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Abstract: A grain is surrounded by grains with different crystal orientations in polycrystalline plain
low-carbon steel. The grain is constrained by its adjacent grains in the tension process. The interaction
of the grain with the adjacent grains was investigated within the elastic deformation region. The
following results have been obtained: (1) the Young’s modulus of a grain without consideration of
grain-to-grain interaction is denoted as the inherent Young’s modulus; when the inherent Young’s
modulus of a grain is equal to the Young’s modulus of the bulk material, there is almost no interaction
between the grain and its adjacent grains; when a grain has a great difference between its inherent
Young’s modulus and the Young’s modulus of the bulk material, its grain-to-grain interactions
increase significantly; (2) the grain-to-grain interaction is mainly caused by the difference in the
inherent Young’s modulus between the grain and its adjacent grains; the misorientation angle
between the grain and its adjacent grains has almost no effect on the grain-to-grain interaction.

Keywords: Young’s modulus; elastic strain; polycrystalline steel; crystal orientation; grain; digital
image correlation

1. Introduction

In crystalline materials, the elastic strain is small, and the elastic behavior is linear [1].
The relationship between stress and strain in the elastic deformation is described by Hooke’s
law. In the case of simple tension, Hooke’s law simplifies into a directly proportional
function, i.e., the tensile stress is proportional to the tensile strain. The proportionality
constant in this relationship is called Young’s modulus [1].

A grain is an important microstructural unit, and its Young’s modulus depends on its
crystal orientation [2–5]. Grains in crystalline materials have different crystal orientations;
correspondingly, they have different Young’s moduli. The deformation of a grain is con-
strained by its adjacent grains, resulting in grain-to-grain interaction. Abdolvand et al. [6]
measured the stress within grains in Zr and Ti polycrystals (CPZr and CPTi) with three-
dimensional synchrotron X-ray diffraction in the plastic deformation region. In a significant
fraction of grains, the stress along the loading axis was found to decrease during tensile
plastic flow just beyond the macroscopic yield point [6]. They believed that the observed
stress drop was caused by the grain-to-grain interactions, and this interaction effect was
strong in the plastic deformation region. Grain-to-grain interaction strongly influences the
mechanical properties of a polycrystal. However, the grain-to-grain interaction effect in
the elastic deformation region was studied less. The concern of the present study is on the
grain-to-grain effect in the elastic deformation region.

As illustrated in Figure 1, the stress linearly varies with the strain within a grain
in a polycrystal. The Young’s modulus of the grain is denoted as the inherent Young’s
modulus (E0) when the grain deforms freely without constraint from its adjacent grains.
When the grain is constrained by its adjacent grains during the tension process, its Young’s
modulus will change from E0 to E1. At a given stress (σ), the elastic strain within the grain
corresponding to E1 and E0 is σ/E1 and σ/E0, respectively. The two elastic strains (εe1, εe0)
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are different, and the difference between them is caused by the interactions between the
grain and its adjacent grains. We define the elastic–strain ratio (f εe) as f εe = εe1/εe0 = E0/E1.
f εe is independent of applied stress, and depends on the degree of grain-to-grain interaction.
Therefore, it is rational to use it as a parameter to measure the effect of the interaction
between a grain and its adjacent grains within the elastic deformation region: when f εe
is equal to unity, it means that there is no grain-to-grain interaction; when f εe gradually
deviates from one, the grain-to-grain interaction correspondingly increases significantly.
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Figure 1. Schematic illustration of the effect of grain-to-grain interaction on a grain in terms of the
difference in the elastic strain within the elastic deformation region. E0, Young’s modulus without
grain-to-grain interaction; E1, Young’s modulus with grain-to-grain interaction; εe, elastic strain of
a grain.

The f εe of a grain is determined by its Young’s modulus with and without grain-to-
grain interactions (E1, E0). The inherent Young’s modulus of the grain (E0) is equal to
the Young’s modulus of a single crystal with the same crystal orientation. The Young’s
modulus of the single crystal can be measured via several methods which are suitable to
the bulk material:

(1) Hooke’s law [1,7–16]: A simple tension (or simple compression) test is performed to
obtain a stress–strain straight line within the elastic deformation region. The gradient
of this line is the Young’s modulus.

