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Abstract: The alloy 304 stainless steel is used in a wide variety of industrial applications. It is
frequently applied in tough environments, such as those involving high temperatures, low tem-
peratures, and corrosive environments. Hence, research on the flow stress behavior of the alloy
during deformation under tough environments is critically important to achieving the maximum
effectiveness in the application of the alloy. This research presents a study on the flow stress of
304 stainless steel during hot deformation at the temperatures of 700 ◦C–900 ◦C under the strain
rates ranging from 0.0002/s–0.02/s. For this study, hot tensile experiments are conducted, and the
flow stress variations of the alloy are studied with respect to the variations in the strain rate and
temperature. Next, the stress behavior was modeled by the traditional Arrhenius-type constitutive
equation and random forest algorithm. Then, the flow stresses predicted by different methods were
studied by comparing errors. The results showed that the flow stress was modeled more accurately
by the random forest algorithm.

Keywords: 304 stainless; Arrhenius equation; flow stress; random forest

1. Introduction

The alloy 304 austenitic stainless steel has good corrosion resistance, as well as robust
mechanical properties at high temperatures and aggressive environments [1–3]. Due to its
superior properties, 304 stainless steel has been used in a variety of fields, including marine
service, power plant, the nuclear sector, oil industries, etc. [1–4]. Correspondingly, the
deformation characteristics and mechanical properties of 304 stainless and other austenitic
stainless steel under various environments have represented one of the major research
topics in the field. The deformation characteristics of austenitic stainless steel are complex,
and the characteristics significantly depend on the temperature and strain rates.

To date, many studies have examined the deformation of austenitic stainless steel
and modeled the flow stress [5–10]. Haj et al. [5] conducted hot compression experiments
for AISI 321 austenitic stainless steel under temperatures ranging from 950 ◦C–1000 ◦C
and strain rates ranging from 0.01/s–1/s. The experimental study found that the flow
stress variation is significantly influenced by the deformation temperatures and strain rates.
The flow stress of the AISI 321 austenitic stainless steel was modeled by a constitutive
equation based on the Zener-Hollomon theory. Kotkunde et al. [6] carried out tensile
experiments for austenitic stainless steel 316 at temperatures ranging from 150 ◦C–600 ◦C
and strain rates ranging from 0.0001/s–0.01/s. In the study, the flow stress behavior of
stainless steel 316 was modeled by the modified Fields-Backofen equation and the KHL
(Khan-Huang-Liang) equation. The research showed that the KHL model is superior to
the other model. Babu et al. [7] performed hot deformation tests for super austenitic
stainless steel at temperatures ranging from 1173K–1423K and strain rates ranging from
0.001/s–10/s. In this study, the flow stress model of the stainless steel was developed
based on the Zener-Hollomon parameters and regression methods. Pu et al. [8] studied
the high temperature deformation of super austenitic stainless steel S32654 by conducting
hot compression tests at temperatures ranging from 950 ◦C to 1250 ◦C and strain rates
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ranging from 0.001/s to 10/s. In this study, the flow stress of the stainless steel was
modeled by Arrhenius-type constitutive equations. Cadoni et al. [9] carried out high-speed
deformation tests for AISI304 stainless steel under strain rates ranging from 0.001/s–1000/s.
In this research, the flow stress was modeled by a modified type of Johnson-Cook equation.
Zhang et al. [10] performed the constitutive modeling for nitrogen-containing austenitic
stainless steel 316LN by performing hot compression tests at temperatures ranging from
900 ◦C–1250 ◦C and strain rates ranging from 0.001/s–10/s. In that study, the flow stress of
stainless steel 316LN was predicted using the Arrhenius-type equation.

Although modeling the flow stress by using the traditional constitutive equation has
generally been successful, the approach has some drawbacks in predicting the accuracy.
For example, the Arrhenius-type equation, which is known as one of the most popular and
efficient equations for hot deformation study, has some drawbacks, such as the fact that,
sometimes, the equation has limited accuracy and the fact that one needs to recalculate the
new parameters in the equation when optimizing the equation with new data [11].

