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Abstract: Currently, there is an increasing use of machine parts manufactured using 3D printing
technology. For the numerical prediction of the behavior of such printed parts, it is necessary to choose
a suitable material model and the corresponding material parameters. This paper focuses on the
determination of material parameters of the Anand material model for acrylonitrile butadiene styrene
(ABS-M30) material. Material parameters were determined using the genetic algorithm (GA) method
using finite element method (FEM) calculations. The FEM simulations were subsequently adjusted
to experimental tests carried out to achieve the possible best agreement. Several experimental tensile
and indentation tests were performed. The tests were set up in such a way that the relaxation and
creep behaviors were at least partially captured. Experimental tests were performed at temperatures
of 23 ◦C, 44 ◦C, 60 ◦C, and 80 ◦C. The results obtained suggest that the Anand material model can
also be used for ABS-M30 plastic material, but only if the goal is not to detect anisotropic behavior.
Future work will focus on the search for a suitable material model that would be able to capture the
anisotropic behavior of printed plastic materials.

Keywords: Anand material model; material parameters; ABS-M30; indentation test; genetic algo-
rithm

1. Introduction

The presented article is based on a conference paper [1]. The previous paper is
extended with new experimental data and a new interpretation of the procedure used for
the identification of material parameters.

The research project at VSB—Technical University of Ostrava is concerned, among
other things, with the design of suitable robot arms and manipulators manufactured from
plastic materials using 3D printing, one of the most advanced methods of component
manufacture [2]. The individual arms (in general components made of printed plastic) are
exposed to different types of mechanical loading.

The design of a structure is often determined by results of topological optimization
analysis [3]. The structure obtained from the topological optimization process can also be
produced using 3D printing [2]. A topological optimization methodology called the solid
isotropic material with penalization (SIMP) method and the level set method [4] are often
available in commercial software. The evolutionary structural optimization (ESO) method
can be counted among the methods that are independent of the material model [5], which
iteratively removes or adds a finite amount of material.

In order to predict the behavior of these printed components, knowledge of the
appropriate material model and its parameters is necessary (in addition to the load) for
FEM analysis. The parameters of printed 3D structures are highly dependent on the 3D
printing technology, the laying of the filament, and the setting of the printing process
(e.g., temperature). This article describes a procedure for the determination of the material
parameters of a printed structure manufactured using 3D printing with a Fortus 450mc
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(Stratasys Ltd., Eden Prairie, MN, USA) 3D printer [6]. The material used for printing is
ABS-M30 [7].

Several material models for acrylonitrile butadiene styrene (ABS) are described in the
literature. For the large strain deformation and fracture behavior, there are three material
models with different levels of complexity: (1) the Drucker–Prager yield function; (2) the
Raghava yield function; (3) the Gurson yield function. These three models are compared
in [8]. In [9], the isotropic Drucker–Prager yield criterion was used for the behavioral simu-
lation of three semicrystalline polymers: high-density polyethylene (HDPE), polypropylene
(PP), and polyamide 6 (PA 6). The Johnson–Cook model was used in [10] for the impact
test. A constitutive model for polymers can also be found in [11]. The Anand model [12]
was developed for aluminium alloys with viscoplastic behavior and is available in most
FEM programs, which makes it advantageous for practical engineering uses. Regarding
the thermoplastics used in 3D printing technologies, several material models were tested,
and the Anand model gave surprisingly good results. Although the Anand model was
developed to describe the viscoplastic behavior of metallic materials, its formulation is not
limited to one material group only. It does not use the classical description used in other
models, but rather it works with deformation resistance as an internal variable.

