

Supplementary Materials

Synthesis, polymorphism and thermal decomposition process of (n-C₄H₉)₄NRE(BH₄)₄ for RE = Ho, Tm and Yb

Wojciech Wegner 1,2,* and Tomasz Jaroń 2,*

- ¹ College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
- ² Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
- * Correspondence: w.wegner@cent.uw.edu.pl (W.W.), t.jaron@cent.uw.edu.pl. (T.J.)

Contents

1. PXRD patterns, Rietveld refinement and structural information	
2. Thermal decomposition	
3. Solid decomposition products	
4. Preliminary CIF of α -TBAHoB from SC-XRD data (100 K)	
5. FTIR spectra of as-milled samples.	

Citation: Wegner, W.; Jaroń, T.; Synthesis, Polymorphism and Thermal Decomposition Process of (n-C₄H₉)₄NRE(BH₄)₄ for RE = Ho, Tm and Yb. *Materials* **2021**, *14*, 1329. https://doi.org/10.3390/ma14061329

Academic Editor: Jacques Huot

Received: 27 January 2021 Accepted: 4 March 2021 Published: 10 March 2021

 Publisher's
 Note:
 MDPI
 stays

 neutral with
 regard
 to
 jurisdictional

 claims
 in
 published
 maps
 and

 institutional affiliations.
 state
 state
 state

Copyright: © 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/).

1. PXRD Patterns, Rietveld Refinement and Structural Information

Figure S1. Rietveld refinement for as-milled sample **Ho**. Black curve represents experimental data, red curve – calculated profile. The position of the Bragg reflections has been marked and the difference curve (between the experimental and calculated profiles) are plotted at the bottom. Inset: the low angle region. GOF = 1.73; Rp = 0.73; wRp = 1.06. Wavelength: Cu (K_{a1} and K_{a2}). Bragg reflections marked, from top to bottom, for: LiCl and α -TBAHoB.

Figure S2. Rietveld refinement for as-milled sample **Tm**. Black curve represents experimental data, red curve – calculated profile. The position of the Bragg reflections has been marked and the difference curve (between the experimental and calculated profiles) are plotted at the bottom. Inset: the low angle region. GOF = 1.64; Rp = 0.69; wRp = 0.97. Wavelength: Cu (K_{a1} and K_{a2}). Bragg reflections marked, from top to bottom, for: β -TBATmB, LiCl and α -TBATmB.

Figure S3. Rietveld refinement for as-milled sample **Yb**. Black curve represents experimental data, red curve – calculated profile. The position of the Bragg reflections has been marked and the difference curve (between the experimental and calculated profiles) are plotted at the bottom. Inset: the low angle region. GOF = 0.03; Rp = 1.29; wRp = 1.71. Wavelength: Cu (K_{a1} and K_{a2}). Bragg reflections marked, from top to bottom, for: LiCl and β-TBAYbB.

Figure S4. PXRD patterns with subtracted backgrounds for as-milled **Ho** sample (containing LiCl, marked *), purified **Ho** (with unknown impurities, marked #) and simulated pattern of α -TBAHoB (from cif, crystal structure obtained from Rietvield refinement).

Figure S5. PXRD patterns with subtracted backgrounds for as-milled **Tm** sample (containing LiCl, marked *), purified **Tm** (with unknown impurities, marked #) and simulated patterns of α -TBATmB and β -TBATmB (from cifs, crystal structures obtained from Rietvield refinement).

Compd.	α-ΤΒΑ	YB [41]	α-ΤΒ	AHoB	a-TBATmB	3 β-TBAHoB		β-TBATmB				β-ΤΒ	АҮҌВ	β-TBAScB [42]	
<i>RE</i> ³⁺ r ¹ [Å]	0.9	900	0.9	901	0.880		0.901		0.880				0.868		0.745
spc. group	P2	21/C	P2	21/c	<i>P</i> 21/c		Pnna		Pnna				Pnna		Pnna
T [K]	100	RT	100	RT	RT	100	200	300	100	200	300	RT	100	RT	RT
a [Å]	11.0453(5)	11.4181(10)	11.039(3)	11.4218(9)	11.4063(18)	18.5597(8)	18.9387(15)	19.3238(12)	18.5303(5)	18.9730(6)	19.3409(16)	19.287(3)	18.5673(9)	19.2235(10)	19.1399(10)
b [Å]	20.0099(9)	20.510(3)	19.999(2)	20.553(2)	20.545(4)	11.9188(3)	11.9783(8)	12.0529(5)	11.8902(4)	11.9295(4)	12.0279(11)	12.0317(17)	11.8735(5)	11.9943(6)	11.8849(6)
c [Å]	14.7204(8)	15.2811(19)	14.708(4)	15.3049(17)	15.319(3)	11.7871(4)	11.8153(9)	11.8820(6)	11.7514(3)	11.7754(4)	11.8749(12)	11.8591(19)	11.7096(5)	11.8244(6)	11.7325(6)
β [°]	127.980(5)	129.464(8)	128.02(4)	129.433(7)	129.423(12)	90	90	90	90	90	90	90	90	90	90
V [Å ³]	2564.44	2762.77	2558.1(10)	2775.0(5)	2773.1(10)	2607.42(16)	2680.3(3)	2767.4(3)	2589.17(13)	2665.23(15)	2762.5(4)	2751.9(7)	2581.5(2)	2726.4(2)	2668.9(2)
Z		4		4	4		4				4			4	4

