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Abstract: All-solid-state supercapacitors have gained increasing attention as wearable energy storage
devices, partially due to their flexible, safe, and lightweight natures. However, their electrochemical
performances are largely hampered by the low flexibility and durability of current polyvinyl alcohol
(PVA) based electrolytes. Herein, a novel polyvinyl alcohol-polyethyleneimine (PVA-PEI) based,
conductive and elastic hydrogel was devised as an all-in-one electrolyte platform for wearable
supercapacitor (WSC). For proof-of-concept, we assembled all-solid-state supercapacitors based on
boron nitride nanosheets (BNNS) intercalated graphene electrodes and PVA-PEI based gel electrolyte.
Furthermore, by varying the electrolyte ions, we observed synergistic effects between the hydrogel
and the electrode materials when KOH was used as electrolyte ions, as the Graphene/BNNS@PVA-
PEI-KOH WSCs exhibited a significantly improved areal capacitance of 0.35 F/cm2 and a smaller
ESR of 6.02 ohm/cm2. Moreover, due to the high flexibility and durability of the PVA-PEI hydrogel
electrolyte, the developed WSCs behave excellent flexibility and cycling stability under different
bending states and after 5000 cycles. Therefore, the conductive, yet elastic, PVA-PEI hydrogel
represents an attractive electrolyte platform for WSC, and the Graphene/BNNS@PVA-PEI-KOH
WSCs shows broad potentials in powering wearable electronic devices.

Keywords: hydrogel electrolyte; flexible supercapacitor; graphene; boron nitride nanosheets

1. Introduction

The vigorous development of wearable smart devices presents new requirements for
energy supply units [1,2]. With the advantages of fast charge/discharge capability, large
energy density and power density, supercapacitors in film forms are gaining increasing
interest in the field of lightweight, portable energy management devices for wearable
electronics [3–5]. Many efforts were made to realize wearable supercapacitors with robust
mechanical properties and excellent electrochemical performances, to ensure operation in
complex and dynamic natural environments [6–10].

All-solid-state electrolyte plays an important role in determining the performance
of the supercapacitor [10–14]. Polyvinyl alcohol (PVA) based hydrogel electrolytes were
extensively studied due to their environment-friendly, easily accessible, and inexpensive
attributes [15,16]. However, they usually exhibited poor water retention ability, easy fatigue
under large deformation, and poor conductivity, which severely limits the performance of
PVA-based supercapacitors. Polyethyleneimine (PEI) is a kind of cationic polymer, and the
combination of PVA with PEI might be a possible strategy to solve the above shortcomings
of PVA. As demonstrated in our previous work, the PVA-PEI hydrogels are ultra-stretchable
and mechanically robust [17]. We further demonstrated that these hydrogels are excellent
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materials for piezoresistive sensors. However, whether the PVA-PEI hydrogels could
be used as electrolytes of supercapacitors remains unknown. More importantly, how to
integrate the flexibility of PVA-PEI hydrogels in fabricating “ideal” wearable SCs remains
a formidable challenge.

In addition to electrolytes [18–21], the electrode materials and the interface between
the electrode and the gel electrolyte are other important factors in deciding the overall
performance of the devices. Graphene is a commonly used electrode material due to its
large theoretical specific surface area (about 2600 m2/g) and ideal double-layer capacitance
performance [22]. However, the output of graphene electrodes could be greatly affected
by the intimate layer-to-layer stacking of the single graphene sheets, which prevents the
formation of favorable three-dimensional structures important for the electrolyte ions’ stor-
age and release [23]. Numerous methods, including chemical vapor deposition (CVD) [24],
mechanical stripping and oxidation-reduction method [23], were reported for fabricat-
ing graphene-based supercapacitors. However, the complicated operation procedures of
these methods make them poorly tolerable for large-scale preparation and application [25].
In this context, other simple and robust methods for fabricating ultrahigh performance
graphene-based electrodes are urgently needed.