Based on the previous study [1], the Anand material model [12,13] was selected for
further use. The FEM solution was implemented in ANSYS© software (Ansys, Canonsburg,
PA, USA) [14], which has an extensive library of material models. ANSYS© was used as the
FEM solver and was executed via a module written in Python programming language [15]
by the authors. This module is independent of the FEM solver and can also be used in
other commercial software (e.g., MSC.Marc). MATLAB (The MathWorks, Inc., Natick, MA,
USA) can also be used for the same purpose (see [16]). The so-called finite element model
updating (FEMU) [17] method was used to determine the material parameters. Another
possibility in material analysis is the use of a neural network (e.g., [18]). FEM results can
then be used to train the neural network (see [16]).

In [19], results obtained using the inverse approach were compared for two methods:
using the gradient-based method and the evolutionary algorithm for a thermoelastic–
viscoplastic material model. The article used the gradient method, which combines the
steepest descent gradient and the Levenberg–Marquardt algorithm. The evolutionary
algorithm for the real search space was described in the article mentioned. Both methods
were able to determine the material parameters. The evolutionary method involves smaller
relative error levels compared to the gradient-based method. On the contrary, the gradient
method involves lower calculation complexity. The group of evolutionary algorithms also
includes the genetic algorithm (GA), which is used in modified form in this work.

The influence of a certain parameter on a result is measured by the sensitivity. The
sensitivities are described in [20] as “the partial derivatives of the output functions with
respect to the parameters”. The modification of the sensitivity calculation was tested in
the article mentioned and the resulting values were used to select parameters suitable
for the identification. The time required for the process used for identification of the
material parameters depends on the number of parameters identified and the number of
experiments simulated. A low value for the sensitivity of a parameter may also indicate
inappropriate or insufficient selection of experiments for the particular material model.

The proposed procedure is aimed at the identification of parameters in material models
with larger numbers of material parameters and experiments. A procedure based on the
selection of appropriate parameters for the identification process has not been published in
the literature yet.

The main idea of the article is to demonstrate a modern approach for the determination
of material parameters (not only 3D-printed materials) based on the use of a proper
combination of standard laboratory tests at elevated temperatures and modern numerical
optimization methods using custom and commercial software.
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2. Experiments

Tensile tests, graded tensile tests, and indentation tests were performed. The experi-
ments were performed on a Testometric M500-50CT (LABOR machine, s.r.o., Otice, Czech
Republic) testing machine at four different temperatures (23 ◦C, 44 ◦C, 60 ◦C, and 80 ◦C).
The testing machine used was equipped with a furnace (see Figure 1a). The machine
was equipped with a strain gauge force sensor with a measuring range of 50 kN and a
measuring accuracy of ±10 N. The maximum tensile force of the machine was 50 kN. The
samples were clamped with pneumatic clamping jaws. The magnitude of the clamping
force was set by the pressure in the system.

Figure 1. (a) The Testometric M500-50CT tensile testing machine equipped with a temperature chamber. (b) The position of
specimens during 3D printing and the method used to layer the material.

The specimen shown in Figure 2 was used for the tensile tests, graded tensile tests,
and indentation tests. Figure 1b schematically shows the position of all specimens in the
printing chamber during 3D printing on a Fortus 450mc printer and the method used to
lay individual layers of ABS-M30 material.

Figure 2. Specimen shape for simple and graded tensile tests.

After printing, the samples were stored in a dry and dark place for one month and
then the necessary experiments were performed.

2.1. Tensile Tests

All tensile tests were deformation-controlled. Simple tensile tests were performed at
four different temperatures (23 ◦C, 44 ◦C, 60 ◦C, and 80 ◦C) and at three different rates
of deformation (0.017 mm s−1, 0.167 mm s−1, and 1.667 mm s−1) until specimen failure.
Figure 3a shows the force against the displacement at 44 ◦C, 60 ◦C, and 80 ◦C, at a constant
deformation rate of 0.017 mm s−1 (the constant test parameters are shown in the upper
right corner of the diagram). It can be seen from the figure that the maximum force value
decreased with increasing temperature, however at the beginning of the test the courses of
the force were quite similar. One experiment was performed at room temperature, but with
the highest deformation rate of 1.667 mm s−1 (see Figure 3b). Figure 3c,d shows the force
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dependence at 44 ◦C and 60 ◦C and at the specified deformation rates. The magnitude of
the rate of the deformation had no significant influence on the force course at the beginning
of the tests, but led to higher maximum force values at the end of the tensile tests.

