cubes of
size 100 mm samples were cast to obtain the compressive strength of each mix of concrete
according to ASTM C39/C39M-21 [45]. An average of three specimens of cube samples
was considered for the compressive strength, as listed in Table 6.
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Table 6. Compressive strength of HPC with different content of GnP.

No Designation % GnP Cube Compressive
Strength (MPa) % Difference

1 HPC0.00 0.00% 63.25 -
2 HPC0.02 0.02% 76.42 +20.82
3 HPC0.05 0.05% 66.67 +5.41
4 HPC0.10 0.10% 69.25 +9.49
5 HPC0.30 0.30% 61.17 −3.29
6 HPC0.50 0.50% 61.92 −2.10

2.4. Pullout Testing

The pullout test was performed using a Universal Testing Machine (UTM) with a
capacity of 200 kN. The monotonic loading speed employed in this study was 0.367 kN/s.
The loading and total displacement parameters were acquired using a built-in data logger
within the UTM to maintain the load and displacement during the test. Total displacement
for slippage and steel elongation were recorded. The braking force or the maximum load
exerted to remove the steel rebar from the concrete was provided by the machine. The force
was applied until the yielding of the steel bar or the bar slipped out from the specimen.
Figure 6 shows the test setup, direction of loading, and specimen geometry. The ultimate
bond stress of the concrete was calculated using Equation (1).

τu =
Pmax

π Ld db
(1)

where τu = ultimate bond stress of the concrete, Pmax = the peak force in the bar, db= diameter
of rebar used, Ld = depth of rebar penetration. The samples used in the pullout experi-
ments were coded. For example, 0.00%-10-9db, where the first three numbers refer to the
percentage content of GnP (0.00%), (10) refers to the bar diameter, and (9db), refers to the
embedded length.
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3. Experimental Results
3.1. The Compressive Strength of HPC-GnP Mixes

The compressive strength of HPC samples with the mixtures listed in Table 1 is
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reported in Table 6. As it can be observed, the GnP content has a substantial impact on the
compressive strength of HPC samples, with compressive strength increasing at first and
subsequently decreasing as GnP content increased. As a result, there is a percentage of
weight at which the optimum mechanical properties may be attained. In the current mix
design, GnP with 0.02% content had the most effective positive impact on the compressive
strength of the HPC. Figure 7 depicts the change in compressive strength of the HPC-GnP
mixes. When compared to the base specimen (HPC0.00), it can be shown that adding 0.02,
0.05, and 0.10% of GnP to the HPC enhances its compressive strength by 20.82%, 5.41%,
and 9.49%, respectively. These amounts of GnP reduced the HPC’s porosity, resulting in a
more compact and continuous HPC nanocomposite. In this context, including GnP into
the concrete matrix improves the connection between GnP and the concrete matrix around
it, allowing GnP to be considered as the primary load-bearing component by providing
more contact surfaces and therefore more force transmission surfaces. Moreover, it can
be observed that adding 0.30 and 0.50% GnP to the HPC insignificantly decreases the
compressive strength of the HPC (i.e., by 3.29% and 2.1%, respectively). As the GnP dose
increased, the shear stress of the fresh HPC-GnP rose, resulted in low workability.
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Figure 7. Compressive strength of HPC-GnP mixes.

3.2. Bar Pullout Test

Table 7 displays the results of the bar pullout test and identifies the failure modes
for each specimen. Table 7 provides information on peak measured forces and related
nominal bond stresses. The attained pullout force is divided by the starting surface area
of the immersed section of the bar to determine the peak nominal bond stress, as shown
in Equation (1). Failures due to rebar fracture, pullout, or splitting of the concrete sample
should be noted. In the case of specimens that failed due to steel yielding, rather than
reinforcement bar pullout, the ultimate bond stress estimated corresponds to the load at
which yield occurs, which is less than the actual ultimate bond stress.
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Table 7. Test Results for Simple Bar Pullout.