Table S1. supplementary to Table 2. Unit cell dimensions for TBAREB, RE = Y, Ho, Tm, Yb, Sc. 100/200/300 K obtained from SC-XRD, RT from PXRD.

¹ Effective ionic radius (6-coordinate, octahedral environment) from [54]

Compd.	α-ΤΒΑ	YB [41]	a-TB.	a-TBATmB		
<i>RE</i> ³⁺ r ¹ [Å]	0.9	900	0.9	901	0.880	
spc. group	P2	1/c	P2	P21/c		
T [K]	100 RT		100	RT	RT	
a [Å]	11.0453(5)	11.4181(10)	11.039(3)	11.4218(9)	11.4063(18)	
b [Å]	20.0099(9)	20.510(3)	19.999(2)	20.553(2)	20.545(4)	
c [Å]	14.7204(8)	15.2811(19)	14.708(4)	15.3049(17)	15.319(3)	
β [°]	127.980(5)	129.464(8)	128.02(4)	129.433(7)	129.423(12)	
V [Å ³]	2564.44 2762.77		2558.1(10) 2775.0(5)		2773.1(10)	
Z	4	4	4	4		

Compd.		β-ΤΒΑΗοΒ			β-ΤΒ/	ATmB	β-ΤΒ.	β-TBAScB [42]		
<i>RE</i> ³⁺ r ¹ [Å]		0.901			0.8	380	0.0	0.745		
spc. group		Pnna			Pr	ina	Pr	Pnna		
T [K]	100	200	300	100	200	300	RT	100	RT	RT
a [Å]	18.5597(8)	18.9387(15)	19.3238(12)	18.5303(5)	18.9730(6)	19.3409(16)	19.287(3)	18.5673(9)	19.2235(10)	19.1399(10)
b [Å]	11.9188(3)	11.9783(8)	12.0529(5)	11.8902(4)	11.9295(4)	12.0279(11)	12.0317(17)	11.8735(5)	11.9943(6)	11.8849(6)
c [Å]	11.7871(4)	11.8153(9)	11.8820(6)	11.7514(3)	11.7754(4)	11.8749(12)	11.8591(19)	11.7096(5)	11.8244(6)	11.7325(6)
β [°]	90	90	90	90	90	90	90	90	90	90
V [Å ³]	2607.42(16)	2680.3(3)	2767.4(3)	2589.17(13)	2665.23(15)	2762.5(4)	2751.9(7)	2581.5(2)	2726.4(2)	2668.9(2)
Z	4			4					4	4

Figure S6. Nitrogen centers of TBA⁺ cations (marked gray) and RE^{3+} (here RE = Tm, marked blue) in α -TBAREB.

Figure S7. Honeycomb-like structure of nitrogen centers of TBA⁺ cations (marked gray) and RE^{3+} (here RE = Tm, marked blue) in β -TBA*REB*.

Figure S8. *RE*...N distances for α -TBAHoB (atoms marked red) and α -TBATmB (atoms marked blue), crystal structures obtained from PXRD. Left: TBA⁺, right: [RE(BH₄)₄]⁻. H atoms are not included.

Figure S9. Evolution of *a*, *b*, and *c* lattice parameters of β-TBAHoB and β-TBATmB in the function of temperature. SC-XRD data.

2. Thermal decomposition

Figure S10. TGA/DSC curves of the as-milled samples (a) Ho, (b) Yb and (c) Tm, up to 650 °C.

Figure S11. MS spectrum for Ho sample. Top: linear scale; bottom: logarithmic scale; right: m/z value legend.