(2) Vibration test [1,17]: Young’s modulus (E) is proportional to the square of the natural
frequency (f ) of the vibration of the bulk material (E ∝ f 2). The f is obtained from a
vibration test, and the E is derived from the relation between the E and f.

(3) Sound velocity measurement test [1]: The velocity of the longitudinal wave, vl , depends
on the Young’s modulus and the density of the bulk material, ρ, by the equation:
vl =

√
E/ρ. The Young’s modulus is determined by the above equation, in which vl

is measured by the experiment.

The nanoindentation technique is a useful tool to measure the Young’s modulus of
a local site. Its principle can be stated briefly as follows: a diamond indenter is pushed
into the surface of the material, and the variation of load with the penetration depth of
the indenter in the loading and unloading process is recorded; from the unloading curve,
the Young’s modulus of the region where the indenter penetrated is obtained [2–5]. Many
researchers have used the nanoindentation technique to measure the Young’s moduli of
individual grains in polycrystals [2–5]. However, because the load–displacement curve
in the nanoindentation test does not involve any information regarding grain-to-grain
interaction, the obtained Young’s moduli were not the real ones of individual grains (E1) in
the polycrystals, and they were close to the values of single crystals (E0) [5]. In addition to
experimental measurements, E0 is available from the theoretical calculation based on the
elastic constants [18].
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As for the Young’s moduli of individual grains in a polycrystal, experimental mea-
surements have not been reported in the literature due to the lack of an appropriate
measurement method. In method (1) mentioned above (Hooke’s law), the stress–strain
curve of a region of interest represents the real response of the region in a simple tension
process, and, naturally, the effect of grain-to-grain interaction is involved. Therefore, this
measurement method fits not only for the bulk material but also for local sites (e.g., indi-
vidual grains) in a polycrystal. To obtain the stress–strain curve of a grain in a polycrystal,
the key point is how to accurately measure the deformation behavior of individual grains.

Digital image correlation (DIC) is a non-contact measurement technique, established
in the 1990s, for measuring the displacement and strain field on the surface of an object [19].
To perform DIC with high accuracy, a high-contrast random and dense speckle pattern is
required [20]. For different scale lengths, different speckle patterns should be used [21].
DIC was used to measure the macrostrain of a bulk material, and the Young’s modulus of
the bulk material was successfully determined from the obtained stress–strain curve [7–16].
Recently, research was carried out to determine appropriate experimental conditions, such
as subset size and speckle, for micro- and mesoscale DIC [20–24]. It has been shown that, if
the appropriate experimental setup and speckle are available, it is possible to measure the
microstrain at the grain scale [24].

In this study, the concrete focuses are as follows: (1) we used micro-DIC to obtain
the stress–strain curves of individual grains in a polycrystal within a macroscopic elastic
deformation region, and from the experimental results, the corresponding Young’s moduli
(E1) were determined; (2) the interaction between a grain and its adjacent grains within the
elastic deformation region was evaluated in terms of the elastic–strain ratio (f εe), and the
factors determining the value of f εe were revealed.

2. Materials and Methods

Individual grains in polycrystals were our main concern. To accomplish our purpose,
an ideal polycrystal is expected, in which grains are equiaxial, their crystal orientations are
random, and there are no additive effects (such as a second phase, precipitates, inclusions,
etc.). In Ref. [24], a polycrystalline plain low-carbon steel with 0.05C-0.008Mn-0.002Si
(in wt %) was produced. Its upper yield strength (σup.ys) was 320 MPa, and its Young’s
modulus was 207 GPa. It was mainly composed of ferrite (average grain size 30.4 µm) as
well as a little pearlite (volume fraction 0.8%). The morphology and crystal orientations of
ferrite grains were examined with the electron back-scattered diffraction (EBSD), and it was
found that ferrite grains were equiaxial and that their crystal orientations were randomly
distributed. This nearly ideal polycrystal with a body-centered cubic structure was used in
this study.