No. Designation GnP db (mm) Ld (mm) Pmax (kN) τu (MPa) % of τu Increase Mode of Failure

1 0.00% - 10 - 9db 0.00% 10 90 34.35 12.15 - P-S
2 0.02% - 10 - 9db 0.02% 10 90 48.53 17.16 * >41.28 Steel Yield
3 0.05% - 10 - 9db 0.05% 10 90 42.60 15.07 24.02 P-S
4 0.10% - 10 - 9db 0.10% 10 90 47.98 16.97 * >39.68 Steel Yield
5 0.30% - 10 - 9db 0.30% 10 90 45.71 16.17 33.07 P-S
6 0.50% - 10 - 9db 0.50% 10 90 46.77 16.54 * >36.16 Steel Yield
7 0.00% - 10 - 12db 0.00% 10 120 38.95 10.33 - P-S
8 0.02% - 10 - 12db 0.02% 10 120 47.08 12.49 * >20.87 Steel Yield
9 0.05% - 10 - 12db 0.05% 10 120 47.34 12.56 * >21.54 Steel Yield
10 0.10% - 10 - 12db 0.10% 10 120 47.65 12.64 * >22.34 Steel Yield
11 0.30% - 10 - 12db 0.30% 10 120 49.77 13.20 * >27.78 Steel Yield
12 0.50% - 10 - 12db 0.50% 10 120 47.93 12.71 * >23.06 Steel Yield
13 0.00% - 12 - 9db 0.00% 12 108 58.49 14.37 - P-S
14 0.02% - 12 - 9db 0.02% 12 108 69.55 17.08 18.91 P-S
15 0.05% - 12 - 9db 0.05% 12 108 61.15 15.02 4.55 P-S
16 0.10% - 12 - 9db 0.10% 12 108 61.15 15.02 4.55 P-S
17 0.30% - 12 - 9db 0.30% 12 108 63.45 15.58 8.48 P-S
18 0.50% - 12 - 9db 0.50% 12 108 69.38 17.04 18.62 P-S
19 0.00% - 12 - 12db 0.00% 12 144 61.35 11.30 - P-S
20 0.02% - 12 - 12db 0.02% 12 144 70.16 12.92 * >14.36 Steel Yield
21 0.05% - 12 - 12db 0.05% 12 144 69.80 12.86 * >13.77 Steel Yield
22 0.10% - 12 - 12db 0.10% 12 144 70.32 12.95 * >14.62 Steel Yield
23 0.30% - 12 - 12db 0.30% 12 144 69.95 12.89 * >14.02 Steel Yield
24 0.50% - 12 - 12db 0.50% 12 144 70.06 12.91 * >14.20 Steel Yield
25 0.00% - 16 - 9db 0.00% 16 144 79.33 10.96 - P-S
26 0.02% - 16 - 9db 0.02% 16 144 122.09 16.87 53.90 Splitting
27 0.05% - 16 - 9db 0.05% 16 144 95.88 13.25 20.86 Splitting
28 0.10% - 16 - 9db 0.10% 16 144 98.44 13.60 24.09 Splitting
29 0.30% - 16 - 9db 0.30% 16 144 103.61 14.31 30.61 Splitting
30 0.50% - 16 - 9db 0.50% 16 144 111.65 15.43 40.74 Splitting
31 0.00% - 16 - 12db 0.00% 16 192 90.90 9.42 - P-S
32 0.02% - 16 - 12db 0.02% 16 192 126.25 13.08 38.89 Splitting
33 0.05% - 16 - 12db 0.05% 16 192 116.36 12.06 28.01 Splitting
34 0.10% - 16 - 12db 0.10% 16 192 106.27 11.01 16.91 Splitting
35 0.30% - 16 - 12db 0.30% 16 192 117.39 12.16 29.14 Splitting
36 0.50% - 16 - 12db 0.50% 16 192 127.15 13.17 * >39.87 Steel Yield

Pmax: Pullout Load; τu: Ultimate Bond Stress; P-S: Combined failure mechanism of pulling out and splitting conical cracks;
Splitting: splitting mode failure. * The ultimate load at yielding failure is smaller than the actual bond stress.