0.220000 0.210000 Ion Current [E-08A]

Figure S12. MS spectrum for Tm sample. Top: linear scale; bottom: logarithmic scale; right: m/z value legend.

Figure S13. MS spectrum for Yb sample. Top: linear scale; bottom: logarithmic scale; right: m/z value legend.

70 65 100 200 300 400 500 600 Temperature /°C

Figure S15. TGA/DSC curves for Tm sample.

Figure S16. TGA/DSC curves for Yb sample.

3. Solid decomposition products

Figure S17. PXRD pattern (with subtracted background) of Ho sample heated to 650 °C, and simulated patterns of identified crystalline pyrolysis products [66-69].

Figure S18. PXRD pattern (with subtracted background) of **Tm** sample heated to 650 °C, and simulated patterns of identified crystalline pyrolysis products [67,69].

Figure S19. PXRD pattern (with subtracted background) of Yb sample heated to 650 °C, and simulated patterns of identified crystalline pyrolysis products [67,69,70].

4. Preliminary CIF of α -TBAHoB from SC-XRD data (100 K)

data_Ho_3	
_audit_creation_date	2020-12-14
_audit_creation_method	
;	
Olex2 1.2	
(compiled 2018.05.29 svn.r3508 for C	DlexSys, GUI svn.r5506)
;	
_audit_contact_author_address	?
_audit_contact_author_email	?
_audit_contact_author_name	"
_audit_contact_author_phone	?
_publ_contact_author_id_orcid	?
_publ_section_references	
;	
Bourhis, L.J., Dolomanov, O.V., Gild	ea, R.J., Howard, J.A.K., Puschmann, H.
(2015). Acta Cryst. A71, 59-75.	
Dolomanov, O.V., Bourhis, L.I., Gild	ea, R.I. Howard, I.A.K. & Puschmann, H.
(2009), J. Appl. Cryst. 42, 339-341.	
Sheldrick, G.M. (2015). Acta Cryst. A	
;	
_chemical_formula_moiety	'B4 H16 Ho, C16 H36 N'
_chemical_formula_sum	'C16 H52 B4 Ho N'
_chemical_formula_weight	466.83
_chemical_oxdiff_formula	'Ho B4 N C16 H52'
_chemical_oxdiff_usercomment	'100 K '
loop_	
_atom_type_symbol	
_atom_type_scat_dispersion_real	
_atom_type_scat_dispersion_imag	
_atom_type_scat_Cromer_Mann_a	a1
_atom_type_scat_Cromer_Mann_a	a2
_atom_type_scat_Cromer_Mann_a	a3
_atom_type_scat_Cromer_Mann_a	a4
_atom_type_scat_Cromer_Mann_1	b1
_atom_type_scat_Cromer_Mann_	b2
_atom_type_scat_Cromer_Mann_	b3
_atom_type_scat_Cromer_Mann_	b4
_atom_type_scat_Cromer_Mann_	с

_atom_type_scat_source _atom_type_scat_dispersion_source H 0.00000 0.00000 0.49300 0.32291 0.14019 0.04081 10.51090 26.12570 3.14236 57.79970 0.0030380000826 'International Tables Volume C Table 6.1.1.4 (pp. 500-502)' 'Henke, Gullikson and Davis, At. Data and Nucl. Data Tables, 1993, 54, 2' C 0.01920 0.00962 2.31000 1.02000 1.58860 0.86500 20.84390 10.20750 0.56870 51.65120 0.215599998832 'International Tables Volume C Table 6.1.1.4 (pp. 500-502)' 'Henke, Gullikson and Davis, At. Data and Nucl. Data Tables, 1993, 54, 2' B 0.00963 0.00408 2.05450 1.33260 1.09790 0.70680 23.21850 1.02100 60.34980 0.14030 -0.193200007081 'International Tables Volume C Table 6.1.1.4 (pp. 500-502)' 'Henke, Gullikson and Davis, At. Data and Nucl. Data Tables, 1993, 54, 2' Ho -15.55474 4.01359 26.90490 17.29400 14.55830 3.63837 2.07051 0.19794 11.44070 92.65660 4.56795978546 'International Tables Volume C Table 6.1.1.4 (pp. 500-502)' 'Henke, Gullikson and Davis, At. Data and Nucl. Data Tables, 1993, 54, 2' N 0.03256 0.01839 12.21260 3.13220 2.01250 1.16630 0.00570 9.89330 28.99750 0.58260 -11.5290002823 'International Tables Volume C Table 6.1.1.4 (pp. 500-502)' 'Henke, Gullikson and Davis, At. Data and Nucl. Data Tables, 1993, 54, 2'

