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Abstract: Numerous tests are used to determine the performance of concrete, but compressive
strength (CS) is usually regarded as the most important. The recycled aggregate concrete (RAC)
exhibits lower CS compared to natural aggregate concrete. Several variables, such as the water-cement
ratio, the strength of the parent concrete, recycled aggregate replacement ratio, density, and water
absorption of recycled aggregate, all impact the RAC’s CS. Many studies have been carried out to
ascertain the influence of each of these elements separately. However, it is difficult to investigate their
combined effect on the CS of RAC experimentally. Experimental investigations entail casting, curing,
and testing samples, which require considerable work, expense, and time. It is vital to adopt novel
methods to the stated aim in order to conduct research quickly and efficiently. The CS of RAC was
predicted in this research utilizing machine learning techniques like decision tree, gradient boosting,
and bagging regressor. The data set included eight input variables, and their effect on the CS of
RAC was evaluated. Coefficient correlation (R2), the variance between predicted and experimental
outcomes, statistical checks, and k-fold evaluations, were carried out to validate and compare the
models. With an R2 of 0.92, the bagging regressor technique surpassed the decision tree and gradient
boosting in predicting the strength of RAC. The statistical assessments also validated the superior
accuracy of the bagging regressor model, yielding lower error values like mean absolute error (MAE)
and root mean square error (RMSE). MAE and RMSE values for the bagging model were 4.258 and
5.693, respectively, which were lower than the other techniques employed, i.e., gradient boosting
(MAE = 4.956 and RMSE = 7.046) and decision tree (MAE = 6.389 and RMSE = 8.952). Hence, the
bagging regressor is the best suitable technique to predict the CS of RAC.

Keywords: recycled concrete aggregate; compressive strength; green concrete; machine learning;
decision tree; gradient boosting; bagging regressor

1. Introduction

Worldwide, concrete is the most utilized material in the building sector [1–6]. Its
appeal originates from several characteristics, including its minimal expense, water and
heat resistance, and flexibility to a variety of shapes and sizes [7–13]. Concrete might be used
to build almost every sort of structure [14,15]. Concrete is composed of three fundamental
components: aggregates, cement, and water [16–18]. Amongst these ingredients, aggregate
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is significant as it makes up around 60–75% of the overall volume of concrete [19]. Moreover,
the fast growth of industrialization and urbanization has made concrete the least eco-
friendly material because it uses the most natural resources. Concrete is crucial to a
country’s economic prosperity due to its widespread use. It utilizes around 20,000 million
tons of raw materials (natural aggregates) every year [20]. Moreover, the mining and
processing natural aggregates (NAs) requires considerable energy and results in increased
CO2 emissions [21]. Thus, increased use of concrete results in rapid depletion of natural
resources and increased contamination of the environment [22–24]. Now, scholars are
focusing their research on the application of alternate materials to natural ones, thereby
promoting naturally responsible construction.

Modern infrastructure development necessitates extensive refurbishment of present
structures, causing immense volumes of construction and demolition waste (CDW). Due
to the crucial nature of CDW, it must be disposed of securely. Two concerns confront the
current building sector: dwindling natural resources and a rise in CDW. Both challenges
might be addressed concurrently by CDW recycling in the new building. Recycling leftover
concrete from CDW has developed into a feasible alternative to NA in concrete [25,26].
Waste concrete is generated in a number of ways, including destroyed structures, aban-
doned precast concrete members, residual concrete in batching facilities, and concrete
samples tested in laboratories [27–30]. Thus, incorporating recycled concrete aggregates
(RCAs) in the building sector will be an economical and eco-friendly way to decrease CDW
volume [31,32]. RAs are divided into three categories: recycled brick aggregate, RCA,
and recycled mixed (bricks and concrete) aggregate. Meanwhile, RAs include a range of
pollutants, including woodblocks, glass, paper fragments, and plastics [33,34]. Presently,
RCA is the most often utilized in construction [35–40]. Thus, substituting RCAs from CDW
for NAs in concrete will encourage sustainable development.

The process of building predictive models for concrete strength is ongoing in order to
minimize needless test repetitions and material waste. There are various popular models
for simulating the characteristics of concrete, including best-fit curves (based on regression
analysis). However, because concrete has a nonlinear behavior [41,42], regression models
developed using this approach may not adequately capture the material’s underlying
nature. Additionally, regression techniques may underestimate the influence of concrete
constituents [43]. Artificial intelligence techniques, such as machine learning (ML), are
some of the most advanced modeling approaches employed in the field of civil engineering.
These methods model responses using input variables, and the output models are confirmed
by experimentation. ML methods are employed to forecast concrete strength [44–48], the
performance of bituminous mixtures [49], and the durability of concrete [50–52]. The
majority of previous ML-based studies have focused on CS prediction for conventional
concretes [53–59], using their physiochemical attributed (e.g., cement content; water content;
and mass/volume of admixture and/or mineral additive); only a few articles have focused
on the prediction of the characteristics of RAC. Duan et al. [60] used a nonlinear, regression-
based ML model, namely an artificial neural network (ANN), to forecast the CS of RAC.
Gholampour et al. [61] investigated the applicability of several regression-based ML models
for predicting the mechanical properties of RAC. Deshpande et al. [62] employed ANN to
predict the CS of RAC, which might possibly be used to estimate MOE when paired with
semi-empirical formulae. Behnood et al. [63] predicted the properties of RAC using the M5P
model tree technique—a very recent decision tree ML model [64]. Deng et al. [65] predicted
the CS of RAC using a convolutional ANN-based deep learning algorithm. Nonetheless,
it is critical to note that the most frequently used ML model in prior research is ANN
frequently fails to accurately predict outcomes [66,67]. This is because ANN models are
based on local optimization and search algorithms (e.g., the back-propagation mechanism
used in several neural network-based ML models for parameter optimization) that are
highly susceptible to becoming confined in (or around) local minima rather than converging
to the global minimum [66]. As a result of this difficulty, when ANN models are retrained,
they frequently provide inconsistently or even poorer predictions for the same set of inputs
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(e.g., using a larger or a different database) [68]. Recent studies have demonstrated that
the bagging regressor (BR) and gradient boosting (GB) models based on a modification
of the bootstrap aggregation decision tree (DT) algorithm outperforms other standalone
ML models in terms of prediction accuracy of concrete CS [69–72]. These studies credit
the BR and GB model’s better prediction performance to its unmatched ability to handle
discrete and continuous variables across monotonic and non-monotonic data domains,
while simultaneously lowering variance across different subsets of the training data set.
Despite the BR and GB model’s benefits, an exhaustive literature analysis revealed that
these models have rarely been used to forecast the CS of RAC.