Figure 3. (a) Tensile tests at temperatures of 44 ◦C, 60 ◦C, and 80 ◦C, with constant rates of deformation at 0.017 mm s−1. (b)
Tensile tests at 23 ◦C and at a constant rate of deformation of 1.667 mm s−1. (c) Tensile tests at a temperature of 44 ◦C, with
two different rates of deformation. (d) Tensile tests at 60 ◦C, with three different rates of deformation. (e) Graduated tensile
tests under three different temperatures of 44 ◦C, 60 ◦C, and 80 ◦C. (f) Indentation tests with time delay at temperatures of
23 ◦C, 44 ◦C, 60 ◦C, and 80 ◦C, with a constant indenter rate of 0.017 mm s−1.

2.2. Graded Tensile Tests

Graded tensile tests were carried out at three different temperatures (44 ◦C, 60 ◦C, and
80 ◦C), with the same deformation step size of 0.25 mm (see Figure 3e). The specimen was
elongated by 0.25 mm at each step, at a deformation rate of 0.017 mm s−1. The time delay
at the given strain value was always 60 s. This was done until the specimen failed. During
the graded tensile test, the creep phenomenon was partially detected. Up to the value of
the tensile force of approximately 800 N, there was no significant relaxation of the tension.

2.3. Indentation Tests

Indentation tests were carried out at 23 ◦C, 44 ◦C, 60 ◦C, and 80 ◦C (see Figure 3f) on
the samples depicted in Figure 2. The area where the indentation test was carried out is
shown by a dashed rectangle. The indenter was a steel sphere with a diameter of 5 mm. The
indentation test consisted of three phases. First, the indenter was pressed into the material
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at a speed of 0.017 mm s−1 to a depth of 0.5 mm, then the time delay of 300 s followed, and
finally the indenter returned to the starting position (relief) at the same speed.

3. Material Model

One of the material models used for viscoplastic materials is the Anand material
model [12]. The Anand model was proposed for use in the analysis of the rate-dependent
deformation of metals at high temperatures. The Anand viscoplastic model is pre-built in
the commercial finite element software ANSYS©, and therefore it is much easier to use. The
Anand model is typically used for solder alloys [21,22], however the previously mentioned
benefits led the authors to test it for materials used for 3D printing (ABS-M30). The
material model involves 11 material parameters: the Poisson ratio (u), Young’s modulus
(E), initial value of deformation resistance (s0), activation energy/universal gas constant
(Q/R), pre-exponential factor (A), stress multiplier (xi), strain rate sensitivity of stress (m),
hardening/softening constant (h0), coefficient for deformation resistance saturation value
(S), strain rate sensitivity of saturation (deformation resistance) value (n), and strain rate
sensitivity of hardening or softening (a).

The Anand viscoplastic model was originally developed for material forming ap-
plications [12,13]. It is also applicable to general viscosity problems, which include the
influence of the strain rate and temperature. Materials at elevated temperatures are highly
dependent on the influence of the temperature magnitude and history, strain rate, and
strain hardening. The Anand model is a complex material model that introduced an in-
ternal variable S (deformation resistance), a variable that represents the resistance against
the plastic behavior of the material. This is different from other material models, and the
decomposition of the individual components of the deformation is not straightforward.