_space_group_crystal_system	'monoclinic'
_space_group_IT_number	14
_space_group_name_H-M_alt	'P 1 21/n 1'
_space_group_name_Hall	'-P 2ybc (x-z,y,z)'
loop_	
_space_group_symop_id	
_space_group_symop_operation	_xyz
1 x,y,z	
2 -x+1/2,y+1/2,-z+1/2	
3 -x,-y,-z	
4 x-1/2,-y-1/2,z-1/2	

_symmetry_Int_Tables_number	14
_cell_length_a	11.0380(13)
_cell_length_b	20.019(2)
_cell_length_c	11.7510(13)
_cell_angle_alpha	90
_cell_angle_beta	99.643(12)
_cell_angle_gamma	90

_cell_volume	2559.9(5)
_cell_formula_units_Z	4
_cell_measurement_reflns_used	2465
_cell_measurement_temperature	100.01(10)
_cell_measurement_theta_max	53.3510
_cell_measurement_theta_min	4.1310
_exptl_absorpt_coefficient_mu	5.705
_exptl_absorpt_correction_T_max	0.11351
_exptl_absorpt_correction_T_min	0.04401
_exptl_absorpt_correction_type	sphere
_exptl_absorpt_process_details	

;

CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Spherical absorption correction

using equivalent radius and absorption coefficient. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

;

_exptl_crystal_colour	'clear colourless'
_exptl_crystal_colour_lustre	clear
_exptl_crystal_colour_modifier	
_exptl_crystal_colour_primary	colourless
_exptl_crystal_density_diffrn	1.2111
_exptl_crystal_description	block
_exptl_crystal_F_000	907.1993
_diffrn_reflns_av_R_equivalents	0.1682
_diffrn_reflns_av_unetI/netI	0.1386
_diffrn_reflns_limit_h_max	11
_diffrn_reflns_limit_h_min	-11
_diffrn_reflns_limit_k_max	15
_diffrn_reflns_limit_k_min	-21
_diffrn_reflns_limit_l_max	12
_diffrn_reflns_limit_l_min	-10
_diffrn_reflns_number	10865
_diffrn_reflns_theta_full	55.7871
_diffrn_reflns_theta_max	55.79
_diffrn_reflns_theta_min	4.41
_diffrn_ambient_environment	N~2~
_diffrn_ambient_temperature	100.01(10)
_diffrn_detector	'CCD plate'
_diffrn_detector_area_resol_mean	5.2687
_diffrn_detector_type	Atlas

_diffrn_measured_fraction_theta_full 0.9746 _diffrn_measured_fraction_theta_max 0.9746 _diffrn_measurement_details

;

List of Runs (angles in degrees, time in seconds):

#]	Гуре	Start	End	Width	t~exp~	\w	\.	1	\k	\f	Frames	
		-84.00 -	 39.00	1.00	4.00		 0.00 17	78.00 1	50.00	45		
2	\w	-22.00	71.00	1.00	4.00		0.00	38.00	90.00	93		
3	\w	-22.00	71.00	1.00	4.00		0.00	38.00-	180.00	93		
4	\w	32.00	106.00	1.00	16.00		68.24 -	99.00	30.00	74		
5	\w	-2.00	94.00	1.00	16.00		68.24 -	57.00	90.00	96		
6	\w	54.00	112.00	1.00	16.00		68.24-1	25.00-	180.00	58		
7	∖w	-2.00	94.00	1.00	16.00		68.24 -	57.00-1	80.00	96		
8	\w	-3.00	90.00	1.00	16.00		68.24 -	38.00-1	20.00	93		
9	\w	-8.00 1	104.00	1.00	16.00		68.24 -1	9.00 1	20.00	112		
10	\w	-3.00	90.00	1.00	16.00		68.24 -	38.00	0.00	93		
11	\w	32.00	77.00	1.00	16.00		68.24 -	99.00 -	30.00	45		
;												
_diff	rn_mea	asuremer	nt_devic	ce	'four-	circle	diffract	ometer	.'			
_diff	rn_mea	asuremer	nt_devic	e_type								
'Suj	perNov	ra, Single	source	at offset	/far, Atla	s'						
_diff	rn_mea	asuremer	nt_meth	'∖w	scans'							
_diff	rn_orie	ent_matri	x_type									
'Cry	ysAlisP	ro conve	ntion (1	999,Acta	a A55,543	8-557)'						
_diff	rn_orie	ent_matri	x_UB_1	.1	-0.1279	904600	0					
_diff	rn_orie	ent_matri	x_UB_1	2	-0.0124	439600	0					
_diff	rn_orie	ent_matri	x_UB_1	.3	0.0318	861000)					
_diff	rn_orie	ent_matri	x_UB_2	21	-0.0260	07600	0					
_diff	rn_orie	ent_matri	x_UB_2	22	-0.0531	117700	0					
_diff	rn_orie	ent_matri	x_UB_2	23	-0.0958	320000	0					
_diff	rn_orie	ent_matri	x_UB_3	81	0.0546	008000)					
_diff	rn_orie	ent_matri	x_UB_3	32	-0.0543	321100	0					
_diff	rn_orie	ent_matri	x_UB_3	33	0.0865	516000)					
_diff	rn_rad	iation_m	onochro	omator	mirror							
_diff	rn_rad	iation_pr	obe		x-ray							
_diffrn_radiation_type					'Cu K∖a	a'						
_diff	rn_rad	iation_w	aveleng	th	1.54184							
_diff	rn_sou	rce			'micro-	-focus	sealed 2	X-ray t	ube'			
_diff	rn_sou	rce_type			'Super	Nova	(Cu) X-1	ay Sou	ırce'			
_refl	ns_Frie	del_cove	0.0									