The aim of this work is to determine how ML strategies might be used to anticipate
the CS of RAC. One single ML algorithm, DT, and two ensemble ML approaches, GB and
BR, were employed. To evaluate the performance of each method, correlation coefficients
(R2) and statistical tests were carried out. Furthermore, each technique’s validity was
confirmed using k-fold evaluation and error dispersals. This research is noteworthy because
it predicts the CS of RAC utilizing both single and ensemble ML methods. The experimental
explorations require substantial human effort, experimentation expenses, and time for
collection, casting, curing, and testing materials. Since a variety of parameters, including
waster–cement ratio (w/c), parent concrete strength, recycled aggregate replacement ratio,
water absorption, and density, all influence the CS of RAC, and their combined effect is
difficult to analyze experimentally. ML techniques are capable of identifying the cumulative
influence of their components with minimal effort. ML methods require a data set, which
may be gathered from previous research since several investigations have been conducted
to determine the CS of RAC. The data collected can then be employed to train ML methods
and anticipate material strength. Some previous studies also employed ML methods to
estimate the properties of RAC, but with a limited number of data samples and input
parameters. For example, Salimbahrami and Shakeri [73] predicted the CS of RAC using
the ANN technique with 7 input variables and 124 data samples. Similarly, Duan et al. [74]
predicted the CS of RAC with 6 input variables and 209 data points. This study employed
different ML techniques from the previous studies and estimated the CS of RAC with
8 input parameters and 638 data points. It is expected that using a higher number of input
variables and data points will result in the superior precision of ML techniques. The goal
of this research is to determine the most appropriate ML approach for estimating the CS of
RAC and the influence of various factors on RAC strength.

2. Methods
2.1. Data Employed for Modeling

To attain the desired outcome, ML algorithms require a diverse set of input vari-
ables [75–77]. Utilizing data gathered from the past studies (see Appendix A), the CS of
RAC was calculated. To avoid bias, experimental data were picked at random from past
studies. The available publications on the usage of similar materials in the CS of RAC were
reviewed. While the majority of articles studied extra aspects of RAC, this analysis used CS
data for modeling. The algorithms took eight variables as inputs: the RCA replacement
ratio, the parent concrete strength, the aggregate–cement ratio (a/c), the water–cement
ratio (w/c), the nominal maximum RCA size, the Los Angeles abrasion index of RCA, the
bulk density of RCA, and the water absorption of RCA, and only CS taken as the output.
The quantity of input factors and dataset size have a substantial effect on the ML method
results [78–80]. A total of 638 data points were used in the current research to run ML
techniques. The descriptive statistic assessment of all input factors is summarized in Table 1.
The table contains the mathematical identifications for all the input factors. Figure 1 depicts
the relative frequency dispersal of all variables applied in the investigation. It summarizes
the number of possible interpretations for each value or combination of values.



Materials 2022, 15, 3430 4 of 36

Table 1. Descriptive assessment results of input factors used.

Parameter
Water-
Cement
Ratio (w/c)

Aggregate-
Cement
Ratio (a/c)

RCA Re-
placement
Ratio (%)

Parent
Concrete
Strength
(MPa)

Nominal
Maximum
RCA Size
(mm)

Bulk
Density of
RCA
(kg/m3)

Water Ab-
sorption of
RCA (%)

Los
Angeles
Abrasion
Index of
RCA

Mean 0.49 2.99 53.03 5.00 21.51 1666.16 3.49 6.75
Maximum 0.87 6.50 100.00 100.00 32.00 2880.00 11.90 42.00
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Range 0.87 6.50 100.00 100.00 32.00 2880.00 11.90 42.00
Mode 0.50 3.10 100.00 0.00 20.00 0.00 0.00 0.00
Median 0.49 2.90 50.00 0.00 20.00 2330.00 3.90 0.00
Sum 312 1913 33,884 3193 13,747 10,646.77 2231 4312
Standard
Deviation 0.11 0.83 40.01 15.38 5.71 1115.04 2.94 13.89

Figure 1. Cont.
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Figure 1. Relative frequency dispersal of input factors.