A tension specimen (Figure 2) was machined. A simple tension test was carried
out on the specimen at room temperature and at a crosshead speed of 0.1 mm/min. The
experimental setup is described in Ref. [24]. The specimen was pre-processed before the
tension test as follows: (1) the front surface was polished, followed by etching with 1.5%
nital to expose the grain boundaries; (2) the crystal orientations around the center of the
front surface were examined with EBSD; (3) a speckle pattern for DIC was prepared on the
front surface. This pre-process has been described in detail elsewhere [24]. The region of
interest was at the center of the front surface. The speckle and crystal orientations of grains
around this region are shown in Figure 3a,b, respectively. The positions of Figure 3a,b
match each other. The grains are numbered in Figure 3b, and they are the concern of the
present study.
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Two assumptions were proposed for obtaining the stress–strain curves of individual
grains: (1) the stress imposed on each grain is composed of macroscopic stress, grain-to-
grain interaction stress, and short-range dislocation stress [25]; it is assumed that grain-
to-grain interaction stress and short-range dislocation stress are small in the elastic defor-
mation region and that they can be neglected; the macroscopic stress imposed on each
grain is uniform and is given by the load divided by the area of cross section; (2) the
induced average strain within a grain is the average strain over the area enclosed by its
grain boundary, as shown in Figure 3b. This average strain was obtained via 2D-DIC.
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numbered for digital image correlation (DIC). σx, uniaxial remote stress.

The deformation process of the region (shown in Figure 3) on the front surface was
continuously recorded using a camera (2448 pixel × 2048 pixel, i.e., 0.41 mm × 0.34 mm).
The DIC operation was performed on the digital images taken in the tension process by
software of VIC-2D (subset size: 9 pixel × 9 pixel (4.8 µm × 4.8 µm); step: 5 pixel (1.7 µm))
to determine the displacement and strain filed within the grains. In the DIC operation, the
displacement uncertainty is 0.02 pixel.

The obtained experimental Young’s modulus of a grain (Eexp) involves the effect
of grain-to-grain interaction. The Young’s modulus, Ehkl, of a cubic grain with crystal
orientation [hkl] without grain-to-grain interaction is given by [18].

1
Ehkl

= s11 +
(2s12 − 2s11 + s44)

(
k2l2 + l2h2 + h2k2)

(h2 + k2 + l2)
2 (1)
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Individual elastic compliances, s, are related to the elastic constants, c, as:
s11 = c11+c12

c2
11+c11c12−2c2

12

s12 = −c12
c2

11+c11c12−2c2
12

s44 = 1
c44

(2)

The elastic constants for cubic crystal Fe are as follows: c11 = 231.4 GPa, c12 = 134.7 GPa,
c44 = 116.4 GPa [18]. It is noted that the Eexp and Ehkl are in fact the E1 and E0 shown in
Figure 1, respectively.

3. Results and Discussion
3.1. System Error of DIC Strain Measurement

The DIC technique has an inherent system error, which is dependent on the experi-
mental setup, speckle, and DIC parameters [20,22]. In the measurement of a large strain, as
compared with the applied strain, this system error is so small that it can be neglected. In
the present study, the applied load in the simple tension test was limited below the upper
yield strength, and the macroscopic longitudinal strain (εx) was smaller than 1500 µε. At
this small strain level, attention must be paid to the accuracy of the DIC strain measurement.

The system error of the DIC strain measurement has been studied in terms of the strain
noise and bias level using several digital images (image size: 0.41 mm × 0.34 mm) taken
from the surface of an unloaded specimen [24]. The DIC operation was performed on these
images to calculate the strain field. As no load was impacted, the real macroscopic strain
should be zero. However, the calculated strain has an error due to the inherent system
error. The standard deviation (STD) of the DIC strain field was defined as the strain noise
level. The average strain of the whole strain field was taken as the calculated macroscopic
strain, and the difference between it and the real macroscopic strain was defined as the bias
level. For the DIC measurement conditions used in this study, the noise level is 80 µε, and
the bias level is 8 µε [24]. It can be seen that the bias level is so small that the average strain
obtained by the DIC is reliable at a microscale.