_reflns_limit_h_max	7
_reflns_limit_h_min	-11
_reflns_limit_k_max	21
_reflns_limit_k_min	0
_reflns_limit_l_max	12
_reflns_limit_l_min	-7
_reflns_number_gt	1741
_reflns_number_total	3228
_reflns_odcompleteness_completen	ness 98.43
_reflns_odcompleteness_iscentric	1
_reflns_odcompleteness_theta	54.18
_reflns_threshold_expression	I>=2u(I)
_computing_cell_refinement	'CrysAlisPro 1.171.39.46 (Rigaku OD, 2018)'
_computing_data_collection	'CrysAlisPro 1.171.39.46 (Rigaku OD, 2018)'
_computing_data_reduction	'CrysAlisPro 1.171.39.46 (Rigaku OD, 2018)'
_computing_molecular_graphics	'Olex2 (Dolomanov et al., 2009)'
_computing_publication_material	'Olex2 (Dolomanov et al., 2009)'
_computing_structure_refinement	'olex2.refine (Bourhis et al., 2015)'
_computing_structure_solution	'ShelXT (Sheldrick, 2015)'
_refine_diff_density_max	5.7607
_refine_diff_density_min	-3.1144
_refine_diff_density_rms	0.4787
_refine_ls_d_res_high	0.9322
_refine_ls_d_res_low	10.0270
_refine_ls_goodness_of_fit_ref	1.6461
_refine_ls_hydrogen_treatment	mixed
_refine_ls_matrix_type	full
_refine_ls_number_constraints	53
_refine_ls_number_parameters	252
_refine_ls_number_reflns	3228
_refine_ls_number_restraints	40
_refine_ls_R_factor_all	0.2576
_refine_ls_R_factor_gt	0.1996
_refine_ls_restrained_S_all	1.6352
_refine_ls_shift/su_max	0.0767
_refine_ls_shift/su_mean	0.0038
_refine_ls_structure_factor_coef	Fsqd
_refine_ls_weighting_details	
'w=1/[\s^2^(Fo^2^)+(0.2P)^2^] wh	nere P=(Fo^2^+2Fc^2^)/3'
_refine_ls_weighting_scheme	calc
_refine_ls_wR_factor_gt	0.4724
_refine_ls_wR_factor_ref	0.5140

_olex2_refinement_description ; 1. Fixed Uiso At 1.2 times of: All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2. Restrained distances B00L-H5aa \\sim B00L-Hl \\sim B00L-Hq \\sim B00L-Hp \\sim B00M-H6aa \\sim B00M-Hf \\sim B00M-Hi ~ B00I-Hh \\sim B00I-H3aa \\sim B00I-Hj \\sim B00I-Hm \\sim B00M-Hn \\sim B00J-Ho \\sim B00J-H4aa \\sim B00J- $Hg \setminus sim B00J-Hk$ with sigma of 0.01 3. Restrained angles Hk-B00J-Ho fixed at 109.471 with sigma of 0.02 Hk-B00J-H4aa fixed at 109.471 with sigma of 0.02 Hk-B00J-Hg fixed at 109.471 with sigma of 0.02 Ho-B00J-H4aa fixed at 109.471 with sigma of 0.02 Ho-B00J-Hg fixed at 109.471 with sigma of 0.02 H4aa-B00J-Hg fixed at 109.471 with sigma of 0.02 H3aa-B00I-Hj fixed at 109.471 with sigma of 0.02 H3aa-B00I-Hm fixed at 109.471 with sigma of 0.02 H3aa-B00I-Hh fixed at 109.471 with sigma of 0.02 Hj-B00I-Hm fixed at 109.471 with sigma of 0.02 Hj-B00I-Hh fixed at 109.471 with sigma of 0.02 Hm-B00I-Hh fixed at 109.471 with sigma of 0.02 Hp-B00L-Hq fixed at 109.471 with sigma of 0.02 Hp-B00L-Hl