Due to the drawbacks of the traditional approach, many researchers have begun to
conduct research on predicting the flow stress using a neural network approach [11–16].
Yan et al. [12] conducted hot compression tests for the Al−6.2Zn−0.70Mg−0.30Mn−0.17Zr
alloy at temperatures ranging from 623K–773K and strain rates ranging from 0.01/s–20/s.
The research used Arrhenius-type constitutive equations and an artificial neural network
approach to predict the flow stress, and the results showed that the artificial neural net-
work model predicted the flow stress more accurately and efficiently than the Arrhenius
equations. Bobbili et al. [13] performed high-speed compression tests for high-strength
armor steel at temperatures ranging from 500 ◦C–650 ◦C and strain rates ranging from
1000/s–5500/s. In that study, an artificial neural network model and the Johnson-Cook
constitutive model were used to predict the flow stress, and the results showed that the
artificial neural network model outperforms the Johnson-Cook model. Guo et al. [14]
modeled the flow stress of the TC21 alloy during hot compression at strain rates and tem-
peratures, respectively, ranging from 0.01/s–50/s and from 900 ◦C–1000 ◦C. The research
showed that the developed model predicted the flow stress of the alloy with good accuracy.
Quan et al. [15] also carried out hot compression tests for the AZ80 alloy at temperatures
ranging from 523K–673K and strain rates ranging from 0.01/s–10/s. The flow stress was
modeled using the Arrhenius-type equation and the BP-ANN (back propagation artificial
neural network) model, and it was found that the BP-ANN predicted the flow stress with
better accuracy than the Arrhenius-type equation. Han et al. [11] also performed a compar-
ison between the Arrhenius-type model and the artificial neural network model in their
ability to model the flow stress of as-cast 904L austenitic stainless steel, and they found that
the neural network model is superior to the Arrhenius-type model. Zhu et al. [16] also used
the ANN (artificial neural network) model to model the flow stress of as-cast titanium alloy
during compression at 1000 ◦C–1150 ◦C and 0.01/s–10/s, and they compared the accuracy
using the regression method. The research found that the ANN model outperforms the
regression method.

Although the neural network approach of modeling the flow stress of hot deformation
was quite successful, the neural network model still has some drawbacks in modeling the
efficiency and computational cost. Specifically, the neural network model has to optimize
the model by adjusting the process parameters, including the number of hidden layers,
neurons in each layer, epochs, etc. Therefore, there is still a need to adopt a model with
good modeling efficiency and prediction accuracy.

In the present study, a random forest algorithm [17] is adopted to model the flow
stress of the hot deformation process. To this end, hot deformation testing for 304 stainless
steel at various temperatures and strain rates was presented. The measured flow stress
variation was modeled using traditional Arrhenius-type equations and a random forest
algorithm. The presented model was also compared with other models in terms of the
accuracy and other aspects of modeling.
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2. Materials and Methods

For the high-temperature tensile test, specimens of 304 stainless steel were prepared.
Wire-EDM (Electrical discharge machining) machining was used to machine the planar
specimens. The dimensions of each specimen were about 203.7 mm in length, 9.5 mm in
width, and 2 mm in thickness. The test specimens are heated in a furnace to high temper-
atures. Tensile tests were conducted in a testing machine of model MTS-810. Figure 1a
shows the machined specimens, and Figure 1b shows the geometry of the test specimens
in detail. In this research, the high-temperature tests were conducted at temperatures of
700 ◦C, 800 ◦C, and 900 ◦C and strain rates of 0.0002/s, 0.002/s, and 0.02/s.
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2.1. Modeling by Arrhenius-Type Constitutive Equation

In this research, the Arrhenius-type equation with the Zener-Hollomon theory is used
to model the flow stress of the high-temperature deformation of 304 stainless steel. When
the function F(σ) is in the form shown below:

F(σ) =

 σn′ ασ < 0.8
exp(βσ) ασ > 1.2

[sinh(ασ)]n f or all ασ

(1)

where n′, α, β, and n denotes material constants, and the strain rate
.
ε is described as

.
ε = AF(σ) exp

(
−Q
RT

)
(2)

where A is the material constant. The Zener-Hollomon parameter Z can be written
as follows.

Z =
.
ε exp

(
Q
RT

)
(3)

where T(K) is the temperature,
.
ε
(
s−1) denotes the strain rate of the deformation, Q

(
Jmol−1

)
is the activation energy, and R

(
8.314 Jmol−1K−1

)
denotes the gas constant.