3.2. Young’s Modulus and Elastic-Strain Ratio of Individual Grains

The deformation process of the area shown in Figure 3 was recorded. A region of
interest (ROI) was selected from the obtained digital images, and 2D-DIC was performed
on the ROI. Figure 4 shows the longitudinal strain (εx) field at an applied stress of 147 MPa
whose ROI is about 390 µm × 320 µm. It was generally believed that the macroscopic
strain within the elastic region is uniform at a macroscopic scale. However, Figure 4 shows
that strain distribution is heterogeneous at a microscale. The applied stress (remote stress)
is uniaxial. On a macroscopic scale, although the macroscopic stress in the parallel part
of the specimen is uniform, in some local sites, e.g., cross-point of several adjacent grains,
local stress is in a three-dimensional state and stress concentration occurs. As shown in
Figure 4, even compression stress (compression strain) is present.

Figure 4 covers more than 60 grains, in which the 54 gains selected (cf. Figure 3b) are
involved. The grain boundaries can be identified in terms of the etched microstructure
and the inverse pole figure (IPF) map; thus, the areas of individual grains can be selected
as the ROIs, and the average strain over each grain can be determined from the strain
fields of the ROIs. We took grain (5) (cf. Figure 3b) as an example. Grain (5) is surrounded
by six grains. The average strains of grain (5), i.e., over the area enclosed by the grain
boundaries, at sixteen stress levels were measured via 2D-DIC. The obtained strains as well
as corresponding stresses are plotted in Figure 5. Fitting these experimental points with a
straight line whose intercept is zero determines the experimental Young’s modulus (Eexp)
of grain (5). The Young’s moduli of other grains in Table 1 were determined in a similar
way. The Eexp and correlation coefficient (R2) are summarized in Table 1. There are three
grains (No. 28, No. 30, No. 38) whose stress–strain curves did not show clear linearity. The
subset is the unit of the DIC operation. The strain in the subset is assumed to be uniform;
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thus, the subset size represents the resolution of the DIC operation. The subset size used in
the present study is 4.8 µm × 4.8 µm. The grain sizes of No. 28 and No. 30 are too small
with respect to the subset size, resulting in a great error in the strain measurement. This
may be the main reason for the nonlinearity of No. 28 and No. 30. However, the reason for
No. 38 is unclear.
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20 −1 −13 22 191 215 0.8605 0.89 47 −7 −8 8 281 202 0.9903 1.39 
21 4 7 10 231 209 0.8757 1.11 48 −1 10 13 212 205 0.9478 1.04 
22 −8 −10 25 184 249 0.9442 0.74 49 14 −19 27 245 220 0.8862 1.12 
23 1 0 27 133 192 0.9373 0.69 50 0 1 1 220 208 0.939 1.06 
24 9 −9 23 191 244 0.5049 0.78 51 5 9 14 220 201 0.5511 1.1 
25 2 −18 25 208 307 0.8213 0.68 52 19 1 33 189 216 0.9519 0.87 
26 2 −5 17 153 293 0.4542 0.52 53 −19 8 22 237 190 0.7922 1.25 
27 −12 15 19 263 207 0.8277 1.27 54 −14 −15 25 240 207 0.7853 1.16 
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Table 1. Young’s modulus and elastic–strain ratio of individual grains.

Grain
No. [hkl] Ehkl

(GPa)
Eexp

(GPa) R2 fεe
Grain

No. [hkl] Ehkl
(GPa)