fixed at 109.471 with sigma of 0.02 Hp-B00L-H5aa fixed at 109.471 with sigma of 0.02 Hq-B00L-Hl fixed at 109.471 with sigma of 0.02 Hq-B00L-H5aa fixed at 109.471 with sigma of 0.02 Hl-B00L-H5aa fixed at 109.471 with sigma of 0.02 Hf-B00M-H6aa fixed at 109.471 with sigma of 0.02 Hf-B00M-Hi fixed at 109.471 with sigma of 0.02 Hf-B00M-Hn fixed at 109.471 with sigma of 0.02 H6aa-B00M-Hi fixed at 109.471 with sigma of 0.02 H6aa-B00M-Hn fixed at 109.471 with sigma of 0.02 Hi-B00M-Hn fixed at 109.471 with sigma of 0.02 4. Uiso/Uaniso restraints and constraints Uiso(Hk) = Uiso(H4aa) = Uiso(Ho) = Uiso(Hg) = Uiso(Hp) = Uiso(Hq) = Uiso(Hl) = Uiso(H5aa) = Uiso(H6aa) = Uiso(Hf) = Uiso(Hn) = Uiso(Hi) = Uiso(Hh) = Uiso(H3aa) = Uiso(Hj) = Uiso(Hm)5.a Secondary CH2 refined with riding coordinates: C003(H00a,H00b), C004(H00c,H00d), C005(H00e,H00f), C006(H00g,H00h), C007(H00i, H00j), C008(H00k,H00l), C00A(H00p,H00q), C00B(H00r,H00s), C00E(H00z,H), C00F(H00,Ha), C00G(H0aa,Hb), C00H(H1aa,Hc) 5.b Idealised Me refined as rotating group: C009(H00m,H00n,H00o), C00C(H00t,H00u,H00v), C00D(H00w,H00x,H00y), C00K(H2aa, Hd,He) ; _atom_sites_solution_primary dual loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type