Equation (4) is obtained after substituting the first Equation (1) into Equation (2) and
taking the logarithms of both sides, as noted in Equation (4).

ln σ =
1
n′

ln
.
ε− 1

n′
ln B (4)
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From the ln σ− ln
.
ε curves in the above equation, the material constant n′ is obtained

by calculating the slope of the curve. In the development of the Arrhenius equation
described in this research, the necessary calculations to obtain n’ are done at strains ranging
from 0.03–0.3, with an interval of 0.03.

After substituting the second part of Equation (1) into Equation (2) and taking the
logarithms of the obtained equation, one can obtain the relationship shown in Equation (5).
The material constant β is obtained by calculating the slopes of the σ− ln

.
ε curves.

σ =
1
β

ln
.
ε− 1

β
ln C (5)

The material constant α, which is defined as shown in Equation (6), is calculated using
β and n′.

α =
β

n′
(6)

β and α are also calculated at the strains of 0.03–0.3, with an interval of 0.03.
After substituting the third equation of (1) into (2) to take logarithms of the obtained

equation, we obtain the equation shown in (7). The material constant n is obtained after
calculating the slopes of the ln

.
ε− ln[sinh(ασ)] curves. As with the other materials constants

described above, n is also obtained for the same strain values as above.

ln[sinh(ασ)] =
ln

.
ε

n
+

Q
nRT

− ln A
n

(7)

The material constant Q is similarly calculated from the slope of the ln[sinh(ασ)]−(
1
T

)
curve.
Finally, the material constant A is obtained by using the y-axis intercept of the lnZ−

ln[sinh(ασ)] plot from Equation (8), which is derived from Equations (1) and (7).

lnZ = lnA + nln[sinh(ασ)] (8)

Similar to the other material constant, Q and A are also obtained at various strain
values ranging from 0.03–0.3 with an interval of 0.03. Figure 2 shows the plots of (a)
lnσ − ln

.
ε, (b) σ − ln

.
ε, (c) ln

.
ε − ln[sinh(ασ)], and (d) ln[sinh(ασ)] −

(
1
T

)
for the strain

of 0.03.
Since the material constants A, n′, α, β, and n are the functions of the strain, the

constants n, α, Q, and A can be described as the 7th-order polynomial function, as in
Equations (9)–(12). A regression analysis was conducted to determine the coefficients of
the polynomials. Table 1 presents the list of the calculated coefficients of n, α, Q, and A.
Table 2 presents the RMSE (root mean square error) of the material constants calculated by
the polynomial functions.

α = α7ε7 + α6ε6 + α5ε5 + α4ε4 + α3ε3 + α2ε2 + α1ε1 + α0 (9)

n = n7ε7 + n6ε6 + n5ε5 + n4ε4 + n3ε3 + n2ε2 + n1ε1 + n0 (10)

Q = q7ε7 + q6ε6 + q5ε5 + q4ε4 + q3ε3 + q2ε2 + q1ε1 + q0 (11)

A = a7ε7 + a6ε6 + a5ε5 + a4ε4 + a3ε3 + a2ε2 + a1ε1 + a0 (12)
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Table 1. Coefficients of the polynomials.

Order 7 6 5 4 3 2 1 0

α −276.12639 394.24715 −239.07069 79.83416 −15.87729 1.91202 −0.14018 0.01054

n −2,000,302.2 2,567,176.7 −1,369,008.4 392,828.5 −65,565.3 6417.3 −353.8 15.7

q −8×1010 9.89×1010 −5×1010 1.34×1010 −2×109 1.72×108 −7,600,110 527,533.9

A −4.9×1022 6.11×1022 −3.1×1022 8.4×1021 −1.3×1021 1.09×1020 −4.8×1018 8.96×1016

Table 2. Errors of the material constants calculated by the polynomial functions. RMSE: root mean
square error.

Constant α n q A

RMSE 2.8255× 10−6 0.007227 480.3273 1.9854× 1014

Figure 3 shows the variations of (a) n and (b) α. Meanwhile, Figure 4a and 4b present
the variations of Q and A, respectively.
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The final form of the equation describing the flow stress with the Zener-Hollomon
parameter is obtained using Equations (1) and (2) after calculating all the material constants.
The equation of stress is as shown below in Equation (13).