Eexp
(GPa) R2 fεe

1 −2 5 17 153 209 0.6442 0.73 28 −7 −6 22 168 - −2.665 -

2 −2 −3 3 268 147 0.8259 1.82 29 −2 1 4 190 181 0.9398 1.05

3 −7 8 11 260 173 0.7432 1.5 30 3 −3 8 187 - −2.109 -

4 5 6 6 279 230 0.5752 1.21 31 −19 −5 26 214 155 0.8856 1.38

5 2 8 25 154 215 0.8725 0.72 32 −19 −5 26 214 202 0.8589 1.06

6 2 −3 3 268 130 0.7014 2.06 33 −8 −5 25 161 192 0.862 0.84

7 −1 −3 14 143 262 0.4016 0.55 34 1 −3 8 163 190 0.3082 0.86

8 5 6 9 246 194 0.785 1.27 35 −6 −3 13 183 166 0.7021 1.1

9 −11 −2 25 170 251 0.938 0.68 36 6 −14 21 215 197 0.7733 1.09

10 1 −3 3 236 154 0.7015 1.53 37 6 −14 21 215 194 0.8963 1.11

11 15 2 17 220 181 0.2365 1.22 38 1 2 6 160 - −0.72 -

12 2 −2 15 140 182 0.9673 0.77 39 0 2 3 201 167 0.6794 1.2

13 −8 1 13 195 268 0.5746 0.73 40 4 −7 8 252 211 0.7984 1.19

14 9 −14 22 226 191 0.6547 1.18 41 −7 −5 9 255 202 0.9573 1.26

15 −8 −2 9 226 131 0.7602 1.73 42 13 −12 15 278 191 0.9617 1.45

16 −3 −11 13 225 125 0.9326 1.8 43 −1 −22 36 194 239 0.7243 0.81

17 1 −4 16 146 260 0.4253 0.56 44 −7 −2 22 154 220 0.0831 0.7

18 6 15 20 225 209 0.9326 1.08 45 −3 −1 12 147 235 0.1615 0.62

19 −11 −4 16 214 156 0.7553 1.37 46 −9 5 10 252 170 0.9535 1.48

20 −1 −13 22 191 215 0.8605 0.89 47 −7 −8 8 281 202 0.9903 1.39

21 4 7 10 231 209 0.8757 1.11 48 −1 10 13 212 205 0.9478 1.04

22 −8 −10 25 184 249 0.9442 0.74 49 14 −19 27 245 220 0.8862 1.12

23 1 0 27 133 192 0.9373 0.69 50 0 1 1 220 208 0.939 1.06

24 9 −9 23 191 244 0.5049 0.78 51 5 9 14 220 201 0.5511 1.1

25 2 −18 25 208 307 0.8213 0.68 52 19 1 33 189 216 0.9519 0.87

26 2 −5 17 153 293 0.4542 0.52 53 −19 8 22 237 190 0.7922 1.25

27 −12 15 19 263 207 0.8277 1.27 54 −14 −15 25 240 207 0.7853 1.16

The Ehkl for each grain was given by Equations (1) and (2), and the f εe was determined
by the Ehkl divided by the Eexp. The f εe values of individual grains are shown in Figure 6.
The Young’s modulus of the bulk material (vertical dotted line) is plotted in Figure 6. The
experimental points are divided into two groups (the right and left groups) with respect to
the vertical line. Except for the four abnormal points (solid circles) corresponding to grains
of No. 25, No. 29, No. 35, and No. 39, the points in the right group have the values of f εe
greater than one, while those in the left group have the values smaller than one. Although
the scattering of data is substantial, a trend can be seen that when the Ehkl moves away from
the Young’s modulus of the bulk material in the right and left directions, the value of f εe
deviates from one. The f εe has a linear relation with the Ehkl as f εe = 0.00701(Ehkl − 207) + 1,
whose correlation coefficient (R2) is 0.606. This result indicates that when a grain’s inherent
Young’s modulus is equal to the Young’s modulus of the bulk material, there is no grain-
to-grain interaction effect on the grain; when the difference between a grain’s inherent
Young’s modulus and the Young’s modulus of the bulk material increases, the grain-to-
grain interaction effect increases significantly.
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3.3. Factors Affecting the Elastic-Strain Ratio

Figure 7 illustrates a grain with its adjacent grains subjected to stress along the x-axis
(σx). In a real material, a grain is constrained from three-dimensional directions (x-, y-, and
z-axis). For simplification, grain i is assumed to be constrained within a two-dimensional
plane (x-y plane) in Figure 7. Grain i is surrounded by several grains: eight grains (grain
(i + 1) to grain (i + 8)) are plotted to illustrate. Grain i forms a couple with each adjacent
grain, and each couple has the following characteristics:

(1) Misorientation angle: In a polycrystal, each grain has its specific crystal orientation;
thus, the misorientation angle is present between two adjacent grains. The misorien-
tation angle of grain i with grain (i + 1) to grain (i + 8) is denoted as ∆θi,i+1, ∆θi,i+2,
. . . , ∆θi,i+8. The misorientation angle of each grain in Table 1 with its adjacent grains
can be determined from the IPF map shown in Figure 3b.