2.2. Machine Learning Algorithms Employed

To meet the study’s aims, a single ML method (DT) and ensemble ML approaches
(GB and BR) were employed with Python scripting using the Anaconda Navigator pack-
age. Spyder (Version 4.3.5) was selected to operate the DT, GB, and BR models. These
ML techniques are frequently utilized to forecast required results in response to input
parameters. These techniques are able to anticipate the temperature impact, the mechanical
strength, and the durability of materials [81–83]. Eight input factors and one output (CS)
were used throughout the modeling process. The expected result’s R2 score represented
the accuracy of all techniques. The R2 indicates the degree of deviation; a value near zero
indicates greater deviation, while a value near one indicates that the data and model are
virtually perfectly fit [70]. The sub-sections beneath describe the ML approaches used in
this research. Moreover, statistical and k-fold analyses, as well as error evaluations, are
performed on all ML methods like mean absolute error (MAE) and root mean square error
(RMSE). Furthermore, sensitivity analysis (SA) is used to determine the influence of all
input factors on the estimated results. The research method is depicted in Figure 2.
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Figure 2. Sequence of research methods.

2.2.1. Decision Tree

DTs are formed by developing techniques for segmenting a data sample into branch-
like portions. These portions unite to create an inverted tree with a root node on the upper
side [84]. Figure 3 illustrates a schematic representation of the DT technique. As depicted,
a DT can have both continuous and single features. Relationships between the object of
assessment and the input fields are utilized to generate the branching or segmentation
decision rule beneath the root node. Following the link’s establishment, one or more
decision rules detailing the associations among the inputs and targeted results might be
generated. Decision rules approximate the values of new or undetermined interpretations
accurately when they incorporate input values but not targets. At each division point, the
errors are computed, and the variable with the smallest fitness function value is taken as
the split position, followed by the same for the other variables.

Figure 3. Decision tree schematic representation [85].
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2.2.2. Gradient Boosting

Friedman [86] presented GB as an ensemble strategy for classification and regression
in 1999. GB is only applicable to regression. As seen in Figure 4, the GB technique compares
each iteration of the randomly chosen training set to the base model. GB for execution may
be sped up and accuracy increased by randomly subsampling the training data, which also
helps prevent overfitting. The lower the training data percentage, the faster the regression
because the model must suit minor data with every single iteration. The GB algorithm
requires tuning parameters, including n-trees and shrinkage rate, where n-trees is the
number of trees to be generated; n-trees must not be kept too small, and the shrinkage
factor, normally referred to as the learning rate employed to all trees in the development,
should not be set too high [87].

Figure 4. Schematic representation of gradient boosting technique [72].

2.2.3. Bagging Regressor

BR is a comparable SML technique that compensates for the prediction model’s
variance during the training stage by improving it with supplementary data. This result is
established on an asymmetric selection strategy that makes use of data exchange from the
original set. Utilizing sampling with the substitute, some observations may be reiterated
in each new testing dataset, allowing for greater accuracy. During the BR process, each
constituent has an equal probability of being included in the new dataset, regardless of its
importance. There is no influence on the forecasting force of a training set that is larger
in size than the training set. It is also possible to considerably reduce the variation by
fine-tuning the estimate to get the desired conclusion. For subsequent model training,
each of these data sets is commonly utilized to supplement the others. Using an ensemble
of numerous models, the mean of all predictions from each model is used to create this
ensemble. In regression, the prediction might be the average or mean of the estimates from
a number of different models [88]. Twenty sub-models are employed to optimize the DT
using BR to obtain an adamant output result. Figure 5 depicts the bagging algorithm’s flow
chart, which details the procedure until the desired output is obtained.
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Figure 5. Schematic representation of the bagging regressor technique [85].

3. Analysis of Results
3.1. DT Model

Figure 6 demonstrates the DT model’s results for the CS estimate of RAC. Figure 6a
illustrates the relationship among experimental and anticipated results. The DT approach
produced findings that were less accurate and had a moderate discrepancy between experi-
mental and projected outcomes. The R2 of 0.77 validates the DT model’s lower performance
in projecting the CS of RAC. Figure 6b depicts the scattering of experimental, anticipated,
and error values for the DT model. The error values were evaluated, and the maximum
and average values were noted to be 37.68 and 6.39 MPa, respectively. Furthermore, the
dispersal of error values was found, with 11.7% of values falling below 1 MPa, 41.4% falling
between 1 and 5 MPa, 28.1% falling between 5 and 10 MPa, and 18.8% falling over 10 MPa.
The scattering of error numbers indicates that the DT technique works less precisely.

3.2. GB Model

Figure 7 shows the outcomes from the GB model’s estimation of the CS of RAC.
Figure 7a illustrates the relationship among experimental and estimated results. The GB
method resulted in an output that was more precise and had the least degree of difference
between actual and projected results. The GB model is better at forecasting the CS of RAC,
with an R2 of 0.85. The scattering of experimental, anticipated, and error figures for the GB
model are depicted in Figure 7b. The results for the average and highest error are 4.78 and
27.96 MPa, respectively. The dispersal of errors was 20.4% lower than 1 MPa, 43.1% in the
range of 1 and 5 MPa, 20.0% in the range of 5 and 10 MPa, and 16.5% larger than 10 MPa.
The dispersal of errors demonstrates the GB technique’s superior estimating accuracy to
the DT. The GB model takes the advantage of optimized value from the twenty sub-models,
resulting in the higher precision.
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Figure 6. DT model: (a) Link among experimental and projected outcomes; (b) Scattering of actual
and predicted results.
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Figure 7. GB model: (a) Relationship among experimental and projected outcomes; (b) Scattering of
actual and predicted results.