The rate of plastic deformation is described using the following relationship:

.
εpl =

.
ε

a
pl

(
3
2

S
q

)
, (1)

where
.
εpl is the tensor of the inelastic strain rate and

.
ε

a
pl is the rate of accumulated

equivalent plastic strain. Here,
.
ε

a
pl is given by the equation:

.
ε

a
pl =

(
2
3

.
εpl :

.
εpl

) 1
2
, (2)

where the operator “:” stands for inner product of the tensors. S is the deviator of the
Cauchy stress tensor, which can be expressed using the following relation:

S = σ− pI, (3)

where σ is the Cauchy stress tensor and p is defined as one-third of the trace of the tensor
matrix σ, as in the following relation:

p =
1
3

tr(σ). (4)

Here, I represents a second-order unit tensor. The quantity q is the equivalent stress
according to the following relation:

q =

(
3
2

S : S
) 1

2
. (5)
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The rate of accumulated plastic deformation depends on q and on the internal state
variable s. This dependence can be expressed by the following equation:

.
ε

a
pl = Ae(−

Q
Rθ )
{

sinh ξ
q
s

} 1
m , (6)

where A, ξ, and m are the model constants; Q is the activation energy; R is the universal
gas constant; θ is the absolute temperature; and s is the internal state variable.

Equation (6) indicates that plastic deformation occurs at any stress level. This contrasts
with other theories of plasticity that use areas of plasticity (yield function). Classical theories
assume that plasticity occurs above a certain stress value, otherwise the deformations
are elastic.

The development of the internal state parameter s is described as follows:

.
s = ⊕ho

∣∣∣1− s
s∗

∣∣∣a .
ε

a
pl, (7)

where a and ho are constants, while s∗ represents the saturated value of the internal
parameter. The ⊕ operator is defined to return +1 if s ≤ s∗, otherwise it will return
−1. The effect of softening or hardening is included in the model by this operator. The
saturation values of s∗ depend on the rate of equivalent plastic deformation

.
ε

a
pl and can

be expressed as follows:

s∗ = ŝ

{ .
ε

a
pl

A
e(

Q
Rθ )

}n

, (8)

where ŝ and n represent constants.
Expression (7) shows that the development of the parameter s depends on the rate of

the equivalent plastic deformation, and at the same time on the current state of the internal
state parameter s.

4. Theoretical Description of the Identification Procedure

The material parameter identification can be described mathematically as:

f(X) = minimum,

subject to gj(X) > 0, j = {1, 2, 3, . . . , NC},
(9)

where f(X) is an objective function, X represents a vector of material parameters, gj(X) is
j-th constrain function, and NC is the number of constraint functions. For minimalization,
the finite element model updating (FEMU) approach was used, which is described in [23].
Schematically, the parameters of the material model were determined by repeated opti-
mization calculations with custom software written in Python programming language. The
solution procedure was as follows: FE models of the experiments were created at first. The
models were created in commercial software (ANSYS©) as boxes, where the inputs were
values of the material parameters and the outputs were values corresponding to loaded
or measured data (in this paper these were a force, a displacement, and a current time).
The difference between the simulation outputs and the measured data defines the value of
an objective function. The simulations were solved in a cycle, whereby the inputs were
changed with respect to the minimized value of the objective function. All experiments
were deformation-controlled, but forces were used for formulation of the objective function.
The difference between experimental data and data from the simulation model for one
experiment was solved as an individual objective function fi(X) for the i-th experiment:

fi(X) =
∑Ni

j=1

∣∣∣FEXP
j − FFEM

j (X)
∣∣∣

∑Ni
j=1

∣∣∣FEXP
j

∣∣∣ , i = {1, 2, 3, . . . , N}, (10)
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where Ni is the number of measurement points for the i-th experiment, FEXP
j is an exper-

imental force, FFEM
j (X) is the force obtained from the simulation, and N is the number

of experiments.
The value of objective function for all experiments (f(X)) was solved as:

f(X) =

√
∑N

i=1 fi(X)
2

N
, (11)

A genetic algorithm (GA) was used to identify the material parameters, as in [1]. A GA
for the identification of material parameters was used in [24]. The GA was used because it
is not dependent on the material model. A detailed description of the GA can be found
in [25]. A chromosome is defined by a vector of genes:

X = {pi, i =
{

1, 2, 3, . . . , Np
}
}, (12)

where pi is the i-th gene, which corresponds to the i-th material parameter, and Np is the
number of parameters.