(2) Difference in the inherent Young’s modulus: The inherent Young’s modulus of grain i
and its adjacent grains (grain (i + 1) to grain (i + 8)) is denoted as Ei, Ei+1, . . . , Ei+8.
We take grain i and grain (i + 1) as an example. The difference in the inherent Young’
moduli of grain i and grain (i + 1) is defined as ∆Ei,i+1 = Ei − Ei+1. The grain-boundary
length between the two grains is Li,i+1. The difference in the inherent Young’s moduli
of grain i and other adjacent grains is defined in the same way.

The misorientation angle of grain i with its adjacent grains is one factor constraining
grain i. We took the arithmetic average value of the misorientation angles ((∆θi,i+1 + ∆θi,i+2
+ . . . + ∆θi,i+8)/8) as a statistical parameter, and investigated its effect on the f εe. The
arithmetic average misorientation angle (∆θ) of each grain in Table 1 with its adjacent
grains and its f εe are plotted in Figure 8. No correlation between ∆θ and f εe is shown. This
result indicates that the effect of the misorientation angle on the f εe can be neglected. It
is noted that the misorientation angle of a grain with an adjacent grain in Figure 8 was
measured at the center of the grain boundary between the two grains.

As shown in Figure 7, grain i is constrained by every adjacent grain. The extent of this
constraint can be reflected in the absolute value of ∆Ei,j (j = i + 1, i + 2, . . . , i + 8): a large
value means a strong constraint, while a small value corresponds to a weak constraint.
Some values of ∆Ei,j are probably positive, and some are probably negative. Moreover,
the grain boundary length of grain i with each adjacent grain is generally different. There-
fore, the constraint from adjacent grains is extremely complicated, and it is difficult to
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evaluate the contribution of individual grains to the constraint. In the present study, we
use the average value of ∆Ei,i+1, ∆Ei,i+2, . . . , and ∆Ei,i+8 to describe the constraint from
adjacent grains.
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Figure 7. A diagram of a grain (numbered i) with its adjacent grains (numbered i + 1 to i + 8). E,
inherent Young’s modulus; ∆θ, misorientation angle between two adjacent grains; ∆E, difference
in the inherent Young’s moduli between two adjacent grains; L, grain boundary length. Suffix,
grain number.
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Figure 8. Correlation of average misorientation angle with the elastic-strain ratio. ∆θ, average
misorientation angle of a grain with its adjacent grains; f εe, elastic–strain ratio.

The arithmetic average value (∆Ea.av) of ∆Ei,i+1, ∆Ei,i+2, . . . , and ∆Ei,i+8 is given
by ∆Ea.av = (∆Ei,i+1 + ∆Ei,i+2 + . . . + ∆Ei,i+8)/8. The weighted average value (∆Ew.av) of
∆Ei,i+1, ∆Ei,i+2, . . . , and ∆Ei,i+8 is given by ∆Ew.av = (Li,i+1∆Ei,i+1 + Li,i+2∆Ei,i+2 + . . . +
Li,i+8∆Ei,i+8)/(Li,i+1 + Li,i+2 + . . . + Li,i+8). ∆Ew.av seems to be more rational than ∆Ea.av
because the effect of the grain-boundary length of individual grains is involved. The ∆Ea.av
and ∆Ew.av of all of the grains in Table 1 are calculated, and they are plotted in Figure 9.
The ∆Ew.av is nearly proportional to the ∆Ea.av for the steel used. This means that either
∆Ea.av or ∆Ew.av is rational. It is noted that this conclusion was obtained from a nearly ideal
polycrystal in which grains were uniform and equiaxial. Based on this result, we used the
arithmetic average value instead of the weighted average value in the present study due to
its convenience.
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Figure 9. Arithmetic average value (∆Ea.av) and weighted average value (∆Ew.av) of the difference in
the inherent Young’s modulus between a grain and its adjacent grains.