3.3. BR Model

Figure 8a,b exemplify an evaluation of the experimental and expected findings for the
BR model. Figure 8a illustrates the relationship among experimental and projected results,
with an R2 of 0.92 implying that the BR model is more accurate in estimating the RAC’s CS
than the DT and GB models. The scattering of experimental, anticipated, and error scores
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for the BR model are depicted in Figure 8b. The maximum and average errors were found
to be 23.22 and 4.26 MPa, respectively. The dispersal of error values was 16.4% lower than
1 MPa, 54.7% in the range of 1 and 5 MPa, 21.15% in the range of 5 and 10 MPa, and only
7.8% higher than 10 MPa. These decreased error numbers suggest that the BR technique is
more precise than the other models used in this investigation. Similar to the GB method,
the BR method produces twenty sub-models, and the optimized sub-model based on the
R2 is chosen. Because the BR approach employs substitution sampling, some observations
may be repeated in each new testing dataset, resulting in increased accuracy.

Figure 8. Bagging regressor model: (a) Relationship among experimental and forecasted results;
(b) Scattering of actual and predicted results.
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4. Validation of Models

The models were validated using k-fold and statistical techniques. The k-fold approach
is widely used to determine the validity of a technique [89] in which the related dataset
is arbitrarily distributed and classified into 10 classes. As depicted in Figure 9, nine
units will be utilized for training models and one for verifying them. The model is more
accurate when the errors (RMSE and MAE) are small, and the R2 is greater. Moreover, the
procedure should be repeated ten times to ensure that a plausible conclusion is reached.
This substantial effort greatly contributes to the ML technique’s exceptional correctness.
Moreover, as seen in Table 2, all ML methods were statistically assessed for the inaccuracy
(MAE and RMSE). These analyses also validated the BR model’s superior exactness in
comparison to the DT and GB models, owing to their lower error values. The approaches’
predictive performance was assessed statistically using Equations (1) and (2), which were
obtained from earlier work [90,91].

MAE =
1
n

n

∑
i=1
|xi − x| (1)

RMSE =

√√√√
∑

(
ypred − yre f

)2

n
(2)

where n = total quantity of data points, x, yre f = experimental values in the data set, and xi,
ypred = projected values from techniques

Figure 9. Schematic depiction of k-fold assessment [92].
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Table 2. Statistical assessments of the models.

Model MAE RMSE

Decision tree 6.389 8.952
Gradient boosting 4.956 7.046
Bagging 4.258 5.693

MAE, RMSE, and R2 were computed to determine the effectiveness of the k-fold
process, and their values are shown in Table 3. Figures 10–12 illustrate the comparison
of k-fold analysis for all of the methods used. The MAE for the DT model was in the
range of 6.39 and 14.68 MPa, having an average of 11.83 MPa. When compared to the GB
method, the MAE varied from 4.78 to 14.60 MPa, having an average of 10.27 MPa. MAE for
the BR model ranged from 4.26 to 10.82 MPa, having an average of 8.10 MPa (Figure 10).
The average RMSE for the DT, GB, and BR methods were 13.81, 11.05, and 10.69 MPa,
respectively (Figure 11). Moreover, the average R2 for the DT, GB, and BR models were 0.53,
0.67, and 0.71, respectively (Figure 12). In comparison with the GB and DT methods, the BR
method with smaller errors (MAE and RMSE) and superior R2 is more exact in estimating
the CS of RAC.

Table 3. Results obtained from the k-fold assessment.

K-Fold
Decision Tree Gradient Boosting Bagging Regressor

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

1 12.37 16.63 0.66 12.70 10.73 0.74 10.82 14.06 0.87
2 14.53 13.55 0.27 8.03 9.78 0.53 7.65 8.80 0.57
3 13.90 8.95 0.43 12.14 8.58 0.85 8.87 10.78 0.75
4 10.63 14.62 0.73 8.97 14.06 0.84 7.90 11.97 0.40
5 14.68 17.60 0.77 11.76 12.92 0.81 7.35 9.80 0.82
6 9.80 12.57 0.32 13.60 7.99 0.83 7.97 10.12 0.85
7 12.10 11.57 0.39 4.96 7.05 0.37 8.22 10.58 0.78
8 12.11 17.63 0.77 13.14 9.16 0.74 10.31 15.05 0.76
9 11.76 12.56 0.48 9.11 8.18 0.61 4.26 5.69 0.77
10 6.39 12.44 0.45 11.44 17.06 0.27 7.62 9.99 0.54

Figure 10. Mean absolute error distribution from k-fold analysis.



Materials 2022, 15, 3430 14 of 36

Figure 11. Root mean square error distribution from k-fold analysis.

Figure 12. Correlation coefficient (R2) distribution from the k-fold analysis.