An initial population was given by NG solutions, which was generated randomly
by using the hill-climbing algorithm [26] from an initial chromosome. For the i-th gene
we used:

pi
New = pi

Old·(1 + Rand(−kHC, kHC)), i = {1, 2, 3, . . . , N}, (13)

where pi
Old is the original value of the i-th gene, pi

New is the proposed value of the i-th
gene, and the Rand function generates random values with uniform distribution from the
interval given by ±kHC.

The constraint functions are defined as:

gj(X) = pj, j =
{

1, 2, 3, . . . , Np
}

, (14)

where the number of constraint conditions Nc is the same as the number of parameters Np.
In each cycle a new individual is created, its objective function value is calculated,

and then the individual is added to the population. Regarding the quality of an individual,
the solution is determined by the value of the objective function (Equation (11)). The new
individual is created in two ways:

1. With a 40% probability using the hill-climbing algorithm for the best individual in the
population (13);

2. With a 60% probability using crossover.

The child chromosome was created from three chromosomes of parents, whereby the
parents were selected randomly (uniform distribution) from the population. The parents
were sorted by the value of the objective function and are indicated by a superscript of 1, 2,
or 3; parent 1 had the best (the lowest) objective function and parent 3 had the worst (the
greatest) objective function. The child value of the gen (pi

Child) is calculated as:

pi
Child = pi

Best + ∆pi. i = {1, 2, 3, . . . , N}, (15)

where ∆pi is the gene modification value. The modification value is calculated from parent
genes as follow:

∆pi = k
(

pi
1 − pi

2
)

, or

∆pi = k
(

pi
1 − pi

3
)

, i = {1, 2, 3, . . . , N},
(16)

where equations are selected randomly (with 70% and 30% probability); pi
1, pi

2, pi
3 are the

gen values of the first parent, second parent, and third parent, respectively; k is a growth
coefficient (1− 2).
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The size of the resulting gene values is controlled. If the gene values change too little
∆pi < pi

Best (1± 0.0001) or too much ∆pi > pi
Best (1± 0.05), then the new gene values

are generated randomly using the hill-climbing algorithm with kHC = 0.001.
Parameters suitable for identification are selected using sensitivity analysis. This

sensitivity analysis shows an effect of the parameter on the value of the objective function
with respect to the other parameters. The sensitivity analysis is performed from Np + 1
calculations as follows:

f = f(X),

f+∆i = f
({

p1, p2, . . . , pi(1 + kSen), . . . , pNp

})
,

(17)

where kSen is a sensitivity coefficient (0.05− 0.001). The sensitivity value Si is calculated
according to the equation:

Si =
100
kSen

∣∣∣∣1− f+∆i

f

∣∣∣∣ [ % ], i = {1, 2, 3, . . . , Np}. (18)

Parameters whose sensitivity values are greater than the critical value SKrit are selected
for identification:

Si > SKrit → identify pi, i = {1, 2, 3, . . . , Np}. (19)

In later phases of identification, it is advisable to check if the given parameter pi is not
in the local minimum of the objective function. Here, the number of required calculations
is 2Np + 1:

f+∆i > f < f−∆i, i = {1, 2, 3, . . . , Np}. (20)

5. Description of the Identification Process

Ten experiments were used for identification (see Figure 3a–f), however the exper-
iments at 44 ◦C were excluded from the identification process and were used only for
validation. The assignment of the experiments to the values of the individual objective
functions is shown in Table 1.