Boron nitride nanosheet (BNNS) is a two-dimensional hexagonal crystal material
composed of carbon and nitrogen atoms in sp2-bonded [26]. With a similar crystal struc-
ture to graphene, BNNS could be easily assembled into graphene by a simple ultrasonic
blending approach. Meanwhile, the integration of BNNS into graphene could stabilize
and promote the capacitance of the graphene electrodes [27]. Herein, we proposed a
wearable supercapacitor (WSC) based on graphene/BNNS electrodes and PVA/PEI-based
hydrogel electrolytes (Figure 1). We aim to explore how BNNS affects the performance of
the graphene electrodes; moreover, whether PVA-PEI is an “ideal” hydrogel electrolyte for
all-solid-state supercapacitors. Last but not least, whether the graphene/BNNS electrodes
and PVA-PEI electrolytes are a good combination for wearable SC devices.
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Figure 1. A schematic showing the fabrication process and structure of the wearable supercapacitor (WSC). (a) The carbon
cloth was used as a current collector. (b) The carbon nanotubes (CNTs) were loaded on the carbon cloth through filtration,
where sodium dodecylbenzene sulfonate (SDBS) was used as a dispersant. (c) The graphene was mounted on the CNTs
layer through filtration, where boron nitride nanosheets (BNNS) was used to prevent graphene from collapsing. (d) The
as-fabricated WSC was assembled with hydrogel used as a solid electrolyte. (e) The schematic structure of the WSC. (f) The
WSCs could be integrated into clothing to power wearable devices.
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2. Materials and Methods
2.1. Electrode Preparation

The carbon cloth was purchased from Guangzhou LiGe Technology Co., Ltd. and was
used as the collector and scaffold for active materials. The dispersion of aminated carbon
nanotubes (CNTs, CAS:1333-86-4, XFNANO, Nanjing, China) was prepared by mixing
0.8 g CNTs and 0.4 g sodium dodecylbenzene sulfonate (SDBS, CAS: 25155-30-0, Aladdin,
Shanghai, China) in DI water (20 mL) with ultrasonication (80 W, 50 Hz) for 30 min. The
CNTs were inserted into a carbon cloth (CC/CNTs) by vacuum filtration. 0.08 mg graphene
(C, CAS: 7440-44-0, XFNANO, Nanjing, China), 0.01 g black carbon (CAS: 7440-44-0,
XFNANO, Nanjing, China) and 0.008 g boron nitride nanosheets (BNNS, CAS: 10043-11-5,
XFNANO, Nanjing, China) were mixed in 15 mL DI water with ultrasonication (80 W,
50 Hz) for 30 min. Then the G/BNNS was mounted on the CC/CNTs through vacuum
filtration. The graphene electrode was prepared in the same way but without BNNS.

2.2. Electrolyte Preparation

The hydrogel (H) based on polyvinyl alcohol (PVA, CAS: 9002-89-5, 1799, Aladdin)
and polyethyleneimine (PEI, CAS: 9002-98-6, MW = 600, Aladdin, Shanghai, China) was
synthesized and used as an electrolyte with/without additional H2SO4 (CAS: 7664-93-9,
Aladdin, Shanghai, China) or KOH (CAS:1310-58-3, Aladdin, Shanghai, China). For the
electrolyte of H/KOH, the homogeneous solution was prepared by dissolving 2 g PVA,
1 g PEI and 0.56 g KOH (1 M) in 10 mL DI water and then heating in a water bath (90 ◦C)
with magnetic stirring for two hours. Other electrolytes of PVA/H2SO4, PVA/KOH and
H/H2SO4 were prepared using the same procedures.

2.3. Assembling the WSC

The WSC was assembled with two electrodes face to face and the electrolyte solu-
tion sandwiched between the two electrodes. The assembled WSC was then stored at
−20 ◦C overnight. After thawing at room temperature for 12 h, the WSC can be used for
further study.

2.4. Material Characterizations

The Tensile test of the hydrogel was tested by an ESM301/Mark-10 system (Mark-10
Corporation, New York, NY, USA) with a tensile speed of 50 mm·min−1. The samples for
the Tensile test had a size of 20 × 10 × 1 mm3. Fourier transform infrared spectroscopy
(FTIR) was obtained using a VERTEX80v spectrometer (Bruker, Karlsruhe, Germany).
Scanning electron microscopy (SEM) and Energy Disperse Spectroscopy (EDS) images of
the hydrogel were obtained using a Hitachi field emission scanning electron microscope
(SU 8020, Hitachi, Tokyo, Japan).

2.5. Electrochemical Measurements

The cyclic voltammetry (CV), galvanic charge/discharge (GCD), electrochemical
impedance spectroscopy (EIS) tests of the WSCs were performed with an electrochemical
workstation (CHI 650E, Chenhua, Shanghai, China). The EIS was performed with an AC
amplitude of 10 mV at an open circuit at a range of 100 kHz to 0.01 Hz.