_atom_site_occupancy

_atom_site_refinement_flags_posn Ho01 Ho 0.79220(19) 0.68774(10) 0.46389(19) 0.0662(11) Uani 1.000000 . N002 N 0.2623(18) 0.6236(11) 0.3505(17) 0.053(6) Uani 1.000000 . C003 C 0.279(2) 0.7493(14) 0.374(3) 0.059(7) Uani 1.000000 . H00a H 0.327(2) 0.7455(14) 0.450(3) 0.071(9) Uiso 1.000000 R H00b H 0.335(2) 0.7504(14) 0.319(3) 0.071(9) Uiso 1.000000 R C004 C 0.326(3) 0.6174(16) 0.248(2) 0.068(8) Uani 1.000000 . H00c H 0.267(3) 0.6279(16) 0.180(2) 0.082(10) Uiso 1.000000 R H00d H 0.389(3) 0.6513(16) 0.255(2) 0.082(10) Uiso 1.000000 R C005 C 0.384(3) 0.5513(16) 0.227(3) 0.078(10) Uani 1.000000. H00e H 0.446(3) 0.5406(16) 0.293(3) 0.094(12) Uiso 1.000000 R H00f H 0.322(3) 0.5166(16) 0.220(3) 0.094(12) Uiso 1.000000 R C006 C 0.446(3) 0.5525(16) 0.115(2) 0.074(9) Uani 1.000000 . H00g H 0.470(3) 0.5073(16) 0.100(2) 0.088(11) Uiso 1.000000 R H00h H 0.383(3) 0.5653(16) 0.051(2) 0.088(11) Uiso 1.000000 R C007 C 0.079(2) 0.5583(16) 0.232(2) 0.065(8) Uani 1.000000 . H00i H 0.032(2) 0.5992(16) 0.214(2) 0.078(9) Uiso 1.000000 R H00j H 0.124(2) 0.5492(16) 0.170(2) 0.078(9) Uiso 1.000000 R C008 C 0.198(2) 0.6894(12) 0.3501(19) 0.045(6) Uani 1.000000 . H00k H 0.147(2) 0.6951(12) 0.2754(19) 0.054(7) Uiso 1.000000 R H00l H 0.144(2) 0.6878(12) 0.4074(19) 0.054(7) Uiso 1.000000 R C009 C -0.091(3) 0.4830(15) 0.138(3) 0.080(10) Uani 1.000000 . H00m H -0.045(4) 0.463(10) 0.085(8) 0.120(14) Uiso 1.000000 GR H00n H -0.152(13) 0.452(9) 0.156(4) 0.120(14) Uiso 1.000000 GR H00o H -0.131(16) 0.523(2) 0.104(11) 0.120(14) Uiso 1.000000 GR C00A C 0.207(3) 0.8140(13) 0.365(3) 0.063(8) Uani 1.000000 . H00p H 0.161(3) 0.8181(13) 0.287(3) 0.075(9) Uiso 1.000000 R H00q H 0.147(3) 0.8113(13) 0.417(3) 0.075(9) Uiso 1.000000 R C00B C 0.169(2) 0.5660(15) 0.349(2) 0.064(8) Uani 1.000000 . H00r H 0.213(2) 0.5244(15) 0.365(2) 0.077(9) Uiso 1.000000 R H00s H 0.121(2) 0.5733(15) 0.410(2) 0.077(9) Uiso 1.000000 R C00C C 0.283(3) 0.8772(16) 0.394(3) 0.093(11) Uani 1.000000 . H00t H 0.335(17) 0.884(7) 0.337(12) 0.139(17) Uiso 1.000000 GR H00u H 0.229(3) 0.915(3) 0.39(2) 0.139(17) Uiso 1.000000 GR H00v H 0.333(18) 0.873(5) 0.469(10) 0.139(17) Uiso 1.000000 GR C00D C 0.552(2) 0.5963(14) 0.114(2) 0.064(8) Uani 1.000000 . H00w H 0.558(10) 0.608(8) 0.036(3) 0.096(12) Uiso 1.000000 GR H00x H 0.543(8) 0.636(4) 0.157(13) 0.096(12) Uiso 1.000000 GR H00y H 0.626(3) 0.573(3) 0.149(14) 0.096(12) Uiso 1.000000 GR C00E C 0.310(2) 0.6162(13) 0.572(2) 0.052(7) Uani 1.000000 . H00z H 0.259(2) 0.5773(13) 0.578(2) 0.063(8) Uiso 1.000000 R

H H 0.261(2) 0.6559(13) 0.577(2) 0.063(8) Uiso 1.000000 R C00F C -0.007(3) 0.5009(15) 0.246(3) 0.078(9) Uani 1.000000 . H00 H 0.042(3) 0.4620(15) 0.273(3) 0.093(11) Uiso 1.000000 R Ha H -0.056(3) 0.5125(15) 0.305(3) 0.093(11) Uiso 1.000000 R C00G C 0.420(3) 0.6158(17) 0.669(2) 0.077(9) Uani 1.000000 . H0aa H 0.476(3) 0.5805(17) 0.655(2) 0.092(11) Uiso 1.000000 R Hb H 0.463(3) 0.6581(17) 0.670(2) 0.092(11) Uiso 1.000000 R C00H C 0.358(2) 0.6153(15) 0.463(2) 0.062(8) Uani 1.000000 . H1aa H 0.401(2) 0.5733(15) 0.459(2) 0.074(9) Uiso 1.000000 R Hc H 0.418(2) 0.6508(15) 0.466(2) 0.074(9) Uiso 1.000000 R B00I B 0.654(3) 0.7768(17) 0.508(3) 0.066(9) Uani 1.000000 D B00J B 0.685(2) 0.5817(15) 0.467(3) 0.053(8) Uani 1.000000 D C00K C 0.378(3) 0.6048(17) 0.783(2) 0.075(9) Uani 1.000000 . H2aa H 0.349(18) 0.560(3) 0.787(8) 0.113(14) Uiso 1.000000 GR Hd H 0.446(5) 0.612(10) 0.844(2) 0.113(14) Uiso 1.000000 GR He H 0.313(13) 0.635(7) 0.790(8) 0.113(14) Uiso 1.000000 GR B00L B 0.982(2) 0.6864(18) 0.615(3) 0.075(11) Uani 1.000000 D B00M B 0.849(3) 0.701(2) 0.273(4) 0.094(14) Uani 1.000000 D H4aa H 0.796(7) 0.614(7) 0.473(13) 0.069(19) Uiso 1.000000 D H6aa H 0.952(8) 0.738(6) 0.315(12) 0.069(19) Uiso 1.000000 D Hf H 0.828(13) 0.656(6) 0.356(9) 0.069(19) Uiso 1.000000 D H3aa H 0.704(13) 0.732(5) 0.592(9) 0.069(19) Uiso 1.000000 D Hg H 0.654(13) 0.579(7) 0.575(6) 0.069(19) Uiso 1.000000 D Hh H 0.726(11) 0.780(8) 0.424(9) 0.069(19) Uiso 1.000000 D Hi H 0.866(13) 0.668(7) 0.175(8) 0.069(19) Uiso 1.000000 D Hj H 0.537(6) 0.756(7) 0.461(12) 0.069(19) Uiso 1.000000 D Hk H 0.695(14) 0.518(3) 0.426(12) 0.069(19) Uiso 1.000000 D H5aa H 0.966(13) 0.744(4) 0.552(10) 0.069(19) Uiso 1.000000 D HI H 1.010(13) 0.635(5) 0.547(9) 0.069(19) Uiso 1.000000 D Hm H 0.649(14) 0.839(3) 0.557(11) 0.069(19) Uiso 1.000000 D Hn H 0.749(8) 0.743(6) 0.248(13) 0.069(19) Uiso 1.000000 D Ho H 0.596(10) 0.616(6) 0.394(10) 0.069(19) Uiso 1.000000 D Hp H 0.875(8) 0.672(7) 0.656(12) 0.069(19) Uiso 1.000000 D Hq H 1.076(9) 0.695(7) 0.707(9) 0.069(19) Uiso 1.000000 D