Table 1. Assignment of the individual objective functions to individual experiments.

f1(X) f2(X) f3(X) f4(X) f5(X) f6(X) f7(X) f8(X) f9(X) f10(X)

T1, ID T1,
.
x3 T3,

.
x1 T3,

.
x2 T3, ID T3,

.
x3 T3, GT T4,

.
x1 T4, ID T4, GT

In Table 1, the temperatures are denoted as T1 = 23 ◦C, T2 = 44 ◦C, T3 = 60 ◦C,
and T4 = 80 ◦C; the deformation rates are

.
x1 = 0.017 mm s−1,

.
x2 = 0.167 mm s−1,

and
.
x3 = 1.667 mm s−1; ID denotes the indentation tests and GT denotes the graded

tensile tests (see Chapter 2). Data from the tests at temperature T2 were used to validate
the parameters.

The initial values of parameters are shown in Table 2.

Table 2. Initial parameters of the Anand material model.

E
[MPa]

µ

[−]
s0

[MPa]
Q/R
[K]

A
[1/s]

xi
m
[−]

h0
[MPa]

^
S

[MPa]

n
[−]

a
[−]

1780 0.33 19.54 8350 3134 5.18 0.2466 183,245 31.0 0.0098 1.524

The value of the modulus of elasticity E is temperature-dependent, which is shown in
Figure 3a. For this reason, three values of the modulus of elasticity E20, E50, and E80 (for
20, 50, and 80 ◦C) were added to the material model. The temperature chamber made it
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impossible to use optical methods (e.g., the digital image correlation method (DIC)) [27] to
measure the Poisson number, so this parameter was excluded from identification.

Chromosome (12) consists of these material parameters, whereby the individual genes
correspond to the individual material parameters:

X =

{
E20, E50, E80, s0,

Q
R

, A, xi, m, h0, Ŝ, n, a
}

. (21)

The hill-climbing algorithm was used with the parameter kHC = 0.001, the genetic
algorithm was used with the parameter NG = 10, and the growth coefficient k = 1.5 was
used in both cases. The sensitivity coefficient was kSen = 0.01. The sensitivity value shown
in (18) and the criterion shown in (20) were recalculated. The way in which the model
parameters were determined is described by the following three tables. Table 3 contains
the parameter values during the solution.

Table 3. Parameter values with three moduli of elasticity during identification.

# E20
[MPa]

E50
[MPa]

E80
[MPa]

µ

[−]
s0

[MPa]
Q/R
[K]

A
[1/s]

xi
m
[−]

h0
[MPa]

^
S

[MPa]

n
[−]

a
[−]

0 1780 1780 1780 0.33 19.5 8350 3134 5.18 0.247 183,245 31.0 0.0098 1.524
1 1175 1161 933 - 19.5 9486 3134 5.75 0.24 183,245 41.4 0.0098 1.897
2 1175 1161 933 19.5 9486 3134 5.82 0.241 169,305 43.6 0.012 2.936
3 1175 1203 960 19.5 9486 3134 5.82 0.224 169,305 43.6 0.0152 2.936
4 1196 1203 997 18.0 9486 3048 5.82 0.224 146,821 43.6 0.0186 3.527
5 1196 1224 997 18.0 9486 3263 8.82 0.213 138,175 43.6 0.0226 3.527

The values for the objective function during the solution are shown in Table 4 and the
sensitivity values are shown in Table 5. The initial parameters for identification (values
of the objective function) are given in line 0 of Table 3. The sensitivity was calculated
from “line 0” values, and the resulting values are shown on line 1 of Table 5. The genetic
algorithm was run 200 times in every identification cycle. This process was repeated in
lines 2 to 5. Line 5 in Tables 4 and 5 shows the resulting parameter and error values. The
fulfilment of criterion (20) is indicated in Table 5 as U. The resulting values (line 5, Table 4)
were used to calculate the sensitivity (line 6* in Table 5). Values in line 6* were no longer
used for further calculation. This shows that the minimum given by the coefficient kSen
had not been reached yet. Table 5 shows in the last step (line 5) a decrease of the objective
function value by 0.1% after 200 calculation cycles; the identification process was, therefore,
completed.

Table 4. The objective function values during identification.