The area capacitance was calculated by:

CS =
1

S∆Vν

∫ V2

V1

idV

where ∆V is the cut-off voltage (i.e., 0.8 V), υ is the scan rate, S is the area of the tested device.
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3. Results and Discussion
3.1. Properties Characterization of the PVA-PEI Based Hydrogel

Through a simple water bath reaction associated with a freezing/thawing method [17],
the hydrogel elastomer with good transparency was synthesized (Figure 2a). The long-
chain PVA and short-chain PEI formed a crosslinked network due to multiple physical
and chemical intermolecular or intramolecular interactions, such as electrostatic attraction,
segment entanglement and hydrogen bonding. The hydroxyl groups (−OH) of PVA and
the amino groups (−NH2) of PEI may especially form tough hydrogen bonds, which
provide quite a suitable environment for retaining abundant water molecules around the
polymer chains. Moreover, the strong nucleophilic abilities of −NH2 and −NH- in PEI may
hydrolyze water molecules, resulting in increased conductivity of the hydrogel. Compared
to conventional PVA hydrogel electrolytes, the PVA-PEI system affords a more preferable
three-dimensional framework for ions shuttling and storing, particularly for alkali ions.
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Figure 2. Schematic showing the fabrication process and the properties of the ionic hydrogel. (a) The preparation process
and structure of the ionic hydrogel. (b) The as-fabricated hydrogel exhibited superior transparency and mechanical elasticity.
The SEM images of the hydrogel showed a porous structure. (c) The Fourier transform infrared spectroscopy (FTIR) spectra
of PVA-PEI-based ionic hydrogel. (d) The tensile stress–strain curves of PVA and PVA-PEI-based hydrogel.

The PVA-PEI hydrogel exhibited superior mechanical elasticity (Figure 2b). After
freeze-drying treatment, the SEM images revealed that the hydrogel possesses micro/nano-
structured pores or crackles, which may offset the gel volume variations during the
charge/discharge processes. The FTIR spectrum was performed to verify the compo-
nents of the hydrogels (Figure 2d). The broad peak ranging from about 3208 cm−1 to
3362 cm−1, associated with a weak peak around 1097 cm−1, were assigned to the ν-OH
stretching of PVA. Similarly, the −NH− stretching of PEI could be found as a weak peak at
1042 cm−1 [17].

To study the stretchability of the hydrogel, we conducted a tensile stress–strain test.
The PVA-PEI hydrogel exhibited excellent elastic properties, showing a breaking strength
of up to 400 kPa and a breaking deformation of 425%, which are 2-fold and 1.5-fold
improvements, respectively, compared to that of the PVA hydrogel with the same water
content. The outstanding mechanical properties of the PVA-PEI hydrogel make them broad
application prospects in wearable electronic devices.
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3.2. Morphology and Electrochemical Performance of the Electrode

After obtaining the hydrogel electrolyte, we then assembled flexible electrodes. Among
all kinds of electrode supporting materials, carbon clothes composed of conductive carbon
fibers that are highly flexible, lightweight and have a large specific surface area, making
them one of the most promising materials for WSCs. Figure 3a exhibited the surface
structure of bared carbon cloth. After loading with CNTs (Figure 3b), the crisscrossing
surface of the carbon cloth was fully covered by a dense layer of CNTs. Figure 3c,d shows
the surface morphology of carbon cloth further loaded with graphene and BNNS. The
graphene/BNNS composite has a layered structure, where the BNNS inserted into, or
decorated on, the surface of graphene (Figure 3d). This demonstrates that the BNNS was
well distributed and successfully prevented graphene from aggregation. This phenomenon
was further confirmed by the element distribution map in EDS (Figure 3e).
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Figure 3. SEM images of the CC/CNT/graphene electrode. (a) SEM image of the carbon cloth.
(b) SEM image of the carbon cloth loaded with CNTs. (c) SEM image of the carbon cloth loaded
with CNT and graphene. (d) The BNNS inserting into layered graphene sheets to prevent collapse.
(e) SEM images and the corresponding Energy Disperse Spectroscopy (EDS) elemental mapping of
(C,B) for CC/CNT/graphene electrode.

3.3. Effect of BNNS on Electrochemical Properties of WSC

With the electrodes and hydrogel materials in hand, WSC was assembled (Figure 4a,b).
It is worth mentioning that, the −OH of PVA and −NH2 of PEI could contribute to the tight
binding of the hydrogel to the electrodes. Consequently, it helps to stabilize the sandwich
structure during the repeated folding/unfolding process and improve performance stability
during the charge/discharge cycle.
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Figure 4. The electrochemical behavior of the WSCs. (a) The interaction among the electrolyte, BNNS and graphene. (b) the
optical image of the WSC. CV (c) and galvanic charge/discharge (GCD) (d) curves of the WSC based on G@H. CV (e) and
GCD (f) curves of the WSC based on G/BNNS@H. (g) Areal capacitances of WSCs at different scan rates. (h) Nyquist plot
for WSCs based on G/BNNS@H and G@H.