3.2.1. Pullout Failure Behavior of Specimens

As seen in Table 7, there were three possible causes of failure for all of the samples.
These modes can be addressed as follows: (1) combined failure mechanism of pulling
out and splitting conical cracks [denoted (P-S)]; (2) splitting mode failure; (3) yielding
failure. Figure 8 shows images of samples that failed the pullout test in any of the three
mechanisms described above. The first mode failed as a result of reduced bearing capacity
between the concrete and subsequent deformations of the bar. It was accompanied by
radial cracks and crushing of the concrete near the bar. Those cracks extended to the
upper longitudinal portion of the sample. The second type of failure occured mostly in the
specimens which had a 16-mm diameter steel bar. In the HPC-GnP composite sample, the
longitudinal cracks spread vertically; that is, they propagated vertically, without having a
concrete cover, and the embedding length and capacity were increased. Finally, because of
high bonding, bars of several specimens were yielded. A similar yielding failure is seen in
the same figure, in which the steel bar achieved its maximum stress before reaching the
ultimate bond stress. In the instance of yielding failure, there were only minor surface
cracks immediately beyond the reinforcing bar. Table 7 shows that the samples without
GnP failed with a (P-S) failure mode, whereas the samples with GnP failed with a steel
yielding manner. For this observation, GnP enhanced the cohesiveness between the steel
bar and concrete, resulting in a pullout force that was greater than the steel failure load.
Moreover, the enhancement of GnP inclusion can be observed through the changing of the
failure mode of the 16 mm bar diameter from (P-S) to a splitting mode.
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3.2.2. Bond Stress Slip Behavior

Figure 9 shows the slip–bond stress relationship for specimens. Slip is the displace-
ment of the reinforcing bar relative to the surrounding concrete. According to Figure 9,
all specimens initially displayed linear load-slip behavior before developing microcracks.
Rebar begins to slip after microcracks are developed, and the bond stress–slip curve be-
comes less rigid. With the inclusion of GnP, it was discovered that some of the samples
that failed in the pullout or splitting modes had less initial slippage due to the presence of
GnP. Furthermore, some of the pullout and splitting failures, for example, 0.05%-10-9db,
0.02%-16-12db, were marked by continuous growth in bond stress–slip behavior up to the
ultimate load, indicating a stable failure pattern. While the bond stress–slip behavior could
not be attained beyond peak load in yielding failure because the bars broke before reaching
the ultimate bond stress. The maximum slip was lower in specimens with smaller diameter
bars than in specimens with 16 mm bars that failed due to bar pullout and splitting. Fur-
thermore, because of the reduced concrete cover, longer embedding length, and increased
bond stress, HPC-GnP for the 16 mm steel bar failed in a brittle manner. The specimens
broke abruptly, creating longitudinal splitting fractures as shown in Figure 8. Based on
the mechanisms of fractures, this explanation makes sense. Microcracking propagates in
the material at a relative strain of 70–80% of the ultimate bonding stress due to the energy
requirements of the fracture process. When a first fracture occurs at the steel-concrete
contact, it quickly spreads as energy accumulates. Longitudinal splitting fractures occur
fast, causing the connection to shatter in a brittle and abrupt manner [46].