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_12 _atom_site_aniso_U_13 25 of 27

_atom_site_aniso_U_23

Ho01 0.0520(13) 0.0827(19) 0.0601(16) -0.0003(11) -0.0017(10) -0.0014(11) N002 0.044(12) 0.073(16) 0.040(13) -0.004(10) 0.001(10) 0.003(10) C003 0.045(15) 0.08(2) 0.056(18) -0.002(14) 0.028(13) -0.006(14) C004 0.062(18) 0.10(3) 0.035(15) -0.012(16) -0.006(13) 0.006(14) C005 0.065(19) 0.09(2) 0.06(2) 0.014(17) -0.026(16) -0.001(16) C006 0.08(2) 0.10(2) 0.030(15) 0.003(17) -0.029(14) 0.012(14) C007 0.058(17) 0.10(2) 0.031(14) -0.004(16) -0.001(12) 0.011(14) C008 0.033(12) 0.070(17) 0.026(13) 0.008(12) -0.009(9) -0.012(11) C009 0.058(18) 0.09(2) 0.09(2) -0.002(15) -0.006(17) 0.016(17) C00A 0.069(19) 0.057(18) 0.065(19) -0.000(15) 0.019(15) -0.007(14) C00B 0.053(16) 0.09(2) 0.049(17) -0.008(15) -0.003(13) -0.002(14) C00C 0.10(3) 0.09(2) 0.10(3) 0.04(2) 0.01(2) 0.01(2) C00D 0.039(14) 0.10(2) 0.056(18) 0.001(14) 0.012(13) -0.006(15) C00E 0.031(12) 0.059(17) 0.063(17) 0.002(11) -0.004(12) 0.000(13) C00F 0.050(17) 0.08(2) 0.09(2) 0.004(15) -0.003(16) -0.002(18) C00G 0.063(18) 0.12(3) 0.042(17) 0.003(18) 0.009(14) -0.008(16) C00H 0.042(15) 0.10(2) 0.045(16) 0.009(14) 0.008(12) 0.001(14) B00I 0.08(2) 0.08(3) 0.034(18) 0.012(19) 0.007(16) -0.005(15) B00J 0.036(15) 0.08(2) 0.050(19) 0.003(14) 0.012(13) 0.001(15) C00K 0.061(18) 0.12(3) 0.037(16) -0.004(17) -0.000(13) 0.008(15) B00L 0.025(14) 0.13(3) 0.05(2) 0.011(16) -0.040(14) 0.001(19) B00M 0.036(18) 0.12(4) 0.14(4) 0.002(18) 0.04(2) 0.02(3)

5. FTIR spectra of as-milled samples.

Figure S20. FTIR spectra of Ho, Yb and Tm as-milled samples.