To study the influence of BNNS on the electrochemical performance of WSC, we
designed two kinds of WSC devices, one is based on electrodes of graphene inserted
with BNNS (denoted as G/BNNS@H) and the other one is based on electrodes with sole
graphene (denoted as G@H) (More details could be found in Figures S1 and S2). The
G/BNNS@H SC showed better electrochemical performance based on the comprehensive
analysis of CV, GCD, rate curve and EIS test. All the CV curves of devices based on G@H
and G/BNNS@H displayed shuttle-shaped closed loops over a potential window of 0 to
0.8 V at scan rates ranging from 1 mV/s to 100 mV/s. The CV curves of WSC based on
G/BNNS@H performed more approximate right-angled curves than that of the device
of G@H at the voltages of near 0 V or 0.8 V, indicating that BNNS doping leads to faster
charge storage and release efficiencies (Figure 4c,e) [28]. At the same time, the triangle-
shaped GCD curves of the two devices suggested superior capacitive performance and
electrochemical reversibility (Figure 4d,f) [29]. The small voltage drop near 0.8 V is related
to the internal resistance (∆R) of the supercapacitors, where the ∆R of G/BNNS@H is much
less than that of G@H [30]. The areal capacitances at different scan rates were calculated and
displayed in Figure 4g. G/BNNS@H showed an area capacitance of 0.0504 F/cm2, while
that of G/H is 0.014 F/cm2. The electrochemical impedance (EIS) behavior of the WSCs
was then studied (Figure 4h). G/BNNS@H shows a much smaller intercept with the x-axis
than that of G@H (47.76 ohm/cm2 vs. 63.26 ohm/cm2), which means that G/BNNS@H has
the lower equivalent series resistance (ESR) than that of G@H [31]. The smaller semicircle of
G/BNNS@H in the middle frequency regions hints at a lower electron/ion charge-transfer
resistance. In conclusion, the above characterizations show that BNNS effectively improves
the electrochemical performance of graphene [32].
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3.4. Enhanced Electrochemical Properties of WSC with Alkaline Hydrogel

Electrolyte ions play an important role in determining the conductance of the gel
electrolyte and even the overall performance of the SCs. We next employed 1 M KOH
or 1 M H2SO4 as electrolyte ions. The CV curves of G/BNNS@H/KOH presented a
highly regular rectangle-like shape in a voltage window of 0 V to 0.8 V (Figure 5a). The
corresponding GCD curves (Figure S1b) showed triangle-like shapes. No significant voltage
drop was observed when the direction of the current changes, implying a double-layer
energy storage mechanism. In contrast, the CV (Figure 5b) curves of G/BNNS@H/H2SO4
revealed severe distortion, as so of the GCD curves (Figure S1c), indicating that H2SO4 is a
poor electrolyte choice for the PVA-PEI system.
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(e) The conductance of WSCs. (f) Cycling stability of WSCs at a current density of 0.53 mA/cm2.

Moreover, the electrochemical performance of WSCs with PVA-KOH/H2SO4 as elec-
trolytes was tested (Figure S3). Among all four kinds of SCs, G/BNNS@H/KOH showed
the largest areal capacitance of 0.35 F/cm2 at a scan rate of 1 mV/s (Figure 5c), while
G/BNNS@H/H2SO4 is 0.037 F/cm2 at the same conditions. G/BNNS@PVA/H2SO4 and
G/BNNS@PVA/KOH possessed a similar magnitude of areal capacitances. This indicates
that the PEI is highly prone to acids. The significant enhancement of G/BNNS@H/KOH,
with the addition of KOH, might because the alkaline electrolyte promoted the ionization
of PEI and the stability of the hydrogel system.

Figure 5d showed the EIS plots of four WSCs at a frequency from 0.01 Hz to 100 kHz.
Significant differences among the hydrogel electrolytes were observed. At high-frequency
regions, ESRs were obtained from the intercept of the real axis. G/BNNS@H/KOH
had the smallest impedance value of 6.03 ohm/cm2, followed by G/BNNS@H/H2SO4
and G/BNNS@PVA/H2SO4, their impedances are 7.23 and 7.46 ohm/cm2, respectively.
G/BNNS@PVA/KOH showed the largest impedance of 19.4 ohm/cm2. These results indi-
cated that the H/KOH has better contact with the electrode materials than the three other
electrolytes. The Warburg region known as a straight line at 45◦ relative to axis ranging from
the low frequency to the high frequency represents the ions diffusion impedance [33,34]. The
slopes of H/KOH and H/H2SO4 are near 1, indicating excellent ion diffusion efficiencies
owing to smaller contact resistance between the electrolyte and electrode [35]. The conduc-
tance calculated from ERS were displayed in Figure 5e. The G/BNNS@H/KOH showed the
highest conductance and the G/BNNS@PVA/H2SO4 showed the lowest conductance.
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Figure 5f shows the cyclic charge/discharge test of G/BNNS@H/KOH, G/
BNNS@PVA/KOH and G@PVA/KOH at a current density of 0.53 mA/cm2. At the first
500 cycles, capacitances of all WSCs decreased fast. After 5000 cycles, the capacitance
retention of G/BNNS@H/KOH was 81% of the original state, while G/BNNS@PVA/KOH
and G@PVA/KOH were 75% and 71%, respectively.