σ =
1
α

ln

(Z
A

) 1
n
+

[(
Z
A

) 2
n
+ 1

] 1
2

 (13)

2.2. Modeling by Random Forest Algorithm

In a random forest algorithm, an ensemble method of learning is performed by a
forest structure of multiple decision trees. To understand the random forest algorithm in
detail, it is worth mentioning the decision tree first. The decision tree algorithm splits the
original dataset at each classifying point, called a node, with certain classifying attributes.
Starting from the initial point called the root node (top node), the datasets repeat being
split into smaller classes through continuous actions by different attributes at child nodes
(sub-nodes). The decision tree algorithm is originally a splitting algorithm. However, the
algorithm can be utilized as a regression algorithm when the target classes are numeric.
To this end, this decision algorithm has been effectively adopted in many classifying
and regression works. To obtain even greater effectiveness, a random forest algorithm is
developed by utilizing multiple tree structures. Each decision tree becomes a predictor,
and predictions from trees are used to choose the most popular prediction.
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In this research, the python/scikit learn package was used to adopt a random forest
algorithm in a regression problem. In the developed random forests model, the input
attributes were the strain rate, temperature, and strain; the output attribute was stress.
From each stress–strain curve, the strain range from 0.03–0.3 was chosen as the area of
research, and 10 data points from each curve were chosen at strains ranging from 0.03–0.3,
with a 0.03 interval. Therefore, 90 data points in total were chosen as the test set. In
addition, 40 data points were randomly chosen from each curve (at the range of 0.03–0.3)
to be the learning set, and hence, 360 data points in total were used as the learning set.
Bootstrapping was used in this calculation to avoid overfitting in the regression. Table 3
lists the process parameters of the random forest algorithm used in this research.

Table 3. Process parameters for random forest algorithm calculations.

Number of
Trees

Regression
Criterion Depth of Tree Minimum Samples to

Split an Internal Node
Minimum Samples to

Be at a Leaf Node Input Attributes

600 Mean squared
error Unlimited 2 1 3

3. Results
3.1. Experimental Results

The experimental data was measured to calculate the true-stress and true-strain at the
temperatures of 700 ◦C, 800 ◦C, and 900 ◦C under the strain rates of 0.0002/s, 0.002/s, and
0.02/s. The true-stress–true-strain curves are plotted for each temperature with different
strain rates in Figure 5a–c. The results show that the flow stress behavior significantly
depends on the variation of the strain rate and temperature. The stress increases when the
strain rate increases, and it decreases when the temperature increases.
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2.2. Modeling by Random Forest Algorithm 
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3.2. Arrhenius-Type Constitutive Equation

Figure 6 shows the residual plots of the stress values predicted by the Arrhenius-
type equation at the strains of (a) 0.0002/s, (b) 0.002/s, and (3) 0.02/s. The flow stress
predicted by the traditional constitutive equation is quite similar to the experimental values.
However, at certain strain rates and temperatures, the error can be clearly seen (for example,
at a strain rate of 0.002/s and a temperature of 700 ◦C), as the RMSE of the stress values
predicted by the constitutive equation was 6.93.
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3.3. Random Forest Algorithm

Figure 7 shows the residual plots of the stress values predicted by the random forest
algorithm at the strains of (a) 0.0002/s, (b) 0.002/s, and (3) 0.02/s. The flow stress predicted
by the random forest algorithm is very similar to the experimental values. Although
the predicted values show an obvious error at certain temperatures and strain rates (for
example, the temperatures of 700 ◦C and 800 ◦C and at the strain rate of 0.02/s), the
RMSE of the predicted values was 4.93, which is better than the stresses predicted by the
constitutive equation.
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4. Discussion

An analysis of the influence of the maximum depth and leaf nodes of the tree structure
of the random forest algorithm on the accuracy of the model was performed. Figure 8
shows the (a) RMSE versus the maximum depth of the tree and (b) RMSE versus the
maximum leaf nodes.
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In this research, developing the prediction model by the random forest approach
could be done efficiently, and the developed model was computationally inexpensive. The
advantages of the random forest algorithm could be noticeable when one considers other
computationally expensive algorithms (e.g., neural networks.).

