Supplementary Material

The Effect of Binder Loading on the Pore Size of 3D Printed PMMA

Simon Riechmann ${ }^{1,2, *}$, Odo Wunnicke ${ }^{2}$ and Arno Kwade ${ }^{1}$

Citation: Riechmann, S.; Wunnicke,
O.; Kwade, A. The Effect of Binder

Loading on the Pore Size of 3D
Printed PMMA. Materials 2021, 14,
1190. https://doi.org/10.3390/
ma14051190

Academic Editor: Massimiliano
Avalle

Received: 31 January 2021
Accepted: 23 February 2021
Published: 3 March 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/).

Figure S1. Cross sect ion of tensile road with surface area measurement. This is used to adjust the Tensile strength at 45% BL. Originally the width of 20.04 mm and height 5.28 mm were measured with a caliper.

Figure S2. Tensile strength as a function of Saturation with linear interpolation in the transition area to predict the Tensile strength. The print job with 45% BL calculates to a Saturation over 100%. This is not possible and explains the high shape deviation. Due to the binder migration into surrounding powder it is assumed that a BL of 100% is achieved.