# f1(X)
[%]

f2(X)
[%]

f3(X)
[%]

f4(X)
[%]

f5(X)
[%]

f6(X)
[%]

f7(X)
[%]

f8(X)
[%]

f9(X)
[%]

f10(X)
[%]

f(X)
[%]

0 27 28 20 23 28 27 23 21 23 25 25
1 7.1 7.9 6.3 7.2 4.9 6.6 8.5 9.9 3.7 7.0 7.1
2 5.5 7.6 5.7 7.3 3.7 6.9 5.6 9.5 4.7 5.4 6.4
3 5.7 7.7 4.6 6.5 3.7 6.2 6.3 8.4 4.5 5.1 6.0
4 5.2 7.9 4.4 6.4 4.0 6.3 4.9 7.0 4.4 4.5 5.6
5 4.2 7.9 4.2 6.3 3.4 6.3 4.9 7.0 4.5 4.0 5.5
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Table 5. Sensitivity values during identification. Parameters that fulfil the criterion are shown in bold.

# SE20 SE50 SE80 Ss0 SQR SA Sxi Sm Sh0 SS Sn Sa SKrit

1 13.4 34.3 42.0 4.1 115.0 6.3 42.1 30.8 3.3 47.2 4.2 12.7 10
2 U U U 1.0 U 0.2 33.9 15.2 7.3 16.6 8.3 23.4 5
3 3.9 97.2 102.4 4.4 U U U 8.4 1.4 U 9.2 1.8 5
4 3.8 U 5.2 8.5 U 4.5 U U 7.0 U 7.7 30.5 0.1
5 U 0.3 U U U 0.9 U 8.6 1.6 U 16.7 U 0.1
6* 30.0 U 0.1 7.5 U 3.2 U U 3.0 U 4.2 6.8 -

6. Results

The obtained final parameter values of the Anand material model are summarized in
Table 6 and the FEM analyses were performed with these material parameters. The value
of the Poisson ratio was µ = 0.33. Figures 4 and 5 show a comparison of experiments with
results from the FEM analysis.

Table 6. Final parameter values.

E20
[MPa]

E50
[MPa]

E80
[MPa]

s0
[MPa]

Q/R
[K]

A
[1/s]

xi
m
[−]

h0
[MPa]

^
S

[MPa]

n
[−]

a
[−]

1196 1224 997 18.0 9486 3263 8.82 0.213 138,175 43.6 0.0226 3.527

Figure 4. Comparison of experiments with FEM solutions: (a) indentation test at 23 ◦C; (b) tensile test at 23 ◦C and rate of
deformation of 1.667 mm s−1.

Figure 5. Cont.
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Figure 5. Comparison of experiments with FEM solutions (continuation): (a) tensile test at 60 ◦C and rate of deformation
of 0.017 mm s−1; (b) tensile test 60 ◦C and rate of deformation of 0.167 mm s−1; (c) indentation test at 60 ◦C; (d) tensile
test at 60 ◦C and rate of deformation of 1.667 mm s−1; (e) graded tensile test at 60 ◦C; (f) tensile test at 80 ◦C and rate of
deformation of 0.017 mm s−1; (g) indentation test at 80 ◦C; (h) graded tensile test at 80 ◦C.

Very good agreement can be seen between the experiments and the FEM solution.
Different behavior just before the failure of the specimen is shown in Figure 5a,b,d–f,h.
This behavior is less significant under lower temperatures and higher deformation rates.
The difference can be seen in Figure 5a,f especially (temperatures of 60 and 80 ◦C and
deformation rate of 0.017 m s−1). This effect was not captured in the simulations.

7. Validation

Validation testing was carried out on a series of experiments at 44 ◦C. Experiments
at this temperature were not used for material parameter identification. The results are
shown in Figure 6. In Figure 6, a very good agreement can be seen between FEM solutions
and experiments. The greater error occurs just before the failure of the specimen, as also
mentioned in the previous chapter. The conclusion is that the material models with those
material parameters do not accurately describe the mechanical behavior shortly before the
sample ruptures. In order to describe this area of difference better, more experiments will
be necessary, especially focused on this small area. If no experiments of this kind are carried
out, the influence of this small area on the value of the objective function is negligible.