The analysis of the relative percentage error was conducted for the flow stress val-
ues calculated by the Arrhenius constitutive equation and the random forest algorithm.
Figure 9 shows the relative percentage errors versus the relative frequency for the (a) Arrhe-
nius constitutive approach and (b) random forest approach. For each approach, the mean
value of the relative percentage error, indicated as µ, was about−0.12 and 0.76, respectively.
The standard deviation for the relative percentage error, indicated as w, was about 3.51
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and 2.63, respectively. In other words, the absolute mean value of the relative percentage
error for the random forest approach was larger than the error obtained by the Arrhenius
constitutive equation. However, the standard deviation of the relative percentage error for
the Arrhenius constitutive equation was larger than that for the random forest approach.
This indicates that the errors of the Arrhenius-type equation exist in a more dispersed
manner, while the random forest approach performs more reliably than the Arrhenius-type
equation.
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5. Conclusions

In this research, a random forest algorithm was used to model and predict the flow
stress of the hot deformation of the 304 stainless steel alloy. The results showed that the
random forest algorithm is efficient and performs more accurately than the traditional
approach using the constitutive equation. The RMSE of the predicted stress by the random
forest algorithm was smaller than the error obtained by the traditional equation. The errors
by the random forest algorithm and the traditional equation were 4.93 and 6.93, respectively.
The random forest algorithm was more efficient in developing the prediction model and
in the computation. The relative percentage error study indicated that the random forest
approach performs more reliably than the Arrhenius-type equation.

Author Contributions: Conceptualization, S.-H.S.; methodology, S.-H.S.; software, S.-H.S.; valida-
tion, S.-H.S.; formal analysis, S.-H.S.; investigation, S.-H.S.; resources, S.-H.S.; data curation, S.-H.S.;
writing—original draft preparation, S.-H.S.; writing—review and editing, S.-H.S.; visualization,
S.-H.S.; supervision, S.-H.S.; project administration, S.-H.S.; funding acquisition, S.-H.S. The author
has read and agreed to the published version of the manuscript.

Funding: This work was supported by the Soonchunhyang University Research Fund (no. 20181005).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available from the corresponding author with the permission
of W.-D. Choi.

Acknowledgments: The author wish to thank W.-D. Choi for the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, R.; Li, M.; Malomo, B.; Yang, L. Enhancing Corrosion and Mechanical Properties of 304 Stainless Steel by Depositing and

Annealing Zr75Cu25 Thin-Film Metallic Glass. Surf. Coat. Technol. 2020, 400, 126221. [CrossRef]
2. Li, J.; Sun, Q.; Liu, Y.; Zhen, Z.; Sun, Q.; Feng, J. Melt Flow and Microstructural Characteristics in Beam Oscillation Superimposed

Laser Welding of 304 Stainless Steel. J. Manuf. Process. 2020, 50, 629–637. [CrossRef]

http://doi.org/10.1016/j.surfcoat.2020.126221
http://doi.org/10.1016/j.jmapro.2019.12.053


Materials 2021, 14, 1812 11 of 11

3. Zeng, Q.; Xu, Y. A Comparative Study on the Tribocorrosion Behaviors of AlFeCrNiMo High Entropy Alloy Coatings and 304
Stainless Steel. Mater. Today Commun. 2020, 24, 101261. [CrossRef]

4. Baldev, R.; Kamachi Mudali, U.; Vijayalakshmi, M.; Mathew, M.D.; Bhaduri, A.K.; Chellapandi, P.; Venugopal, S.; Sundar, C.S.;
Rao, B.P.C.; Venkatraman, B. Development of Stainless Steels in Nuclear Industry: With Emphasis on Sodium Cooled Fast
Spectrum Reactors History, Technology and Foresight. Adv. Mater. Res. 2013, 794, 3–25. [CrossRef]

5. Haj, M.; Mansouri, H.; Vafaei, R.; Ebrahimi, G.R.; Kanani, A. Hot Compression Deformation Behavior of AISI 321 Austenitic
Stainless Steel. Int. J. Miner. Metall. Mater. 2013, 20, 529–534. [CrossRef]

6. Kotkunde, N.; Nitin Krishnamurthy, H.; Kumar Gupta, A.; Kumar Singh, S. Study of Hot Deformation Behavior Using Phe-
nomenological Based Constitutive Model for Austenitic Stainless Steel 316. Mater. Today Proc. 2018, 5, 4870–4877. [CrossRef]