3.2.3. Effect of GnP on the Bond Stress

GnP was employed to enhance the mechanical properties and filling characteristics of
HPC in the current investigation. The effect of modulating the characteristics of HPC with
GnP on bar-to-concrete adhesion has not been investigated. The findings of the pullout test
for HPC-GnP are described in this section. According to the results indicated in Table 7, the
inclusion of GnP in the HPC mix increased the ultimate bond stress by 24.02% to more than
41.28% for 0.05 wt.% and 0.02 wt.%, respectively, for a 10-mm steel bar diameter. Moreover,
for a 12-mm steel bar diameter, the inclusion of GnP enhanced the ultimate bond stress
by 18.91% for 0.02 wt.% compared to the reference sample. For 16-mm steel bar diameter,
GnP increased the ultimate bond stress by 16.91% to 53.90% for 0.10 wt.% and 0.02 wt.%,
respectively. Furthermore, the bond stress was significantly increased for 0.05, 0.10, 0.30,
and 0.50 wt.% of GnP. However, 0.02 wt.% demonstrated the best performance in terms of
increasing bond stress, rather than greater percentages. It is the suggested content from
a cost perspective. Additionally, Table 6 shows that 0.30 and 0.50 wt.% of GnP reduced
the compressive strength, while Table 7 shows that 0.30 and 0.50 wt.% of GnP increased
the ultimate bond stress, which could be explained by the fact that the inclusion of GnP at
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higher doses enhanced adhesion between the steel bar and adjacent concrete. As shown
in Figure 10, the HPC treated with GnP had considerably improved bond behavior when
using GnP. The higher adhesion between the concrete and steel bar can be attributed to the
improved bond behavior of the rebars and HPC owing to the inclusion of GnP.
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Figure 9. Slip behavior of specimens versus bond stress: (a) db = 10 mm with Ld = 90 mm; (b) db = 10 mm with
Ld = 120 mm; (c) db = 12 mm with Ld = 108 mm; (d) db = 12 mm with Ld = 144 mm; (e) db = 16mm with Ld = 144 mm;
(f) db = 16mm with Ld = 192 mm.
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Figure 10. Effect of GnP inclusion on the ultimate bond stress.

3.2.4. Bar Diameter Effect

Figures 9 and 11 demonstrate how bar diameter affects ultimate slip and bond stress,
respectively. It is demonstrated that as the bar diameter grows, the bond stress decreases
while the slippage increases. For specimens with embedded lengths of 9db, the ultimate
bond stress for 0.10 wt.% of GnP is reduced by 11.49% and 9.45% when the bar diameter
is increased from 10 to 12 and 16 mm, respectively. With a bar diameter of 10 mm, it is
possible to obtain steel yielding properties with an embedded length of 12 mm, however
the bar diameter was not detected since samples with 10 mm and 12 mm failed. Moreover,
it shows that the contribution of GnP to bond stress was significantly greater for larger
diameter bars (16 mm) than for smaller diameter bars (10 mm, 12 mm). It is thus fair to
say that when GnP is added to bars of bigger diameter, bond stress rises as a result. The
GnP combination action, which is responsible for both micro- and macro-level regulation
of fracture development and propagation, plays an important role in this.
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Figure 11. Impact of the diameter of the steel bar on ultimate bond stress for specimens with embedded length: (a) 9db; (b) 12db.
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3.2.5. Embedment Length Effect

Figures 9 and 12 demonstrate the influence of embedded length on ultimate slip and
ultimate bond stress, respectively. As seen in the experiment, as the embedded length rises,
the final bond tension decreases, and the corresponding slip increases. For example, when
the embedded length increases from 9db to 12db, the bond stress decreases by 22.45% for
samples with 0.02%-16-9db, 0.02%-16-12db, and the slippage increases by 12.28%. For the
control samples with a diameter of 10 and 12 mm, the stress was reduced by 15.05% and
21.36%, respectively. An example is shown in Figure 11a, which illustrates the effects of em-
bedded length on the basic bar pullout for a 10-mm diameter bar with embedment lengths
of 9db and 12db. At 9db most specimens failed through bar fracture with the inclusion of
GnP and at 12db all specimens failed with bar fracture, which means, the safely embedded
length, in this case, falls between 9db and 12db. Figure 11b, meanwhile, illustrates the effect
of embedding length on the pullout of a 12-mm diameter with 9db & 12db embedments. At
9db all specimens failed through pullout failure with the inclusion of GnP, and at 12db all
specimens failed with bar fracture, which means, the safely embedded length, in this case,
falls between 9db & 12db. In addition to that, in Figure 12c for the steel bar 16-mm diameter
at 9db & 12db, most of the samples failed in pullout failure. However, it can be seen that
through the pullout failure load of 12db with 16-mm diameter in Table 7, the failure load of
the specimen (126.25 KN) for (GnP 0.02 wt.%) was near to the yield load (127.15) for (GnP
0.50 wt.%) of the steel bar, which means the safely embedded length is approximately 12db.
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Figure 12. Impact of embedded length on ultimate bond stress for specimens with bar diameter: (a) 10 mm; (b) 12 mm;
(c) 16 mm.
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4. Comparison between Prediction Models and Experimental Results