3.5. The Flexibility and Application of WSC

Having demonstrated the optimal electrochemical performance of G/BNNS@H/KOH,
the flexibility of G/BNNS@H/KOH was then explored. When the device was bent to 60◦,
120◦, and 180◦, the CV curves at a scan rate of 4 mV/s were almost identical to the
non-bending state, indicating excellent flexibility of the WSC (Figure 6a). As shown in
Figure 6b, a cycling charge/discharge test at a current density of 0.53 mA/cm2 was carried
out when the device was in its original state and a 60◦ bending state. The capacitance
of WSC decreased rapidly during the initial 1000 cycles and gradually leveled off. After
5000 cycles of charging and discharging, the capacitance retention of the device was
about 80%.
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bending states obtained at a scan rate of 40 mV/s. (b) Cycling stability of WSCs with stage bending at a current density of
0.53 mA/cm2. (c) GCD curves of single/two/three WSCs connected in series. (d) GCD curves of single/two/three WSCs
connected in parallel. (e) The timer powered by three WSCs linked in series. (f) The WSCs were anchored on cloth for
powering the wearable electronic devices.

Benefitting from the thin film structure, the WSC could be connected in series or
parallel to easily power different electronic devices and be integrated into clothing. When
two or three devices were connected in series, the output voltage increases to 1.6 V and
2.4 V, which are two and three times to output voltage of a single device, respectively
(Figure 6c). Correspondingly, the charging time extended to two or three times as long
as one device. As a potential application, we tried to power a timer with three WSCs
connected in series and achieved continuous operation for about one minute. Additionally,
the WSCs were flexible enough to be anchored on the clothing and showed great potential
in powering wearable electronic devices (Figure 6f).

4. Conclusions

In summary, a wearable all-solid-state supercapacitor with mechanical flexibility,
outstanding electrochemical performance and superior stability was designed and fab-
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ricated based on graphene/BNNS electrode and hydrogel electrolyte. The highlights of
this work originate following aspects. Firstly, a PVA-PEI based intrinsic conductance
electrolyte was proposed and pioneeringly applied in WSC. Secondly, the introduction of
BNNS not only stabilized the porous structures of graphene electrodes but also promoted
the electrochemical performances of the WSCs, including folding and cycling stabilities.
Thirdly, the conductive, yet elastic, PVA-PEI hydrogel represented an attractive electrolyte
platform for WSC with alternative ions, like acids [4,7,8], alkali [3,28], neutral inorganic
salts [6] and ionic liquids [36–40], et al. By varying the electrolyte ions, the electrochemical
performances of WSCs were further enhanced. The WSC with graphene/BNNS@H/KOH
achieved an areal capacitance of 0.35 F/cm2 and an ESR of 6.03 ohm/cm2. Moreover, the
G/BNNS@H/KOH exhibited excellent flexibility and durability. After 5000 times charging
and discharging test under repeated bending state, 81% capacitance was retained.

The all-solid-state supercapacitor with hydrogel electrolytes shows many advantages,
such as safety, flexibility, lightweight, high energy density and power density. Distin-
guished from previously reported methods for fabricating the state-of-the-art WSC, our
study here addressed the point from the systematic design rather than paid attention to
either the electrolyte or the electrode materials. Through tailoring the electrolyte, electrode
materials, and the interface chemistry between them, we successfully obtained a kind
of WSC with satisfiable power density, flexibility, and durability. We envisage that the
currently graphene/BNNS@H/KOH system will be further optimized by a more extensive
screening and combination in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14081955/s1. Figure S1: The electrochemical performance of the WSC based on G/BNNS@H,
G/BNNS@H/KOH, G/BNNS@H/H2SO4. Figure S2: The electrochemical performance of the WSC
based on G@H, G@PVA/KOH, G@PVA/H2SO4. Figure S3: The electrochemical performance of the
WSC based on G/BNNS@PVA/KOH, G/BNNS@PVA/H2SO4.
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