7. Babu, K.A.; Mandal, S. Regression Based Novel Constitutive Analyses to Predict High Temperature Flow Behavior in Super
Austenitic Stainless Steel. Mater. Sci. Eng. A 2017, 703, 187–195. [CrossRef]

8. Pu, E.; Feng, H.; Liu, M.; Zheng, W.; Dong, H.; Song, Z. Constitutive Modeling for Flow Behaviors of Superaustenitic Stainless
Steel S32654 during Hot Deformation. J. Iron Steel Res. Int. 2016, 23, 178–184. [CrossRef]

9. Cadoni, E.; Fenu, L.; Forni, D. Strain Rate Behaviour in Tension of Austenitic Stainless Steel Used for Reinforcing Bars. Constr.
Build. Mater. 2012, 35, 399–407. [CrossRef]

10. Zhang, L.; Feng, X.; Wang, X.; Liu, C. On the Constitutive Model of Nitrogen-Containing Austenitic Stainless Steel 316LN at
Elevated Temperature. PLoS ONE 2014, 9, e102687. [CrossRef] [PubMed]

11. Han, Y.; Qiao, G.; Sun, J.; Zou, D. A Comparative Study on Constitutive Relationship of As-Cast 904L Austenitic Stainless Steel
during Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models. Comput. Mater. Sci. 2013, 67, 93–103.
[CrossRef]

12. Yan, J.; Pan, Q.; Li, A.; Song, W. Flow Behavior of Al–6.2Zn–0.70Mg–0.30Mn–0.17Zr Alloy during Hot Compressive Deformation
Based on Arrhenius and ANN Models. Trans. Nonferrous Met. Soc. China 2017, 27, 638–647. [CrossRef]

13. Bobbili, R.; Madhu, V.; Gogia, A.K. Neural Network Modeling to Evaluate the Dynamic Flow Stress of High Strength Armor
Steels under High Strain Rate Compression. Def. Technol. 2014, 10, 334–342. [CrossRef]

14. Guo, L.; Li, B.; Zhang, Z. Constitutive Relationship Model of TC21 Alloy Based on Artificial Neural Network. Trans. Nonferrous
Met. Soc. China 2013, 23, 1761–1765. [CrossRef]

15. Quan, G.-Z.; Zhang, Z.; Pan, J.; Xia, Y. Modelling the Hot Flow Behaviors of AZ80 Alloy by BP-ANN and the Applications in
Accuracy Improvement of Computations. Mat. Res. 2015, 18, 1331–1345. [CrossRef]

16. Zhu, Y.; Zeng, W.; Sun, Y.; Feng, F.; Zhou, Y. Artificial Neural Network Approach to Predict the Flow Stress in the Isothermal
Compression of As-Cast TC21 Titanium Alloy. Comput. Mater. Sci. 2011, 50, 1785–1790. [CrossRef]

17. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

http://doi.org/10.1016/j.mtcomm.2020.101261
http://doi.org/10.4028/www.scientific.net/AMR.794.3
http://doi.org/10.1007/s12613-013-0761-0
http://doi.org/10.1016/j.matpr.2017.12.063
http://doi.org/10.1016/j.msea.2017.07.035
http://doi.org/10.1016/S1006-706X(16)30031-0
http://doi.org/10.1016/j.conbuildmat.2012.04.081
http://doi.org/10.1371/journal.pone.0102687
http://www.ncbi.nlm.nih.gov/pubmed/25375345
http://doi.org/10.1016/j.commatsci.2012.07.028
http://doi.org/10.1016/S1003-6326(17)60071-2
http://doi.org/10.1016/j.dt.2014.06.012
http://doi.org/10.1016/S1003-6326(13)62658-8
http://doi.org/10.1590/1516-1439.040015
http://doi.org/10.1016/j.commatsci.2011.01.015
http://doi.org/10.1023/A:1010933404324

	Introduction 
	Materials and Methods 
	Modeling by Arrhenius-Type Constitutive Equation 
	Modeling by Random Forest Algorithm 

	Results 
	Experimental Results 
	Arrhenius-Type Constitutive Equation 
	Random Forest Algorithm 

	Discussion 
	Conclusions 
	References