The bonding between the reinforcing bars and the concrete has been studied by several
researchers. A selection of these models is described below. Using the following formula,
Orangun et al. [3] proposed:

τu =

(
0.10 + 0.25

cmin
db

+ 4.15
db
Ld

)√
f ′c (2)

where cmin is the minimum concrete cover in mm, db is the diameter of the steel reinforce-
ment bars in mm, Ld is the embedded length of the bar, and f ′c is the compressive strength of
concrete for cylinder sample. The ACI committee 408R [2] proposed the following formula:

τu = ( 1.43Ld(cmin + 0.5db) + 57.4Ab)

(
0.10cmax

cmin
+ 0.90

)(
f ′c0.25

πdbLd

)
(3)

where cmax is the minimum concrete cover in mm and Ab is the area of steel bar in mm2.
To evaluate the bond stress of high-strength concrete, Hadi [13] suggested the following
formula for pullout testing:

τu = 0.083045
√

f ′c

(
22.8− 0.208

(
c

db

)
− 38.212

(
db
Ld

))
(4)

where c is the minimum concrete cover in mm. The following formula for calculating the
bond stress was suggested by Esfahani and Rangan [6] for HPC having a compressive
strength of 50 MPa or above:

τu = 8.6 fct

(
(c/db) + 0.5
(c/db) + 5.5

)
(5)

where fct is the tensile strength of concrete and taken as 0.55
√

f ′c . Another formula for
calculating the bond stress was suggested by Chapman and Shah [14]:

τu =

(
0.29 + 0.282

cmin
db

+ 4.734
db
Ld

)√
f ′c (6)

Table 8 shows the obtained bond stress results (Equation (1)) and the predicted bond
stress using the equations of Orangun et al. [3], ACI committee 408R [2], Hadi [13], Esfahani
and Rangan [6], and Chapman and Shah [14] (Equations (2)–(6)). The comparison ratios
between experimental and predicted results are illustrated in Table 9 and Figure 13. The
proposed equations by Esfahani and Rangan, and Chapman and Shah match the test
findings more closely than the other prediction equations. The mean ratio of experimental
results to the equation of Esfahani and Rangan, and Chapman and Shah are 0.94, 1.12
with a standard deviation of 0.15 and 0.17, respectively. Accordingly, the ultimate bond
stress values are higher than those anticipated by the Orangun et al., ACI, and Hadi
equations, where the mean ratios of experimental results to the Orangun et al., ACI, and
Hadi equations are 1.42, 1.60, and 1.25 with standard deviations of 0.22, 0.22, and 0.23,
respectively. As a result, the preceding calculations of Orangun et al., ACI, and Hadi
underestimated the bond stress. However, the prediction equation of Esfahani and Rangan
overestimated the bond stress of control samples, but it was able to predict the bond
stress of those samples, which had the GnP incorporation, with a mean ratio of 0.99 and a
standard deviation of 0.12.
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Table 8. The estimated bond stress using prediction equations compared to the bond stress obtained experimentally.