Materials 2021, 14, 587 12 of 14

Figure 6. Comparison of FEM solutions with validation experiments at 44 ◦C: (a) simple tensile test at rate of deformation
of 0.017 mm s−1; (b) simple tensile test at rate of deformation of 0.167 mm s−1; (c) graded tensile test; (d) indentation
experiment.

8. Discussion

The GA modification was used to identify the parameter values. In order to reduce
the number of calculation cycles and individuals in the GA population, the number of
parameters was reduced by means of sensitivity control. The sensitivity calculation was
performed at the beginning of the solution, and then again when the GA convergence rate
decreases significantly.

Further sensitivity tests showed that if some parameters are changed there is still
a decrease, while others are at their minima in the range tested (see table of resulting
sensitivity U). In subsequent cycles, the value of the objective function gradually decreased
in the range of 0.01% to 100 GA steps. This value decreased further in each cycle. The
resulting effects of these calculations on the value of the objective function and the values
of parameters were negligible, and therefore are not described in this contribution.

The Anand constitutive model used in this article contained 9 parameters and 3 moduli
of elasticity, which were identified for temperatures of 20, 50, and 80 ◦C. Figure 3a shows
the influence of temperatures on the value of E. This dependence appeared at all speeds
tested, so it was included in the identification, although its effect was not significant.
Input values of the material parameters were taken from [1] for the ABS-M30 material
and determined at a temperature of 23 ◦C and displacement rate of 1 mm s−1 from tensile
tests and indentation tests, while the Poisson’s ratio was determined from tensile tests
with DIC. These experiments were not used for identification in this contribution because
they showed large differences (originally E = 1780 MPa, new value E = 1100 MPa) in the
behavior compared to the results presented above. The authors believe that this was due to
a difference in the supply of the material and different 3D printing settings.

In [1], indentation and DIC measurement data were also used to identify and validate
the results. When using a temperature chamber, it was not possible to perform DIC
measurements—more extensive modifications of the experimental equipment would be
necessary. In the case of DIC, this mainly involves determining the value of the Poisson
ratio, which was, therefore, taken from [1]. Indentation tests describe the behavior of multi-
axial stresses in the area above the yield point in the compression area. Tensile tests carried
out at lower temperatures and higher speeds (Figure 3b,c) show almost linear behavior.

The use of different types of experiments (e.g., tensile tests, indentation tests) for
identification or at least for validation is the key for the further use of the identified
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parameters. Indentation, tensile, and graded tensile tests at 44 ◦C were used for validation
(see [28]). Components produced using 3D printing are not only loaded by tension, so
the authors assume that after modifying the experimental equipment, a different set of
experiments will be performed. On the other hand, conventional components are loaded in
the area corresponding to the first half of the loading curve, where tensile tests in particular
show very good agreement with the FEM solution.

9. Conclusions

The obtained results show the possibility of finding the material model parameters
using indentation or tensile tests. The results of the FEM calculations are in good agreement
with the data obtained experimentally. Attention will be paid to the modification of the
test equipment in order to enable DIC measurements. The Anand material model can
be used for specimens loaded at different temperatures. It was found that the Anand
material model describes the behavior of the ABS-M30 material very well with respect
to different temperatures and loading speeds. On the other hand, the Anand model is
not able to capture the anisotropic behavior of the investigated material sufficiently. For
tests on specimens printed in the most unfavorable position (related to the load capacity
of the specimen), the material model parameters identified as described above will give
conservative results and the model can be used to design components. Studies on a more
advanced material model that includes the effects of material anisotropy and a damage
model are currently in progress. The proposed identification methodology is not dependent
on the material model.
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