As illustrated in Figure 7, grain i is tensioned along the x-axis, and it deforms mainly
along the x-axis. Grains (i + 1), (i + 8), (i + 7), (i + 3), (i + 4), and (i + 5) accommodate the
deformation of grain i along the x-axis; thus, they contribute greatly to the constraint on
grain i. In contrast to the deformation along the x-axis, deformation along the y-axis is small.
Grains (i + 2) and (i + 6) inhibit the deformation of grain i along the y-axis; accordingly, their
contribution to the constraint is small. The constraint on grain i caused by the difference in
the Young’s moduli between grain i and its adjacent grains can be described in two ways:
1© constraint only from the x-axis, and 2© constraint from both the x- and y-axis. The degree

of constraint corresponding to 1© and 2© is evaluated in terms of ∆Ex/Ehkl and ∆Ex,y/Ehkl,
respectively, and given by:

∆Ex/Ehkl = (∆Ei,i+1 + ∆Ei,i+8 + ∆Ei,i+7 + ∆Ei,i+3 + ∆Ei,i+4 + ∆Ei,i+5)/(6Ehkl) (3)

∆Ex,y/Ehkl = (∆Ei,i+1 + ∆Ei,i+8 + ∆Ei,i+7 + ∆Ei,i+3 + ∆Ei,i+4 + ∆Ei,i+5 + ∆Ei,i+2 + ∆Ei,i+6)/(8Ehkl) (4)

The negative (or positive) value of ∆Ex/Ehkl or ∆Ex,y/Ehkl indicates that adjacent
grains have greater (or smaller) inherent Young’s moduli than grain i; in other words, grain
i is surrounded by hard (or soft) grains.

The f εe against ∆Ex/Ehkl and ∆Ex,y/Ehkl is plotted in Figure 10a,b, respectively. It can
be seen from the values of the correlation coefficient (R2) that there is no great difference be-
tween Figure 10a,b. This indicates that either ∆Ex/Ehkl or ∆Ex,y/Ehkl is rational to describe
the degree of the constraint. Figure 10 shows that when ∆Ex/Ehkl or ∆Ex,y/Ehkl is equal
to zero, the f εe is equal to one; as the absolute value of ∆Ex/Ehkl (or ∆Ex,y/Ehkl) increases,
the f εe gradually deviates from one. It means that for a grain, when there is no difference
in the inherent Young’s moduli between it and its adjacent grains, no grain-to-grain in-
teraction effect imposes on it; when this difference increases, grain-to-grain interaction
increases significantly.

Although a linear trend is shown in Figure 10, its scatter is great. This is probably
caused by two factors: (1) a grain is constrained from three-dimensional directions, but only
two-dimensional constraint was considered in the present study; (2) a grain is surrounded
by several grains, but each grain probably has a different effect, for example, some grains
increase the degree of the grain-to-grain interaction, while others have the opposite effect.
However, in the present study, we used the average value (∆Ex/Ehkl or ∆Ex,y/Ehkl) to
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estimate the effect of the surrounding grains. This approach cannot accurately depict the
effect of each grain, probably inducing a great error.
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Figure 10. Effect of constraint degree on the elastic-strain ratio. (a) constraint along the x-axis,
(b) constraint along both the x- and y-axis.

4. Conclusions

The interaction of a grain with its adjacent grains within the elastic deformation region
of a polycrystalline plain low-carbon steel was investigated. The following conclusions
were obtained:

(1) The DIC technique is a reliable tool to measure the Young’s modulus of individual
grains in a polycrystal.

(2) The elastic–strain ratio—defined as the ratio of the elastic strain within a grain with
grain-to-grain interaction to that without grain-to-grain interaction at a given stress—
is a parameter independent of the applied stress. It can be used to evaluate the degree
of grain-to-grain interaction within the elastic region.

(3) There is almost no constraint on the deformation of a grain whose inherent Young’s
modulus is the same as the Young’s modulus of the bulk material. The grain-to-grain
interaction effect is significant for a grain which has a great difference between its
inherent Young’s modulus and the Young’s modulus of the bulk material.

(4) The interaction of a grain with its adjacent grains is mainly caused by the difference
in the inherent Young’s moduli between the grain and its adjacent grains. The greater
the difference, the greater the interaction. The average of the misorientation angles
between the grain and its adjacent grains have almost no effect on the grain-to-
grain interactions.
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