Dimensions (mm) (MPa) Ultimate Bond Stress (MPa)

Sample Des. db Ld c f
′
c

τu (1) Exper Orangun (2) ACI 408R (3) Hadi (4) Esfahani,
Rangan (5)

Chapman,
Shah (6)

0.00% - 10 - 9db 10 90 45 50.60 12.15 11.97 10.32 10.41 16.82 14.83
0.02% - 10 - 9db 10 90 45 61.14 17.16 13.15 10.82 11.44 18.49 16.30
0.05% - 10 - 9db 10 90 45 53.34 15.07 12.28 10.46 10.69 17.27 15.23
0.10% - 10 - 9db 10 90 45 55.40 16.97 12.52 10.56 10.89 17.60 15.52
0.30% - 10 - 9db 10 90 45 48.94 16.17 11.77 10.23 10.24 16.54 14.59
0.50% - 10 - 9db 10 90 45 49.54 16.54 11.84 10.27 10.30 16.65 14.67

0.00% - 10 - 12db 10 120 45 50.60 10.33 11.15 9.26 11.03 16.82 13.90
0.02% - 10 - 12db 10 120 45 61.14 12.49 12.25 9.71 12.13 18.49 15.27
0.05% - 10 - 12db 10 120 45 53.34 12.56 11.44 9.38 11.33 17.27 14.27
0.10% - 10 - 12db 10 120 45 55.40 12.64 11.66 9.47 11.55 17.60 14.54
0.30% - 10 - 12db 10 120 45 48.94 13.20 10.96 9.18 10.85 16.54 13.67
0.50% - 10 - 12db 10 120 45 49.54 12.71 11.03 9.21 10.92 16.65 13.75
0.00% - 12 - 9db 12 108 44 50.60 14.37 10.49 9.31 10.51 15.29 13.16
0.02% - 12 - 9db 12 108 44 61.14 17.08 11.53 9.76 11.55 16.81 14.47
0.05% - 12 - 9db 12 108 44 53.34 15.02 10.77 9.43 10.79 15.70 13.51
0.10% - 12 - 9db 12 108 44 55.40 15.02 10.97 9.52 11.00 16.00 13.77
0.30% - 12 - 9db 12 108 44 48.94 15.58 10.31 9.23 10.34 15.04 12.94
0.50% - 12 - 9db 12 108 44 49.54 17.04 10.38 9.26 10.40 15.13 13.02

0.00% - 12 - 12db 12 144 44 50.60 11.30 9.67 8.25 11.14 15.29 12.22
0.02% - 12 - 12db 12 144 44 61.14 12.92 10.63 8.65 12.24 16.81 13.44
0.05% - 12 - 12db 12 144 44 53.34 12.86 9.93 8.36 11.43 15.70 12.55
0.10% - 12 - 12db 12 144 44 55.40 12.95 10.12 8.44 11.65 16.00 12.79
0.30% - 12 - 12db 12 144 44 48.94 12.89 9.51 8.18 10.95 15.04 12.02
0.50% - 12 - 12db 12 144 44 49.54 12.91 9.57 8.20 11.02 15.13 12.10
0.00% - 16 - 9db 16 144 42 50.60 10.96 8.64 8.05 10.64 12.94 11.07
0.02% - 16 - 9db 16 144 42 61.14 16.87 9.50 8.44 11.69 14.22 12.17
0.05% - 16 - 9db 16 144 42 53.34 13.25 8.87 8.15 10.92 13.29 11.37
0.10% - 16 - 9db 16 144 42 55.40 13.60 9.04 8.23 11.13 13.54 11.58
0.30% - 16 - 9db 16 144 42 48.94 14.31 8.50 7.98 10.46 12.73 10.89
0.50% - 16 - 9db 16 144 42 49.54 15.43 8.55 8.00 10.53 12.80 10.95

0.00% - 16 - 12db 16 192 42 50.60 9.42 7.82 6.98 11.27 12.94 10.13
0.02% - 16 - 12db 16 192 42 61.14 13.08 8.60 7.32 12.38 14.22 11.14
0.05% - 16 - 12db 16 192 42 53.34 12.06 8.03 7.08 11.57 13.29 10.41
0.10% - 16 - 12db 16 192 42 55.40 11.01 8.18 7.14 11.79 13.54 10.60
0.30% - 16 - 12db 16 192 42 48.94 12.16 7.69 6.93 11.08 12.73 9.97
0.50% - 16 - 12db 16 192 42 49.54 13.17 7.74 6.95 11.15 12.80 10.03

Table 9. Ratios for experimental test result/prediction of bond stress.