5. Sensitivity Analysis

This evaluation intends to find out the influence of input factors on RAC’s CS predic-
tion. The input factors have a major influence on the anticipated result [93]. The effect of
the input factors on the CS forecast of RAC is seen in Figure 13. The analysis found that the
essential ingredient was the RCA replacement ratio, accounting for around 21% of the total,
followed by parent concrete strength at approximately 18% and w/c at approximately 17%.
The remaining input factors had a smaller effect on the forecast of RAC’s CS, with the Los
Angeles abrasion index of RCA, water absorption of RCA, a/c, nominal maximum RCA
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size, and bulk density of RCA contributing to about 13%, 9%, 9%, 7%, and 6%, respectively.
SA produced results that were related to the quantity of inputs and the data sample used
to create the models. Equations (3) and (4) were used to determine the effect of an input
parameter on the technique’s output.

Ni = fmax(xi) − fmin(xi), (3)

Si =
Ni

∑n
j−i Nj

, (4)

where, fmax(xi) is the highest anticipated result over the ith output, fmin(xi) is the least
anticipated results over the ith output, and Si is the percentage contribution of a specific
input factor.

Figure 13. Input variables contribution to predicting outcomes.

6. Discussion

The goal of this work was to add to the body of knowledge concerning the application
of modern strategies for evaluating the CS of RAC. This sort of study will benefit the
building sector by facilitating the advancement of fast and cost-efficient material property
prediction tools. Furthermore, by encouraging eco-friendly strategies through these mea-
sures, the approval and usage of RAC in the building sector will be hastened. Figure 14
illustrates the benefits of RAC in the construction industry. Urbanization and industrial-
ization need considerable infrastructure renewal, resulting in enormous CDW volumes.
As a result, landfill area is becoming increasingly scarce as necessary areas are turned
into garbage ditches, estate and waste dumping costs continue to rise. As a result, waste
management has become a priority in emerging countries and is a worldwide concern that
requires a long-term solution. Furthermore, extracting and managing NAs for concrete
uses a considerable amount of energy and produces CO2 [21]. Thus, including RCA in
the manufacturing process of concrete may result in increased energy savings, resource
conservation, building sustainability, cost savings, and a large reduction in CDW.

This analysis illustrates how ML strategies might be used to foretell the CS of RAC.
Three ML methods, including DT, GB, and BR, were employed. DT is a single ML method,
while GB and BR are ensemble ML methods. Each approach was evaluated for exactness
to determine the most effective prediction. The BR model, with an R2 of 0.92, gave more
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precise findings than the GB and DT models, which had an R2 of 0.85 and 0.77, respec-
tively. Moreover, the accuracy of all techniques was tested by the statistical k-fold analysis
techniques. The model’s precision increases as the number of error values decreases. How-
ever, defining and suggesting the ideal ML model for forecasting outcomes across several
domains is challenging since a model’s precision is highly reliant on the input factors
and size of the data set employed during modeling. Ensembled ML methods frequently
take advantage of the weak learner by producing sub-models that may be trained on data
and tweaked to improve the R2. Figure 15 illustrates the dispersion of R2 for the GB and
BR sub-models. The R2 for the GB sub-models were 0.818, 0.844, and 0.869, respectively.
Similarly, the R2 values for the lowest, average, and maximum BR sub-models were 0.899,
0.907, and 0.915, respectively. These findings indicated that BR sub-models had better R2

values than GB sub-models, indicating that the BR model was more precise in estimating
RAC’s CS. In addition, an SA was carried out to find out the influence of all input factors on
the RAC’s projected CS. The execution of a model might be impacted by the model’s input
factors and the quantity of data points. SA was used to find out the contribution of each of
the eight input factors to the anticipated output. The three most significant input factors
were discovered to be the RCA replacement ratio, parent concrete strength, and w/c.

Figure 14. Benefits related to the adoption and application of recycled aggregate concrete.
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Figure 15. Correlation coefficient of sub-models.

7. Conclusions

The goal of this research was to estimate the compressive strength (CS) of recycled
aggregate concrete (RAC) with the application of both single and ensemble machine
learning (ML) algorithms. To predict outcomes, a decision tree (DT) and two ensemble
approaches—gradient boosting (GB) and bagging regressor BR—were used. As a result of
this analysis, the following findings have been drawn:

• Ensemble ML approaches outperformed the single ML approach in estimating the CS
of RAC, with the BR model achieving the greatest accuracy. Correlation coefficients
(R2) were 0.92, 0.85, and 0.77 for the BR, GB, and DT models, respectively. Ensemble
ML models (BR and GB) produced findings that were within a reasonable range and
did not significantly diverge from experimental results. In comparison, the single ML
model (DT) had a lower accuracy and was not suggested for estimating RAC strength.

• The model’s performance was confirmed by statistical tests and k-fold analysis. These
evaluations also validated the BR model’s maximum accuracy, as seen by its reduced
error values when compared to the GB and DT models.

• Sensitivity analysis indicated that the RCA replacement ratio was the most influential
factor determining the model’s outcome, accounting for around 21% of the total,
followed by parent concrete strength at around 18% and the water–cement ratio at
16%. However, the other input parameters contributed less to the estimation of RAC’s
CS, with Los Angeles abrasion index of RCA, water absorption of RCA, aggregate–
cement ratio, nominal maximum RCA size, bulk density of RCA accounting for around
13%, 9%, 9%, 7%, and 6%, respectively.

• This sort of study will benefit the construction industry by allowing for the advance-
ment of rapid and cost-efficient approaches for estimating the strength of materials.
Furthermore, by supporting eco-friendly construction through these measures, the
adoption and application of RAC in construction will be promoted.