Sample Des. (1)/(2) (1)/(3) (1)/(4) (1)/(5) (1)/(6)

0.00% - 10 - 9db 1.02 1.18 1.17 0.72 0.82
0.05% - 10 - 9db 1.23 1.44 1.41 0.87 0.99
0.30% - 10 - 9db 1.37 1.58 1.58 0.98 1.11
0.00% - 10 - 12db 0.93 1.12 0.94 0.61 0.74
0.00% - 12 - 9db 1.37 1.54 1.37 0.94 1.09
0.02% - 12 - 9db 1.48 1.75 1.48 1.02 1.18
0.05% - 12 - 9db 1.39 1.59 1.39 0.96 1.11
0.10% - 12 - 9db 1.37 1.58 1.37 0.94 1.09
0.30% - 12 - 9db 1.51 1.69 1.51 1.04 1.20
0.50% - 12 - 9db 1.64 1.84 1.64 1.13 1.31
0.00% - 12 - 12db 1.17 1.37 1.01 0.74 0.92
0.00% - 16 - 9db 1.27 1.36 1.03 0.85 0.99
0.02% - 16 - 9db 1.78 2.00 1.44 1.19 1.39
0.05% - 16 - 9db 1.49 1.62 1.21 1.00 1.17
0.10% - 16 - 9db 1.50 1.65 1.22 1.00 1.17
0.30% - 16 - 9db 1.68 1.79 1.37 1.12 1.31
0.50% - 16 - 9db 1.80 1.93 1.47 1.20 1.41
0.00% - 16 - 12db 1.20 1.35 0.84 0.73 0.93
0.02% - 16 - 12db 1.52 1.79 1.06 0.92 1.17
0.05% - 16 - 12db 1.50 1.70 1.04 0.91 1.16
0.10% - 16 - 12db 1.35 1.54 0.93 0.81 1.04
0.30% - 16 - 12db 1.58 1.76 1.10 0.96 1.22
Mean values * 1.42 1.60 1.25 0.94 1.12

Standard deviation 0.22 0.22 0.23 0.15 0.17

* Mean values and standard deviations were calculated based on the specimens which failed in the pullout mode, excluding those that
failed due to steel yielding.
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Figure 13. Bond stress test results/prediction ratios versus the specimen number (Table 7): (a) Orangun et al. [3]; (b) ACI
committee 408R [2]; (c) Hadi [13]; (d) Esfahani and Rangan [6]; (e) Chapman and Shah [14].
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5. Conclusions

The bond stress behavior of HPC containing GnP was investigated in the current
study using 36 samples. The bond stress and slip behavior between the rebar and concrete
were evaluated and discussed after a pullout test on numerous experimental specimens.
Furthermore, the influence of variables such as the diameter of the bar, embedded length
of the bar, and percentage of GnP on the bond stress was assessed. Based on the findings
of this research, the following conclusions may be drawn:

In comparison to HPC without GnP, the results indicated that HPC with GnP had im-
proved bond stress due to the bridging and confinement action of GnP as a nano reinforcement.

The results showed that the inclusion of 0.02 wt.% of GnP enhanced the bond stress
by more than 41.28% for steel bars with 10 mm and 18.91% and 53.90% for steel bars with
12 and16 mm, respectively, at the same embedded length 9db.

In comparison to the control samples, the inclusion of GnP caused a reduction in
the initial slippage of the steel bar due to the enhanced adhesion between the bar and
adjacent concrete.

However, the excessive dosage of GnP caused a reduction in the compressive strength
of HPC, GnP at high doses (0.50 wt.%) showed improved bond stress, which was near to
the same enhancement of 0.02 wt.% of GnP.

The use of GnP reinforced HPC can lead to a decrease in the length of anchoring
required for deformed bars.

Esfahani and Rangan’s prediction equation was able to nearly predict the bond stress
of GnP-incorporated samples with a mean ratio of 0.99 and a standard deviation of 0.12.
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