This study suggests that future research should use experimental procedures, mixed
proportions, field trials, and other numerical evaluation techniques in order to enhance
the number of data points and input parameters. In addition, to improve the models’
responsiveness, environmental factors like temperature and humidity and a complete
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description of the raw materials may be incorporated as input variables. Furthermore, edge
detection methods might be employed to detect cracks in concrete [94,95]. Nevertheless,
algorithms for exact product identification and categorization are not confined to edge
detection methods. This is a significant restriction of the proposal’s objectives, and its
limits should be assumed with greater rigor and realism in developing the arguments for
future research.
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Appendix A

Table A1. Data set retrieved from the literature and used for the analysis.

Refs.

Water-
Cement
Ratio
(weff/c)

Aggregate-
Cement
Ratio
(a/c)

RCA
Replace-
ment
Ratio
(RCA %)

Parent
Concrete
Strength
(MPa)

Nominal
Maxi-
mum
RCA Size
(mm)

Bulk
Density
of RCA
(kg/m3)

Water Ab-
sorption
of RCA
(%)

Los
Angeles
Abrasion
of RCA

Compressive
Strength
(MPa)

[96] 0.5 2.6 - - 20 - - - 42.8
0.5 2.5 20 - 20 - - - 42.7
0.5 2.5 50 - 20 - - - 41.3
0.5 2.3 100 - 20 - - - 41.8

[97] 0.45 3.3 - - 20 - - - 51.2
0.45 3.3 30 - 20 2400 4.9 - 50.6
0.45 3.3 50 - 20 2400 4.9 - 50.8
0.45 3.3 100 - 20 2400 4.9 - 50.2
0.39 2.6 - - 20 - - - 60.3
0.39 2.6 30 - 20 2400 4.9 - 60.8
0.39 2.6 50 - 20 2400 4.9 - 61.2
0.39 2.6 100 - 20 2400 4.9 - 60.2
0.29 2.2 - - 20 - - - 70.5
0.29 2.2 30 - 20 2400 4.9 - 70.2
0.29 2.2 50 - 20 2400 4.9 - 70.8
0.29 2.2 100 - 20 2400 4.9 - 70

[98] 0.36 2.4 - 41.6 16 - - - 48.4
0.36 2.3 100 41.6 16 - - - 44.5
0.36 2.2 100 41.6 16 - - - 38.7
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Table A1. Cont.

Refs.

Water-
Cement
Ratio
(weff/c)

Aggregate-
Cement
Ratio
(a/c)

RCA
Replace-
ment
Ratio
(RCA %)

Parent
Concrete
Strength
(MPa)

Nominal
Maxi-
mum
RCA Size
(mm)

Bulk
Density
of RCA
(kg/m3)

Water Ab-
sorption
of RCA
(%)

Los
Angeles
Abrasion
of RCA

Compressive
Strength
(MPa)

0.36 2.4 - 50.6 16 - - - 48.9
0.36 2.3 100 50.6 16 - - - 46.1
0.36 2.2 100 50.6 16 - - - 42.4
0.36 2.4 - 63.2 16 - - - 48.9
0.36 2.3 100 63.2 16 - - - 52.5
0.36 2.2 100 63.2 16 - - - 50.7
0.36 2.4 - 35.6 16 - - - 48.9
0.36 2.3 100 35.6 16 - - - 45.2
0.36 2.2 100 35.6 16 - - - 42
0.36 2.4 - 66 16 - - - 48.9
0.36 2.3 100 66 16 - - - 49.6
0.36 2.2 100 66 16 - - - 45.1
0.36 2.7 - 72.3 16 - - - 52.3
0.36 2.4 100 72.3 16 - - - 54.4
0.36 2.3 100 72.3 16 - - - 48.2

[99] 0.47 2.5 - 38.4 20 - - - 39
0.47 2.5 15 38.4 20 2410 5.8 - 38.1
0.45 2.5 30 38.4 20 2410 5.8 - 37
0.42 2.4 60 38.4 20 2410 5.8 - 35.8
0.38 2.3 100 38.4 20 2410 5.8 - 34.5

[100] 0.6 4.6 - - 15 - - - 43.5
0.6 4.1 100 - 15 2450 5.6 - 38.2
0.45 3.3 - - 15 - - - 61.7
0.45 2.9 100 - 15 2450 5.6 - 52.8
0.35 2.6 - - 15 - - - 74.4
0.35 2.3 100 - 15 2450 5.6 - 62.8
0.45 3.2 25 - 15 - - - 60.7
0.45 3.1 50 - 15 2450 5.6 - 59.4

[101] 0.57 3.1 - - 20 - - - 48.3
0.57 3.1 20 - 20 2330 6.3 - 44.9
0.57 3.1 50 - 20 2330 6.3 - 44.7
0.57 3 100 - 20 2330 6.3 - 46.8
0.57 3 - - 20 - - - 40.2
0.57 3.1 20 - 20 2330 6.3 - 43.2
0.57 2.9 50 - 20 2330 6.3 - 39.7
0.57 2.9 100 - 20 2330 6.3 - 43.3
0.57 3 - - 20 - - - 46
0.57 2.8 20 - 20 2330 6.3 - 43
0.57 2.7 50 - 20 2330 6.3 - 38.1
0.57 2.9 100 - 20 2330 6.3 - 39.1

[102] 0.5 2.4 100 - 25 - - - 30.2
0.5 2.3 100 - 25 - - - 36.2
0.7 3.3 100 - 25 - - - 27.7
0.7 3.2 100 - 25 - - - 20.4

[103] 0.43 3 - - 32 - - - 35.9
0.43 2.9 33 - 32 2520 9.3 - 34.1
0.43 2.8 53 - 32 2520 9.3 - 29.6
0.43 2.8 72 - 32 2520 9.3 - 30.3
0.43 2.7 100 - 32 2520 9.3 - 26.7

[104] 0.42 3 - - 32 - - - 36.8
0.37 2.9 30 - 32 2442 6 - 37.2
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Table A1. Cont.

Refs.

Water-
Cement
Ratio
(weff/c)

Aggregate-
Cement
Ratio
(a/c)

RCA
Replace-
ment
Ratio
(RCA %)

Parent
Concrete
Strength
(MPa)

Nominal
Maxi-
mum
RCA Size
(mm)

Bulk
Density
of RCA
(kg/m3)

Water Ab-
sorption
of RCA
(%)

Los
Angeles
Abrasion
of RCA

Compressive
Strength
(MPa)

0.34 2.8 50 - 32 2442 6 - 37.8
0.38 2 70 - 32 2442 6 - 36.7
0.27 2.7 100 - 32 2442 6 - 35.2

[105] 0.55 4 - - 25 - - - 42
0.55 3.9 25 - 25 2430 4.4 - 42
0.52 3.6 50 - 25 2430 4.4 - 41
0.5 3.5 100 - 25 2430 4.4 - 40

[106] 0.55 4 - - 25 - - - 35.5
0.55 3.9 25 - 25 2430 4.5 - 38.8
0.52 3.6 50 - 25 2430 4.5 - 39.4
0.5 3.5 100 - 25 2430 4.5 - 38.3

[107] 0.41 3.1 - - 20 - - - 59.4
0.42 3.2 10 - 20 2165 6.8 - 62.2
0.43 3.4 20 - 20 2165 6.8 - 58.4
0.44 3.5 30 - 20 2165 6.8 - 61.3
0.45 3.7 50 - 20 2165 6.8 - 60.8
0.45 4.4 100 - 20 2165 6.8 - 61

[108] 0.51 2.6 - - 20 - - - 48.6
0.49 2.5 20 - 20 2570 3.5 - 45.3
0.48 2.5 50 - 20 2570 3.5 - 42.5
0.46 2.5 80 - 20 2570 3.5 - 39.2
0.45 2.5 100 - 20 2570 3.5 - 37.1

[109] 0.49 4.7 - - 16 2270 - - 37.7
0.49 3.9 100 - 16 2270 - - 34.6
0.36 2.4 - - 16 2270 - - 57.9
0.36 2.2 100 - 16 2270 - - 56.4
0.49 3.7 - - 16 2780 - - 39.8
0.49 4.4 100 - 16 2780 - - 40.1
0.36 2.4 - - 16 2780 - - 58.3
0.36 2.3 100 - 16 2780 - - 60.2
0.49 5.1 - - 16 2565 - - 40.1
0.49 4.2 100 - 16 2565 - - 35.3
0.36 2.7 - - 16 2565 - - 61.8
0.36 2.4 100 - 16 2565 - - 57.5

[110] 0.47 3.3 - - 32 - - - 31.2
0.41 3.3 30 - 32 2449 6 - 31
0.38 3.2 50 - 32 2449 6 - 29.3
0.36 3.1 70 - 32 2449 6 - 28.4
0.32 3 100 - 32 2449 6 - 27.2

[111] 0.45 2.8 - - 20 - - - 66.8
0.45 2.8 20 - 20 2570 3.5 - 62.4
0.45 2.7 50 - 20 2570 3.5 - 55.8
0.45 2.7 100 - 20 2570 3.5 - 42
0.55 2.6 - - 20 - - - 48.6
0.55 2.5 20 - 20 2570 3.5 - 45.3
0.55 2.5 50 - 20 2570 3.5 - 42.5
0.55 2.5 100 - 20 2570 3.5 - 38.1

[112] 0.65 3.1 - - 19 - - - 21.8
0.65 3.1 100 - 19 2390 4.4 - 22.1
0.5 2.9 - - 19 - - - 26.7
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Table A1. Cont.

Refs.

Water-
Cement
Ratio
(weff/c)

Aggregate-
Cement
Ratio
(a/c)

RCA
Replace-
ment
Ratio
(RCA %)

Parent
Concrete
Strength
(MPa)

Nominal
Maxi-
mum
RCA Size
(mm)

Bulk
Density
of RCA
(kg/m3)

Water Ab-
sorption
of RCA
(%)

Los
Angeles
Abrasion
of RCA

Compressive
Strength
(MPa)

0.5 2.9 100 - 19 2390 4.4 - 25.1
0.48 2.8 - - 19 - - - 28.9
0.48 2.8 100 - 19 2390 4.4 - 27.2
0.43 2.6 - - 19 - - - 31.1
0.43 2.6 100 - 19 2390 4.4 - 28.7
0.4 2.4 - - 19 - - - 33.7
0.4 2.4 100 - 19 2390 4.4 - 29.5

[113] 0.54 3.1 - - 32 - - - 26.8
0.35 3.1 100 - 32 2512 6.3 - 24.6
0.49 3.1 100 - 32 2670 1.8 - 26.9
0.46 2.7 - - 32 - - - 34.3
0.31 2.7 100 - 32 2512 6.3 - 30.2
0.43 2.7 100 - 32 2670 1.8 - 34.2
0.42 2.4 - - 32 - - - 38.6
0.28 2.4 100 - 32 2512 6.3 - 35.5
0.39 2.4 100 - 32 2670 1.8 - 38.4

[114] 0.7 4.1 - - 30 - - - 18.1
0.67 3.9 100 - 30 2520 3.8 34 18
0.67 3.9 100 - 30 2510 3.9 39 15.4
0.35 3.1 - - 30 - - - 37.5
0.35 4.3 100 - 30 2520 3.8 34 36.4
0.36 2.1 100 - 30 2510 3.9 39 35.7
0.34 2.1 - - 30 - - - 48.4
0.34 1.9 100 - 30 2520 3.8 34 44.4
0.34 2.2 100 - 30 2510 3.9 39 43.8

[115] 0.47 3.3 - - 32 - - - 31.2
0.41 3.3 30 - 32 2449 6 - 31
0.38 3.2 50 - 32 2449 6 - 29.3
0.36 3.1 70 - 32 2449 6 - 28.4
0.32 3 100 - 32 2449 6 - 27.2

[116] 0.55 2.6 - - 20 - - - 48.6
0.55 2.6 20 - 20 2580 3.5 - 45.3
0.55 2.5 50 - 20 2580 3.5 - 42.5
0.55 2.5 100 - 20 2580 3.5 - 38.1
0.5 2.6 - - 20 - - - 54.1
0.5 2.6 20 - 20 2580 3.5 - 51.7
0.5 2.6 50 - 20 2580 3.5 - 47.1
0.5 2.6 100 - 20 2580 3.5 - 43.4
0.45 2.8 - - 20 - - - 66.8
0.45 2.8 20 - 20 2580 3.5 - 62.4
0.45 2.7 50 - 20 2580 3.5 - 56.8
0.45 2.5 100 - 20 2580 3.5 - 52.1
0.4 2.9 - - 20 - - - 72.3
0.4 2.8 20 - 20 2580 3.5 - 69.6
0.4 2.8 50 - 20 2580 3.5 - 65.3
0.4 2.8 100 - 20 2580 3.5 - 58.5

[117] 0.5 2.9 - - 25 - - - 39.5
0.5 2.9 30 - 25 2530 1.9 - 36.7
0.5 2.9 50 - 25 2530 1.9 - 38
0.5 2.8 100 - 25 2530 1.9 - 36
0.5 2.8 30 - 25 - - - 32.6
0.5 2.8 50 - 25 2400 6.2 - 30.4
0.5 2.7 100 - 25 2400 6.2 - 29.5
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Table A1. Cont.

Refs.

Water-
Cement
Ratio
(weff/c)

Aggregate-
Cement
Ratio
(a/c)

RCA
Replace-
ment
Ratio
(RCA %)

Parent
Concrete
Strength
(MPa)

Nominal
Maxi-
mum
RCA Size
(mm)

Bulk
Density
of RCA
(kg/m3)

Water Ab-
sorption
of RCA
(%)

Los
Angeles
Abrasion
of RCA

Compressive
Strength
(MPa)

[118] 0.58 3.2 - - 32 - - - 44.6
0.52 3.2 50 - 32 2720 4.8 - 41.4
0.45 3.2 100 - 32 2720 4.8 - 40.7
0.52 3.2 50 - 32 2650 4.6 - 38.3
0.46 3.2 100 - 32 2650 4.6 - 36.6
0.52 3.2 50 - 32 2880 4.4 - 41.2
0.47 3.2 100 - 32 2880 4.4 - 40.3

[119] 0.41 2.6 - - 20 - - - 42.3
0.39 2.5 20 - 20 2338 5.2 40.2 47.4
0.36 2.5 50 - 20 2338 5.2 40.2 47.3
0.32 2.3 100 - 20 2338 5.2 40.2 54.8

[120] 0.52 2.9 - - 22 - - - 48
0.52 2.9 10 - 22 - - - 46.9
0.52 2.8 20 - 22 - - - 47.7
0.52 2.8 30 - 22 - - - 50.8
0.52 2.8 40 - 22 - - - 48
0.52 2.8 50 - 22 - - - 49.5
0.52 2.7 100 - 22 - - - 50.3
0.54 3.2 - - 22 - - - 23.5
0.54 3.1 25 - 22 - - - 21.6
0.54 3.1 100 - 22 - - - 20.5

[121] 0.76 4.5 100 - 30 - - - 21.1
0.76 4.5 100 - 30 - - - 22
0.76 4.5 100 - 30 - - - 23.1
0.76 4.5 100 - 30 - - - 23.5
0.76 4.5 100 - 30 - - - 20.4
0.76 4.5 100 - 30 - - - 18.9
0.76 4.5 100 - 30 - - - 21.2
0.66 3.9 100 - 30 - - - 25.7
0.66 3.9 100 - 30 - - - 28
0.66 3.9 100 - 30 - - - 25.1
0.66 3.9 100 - 30 - - - 27.5
0.66 3.9 100 - 30 - - - 26.1
0.66 3.9 100 - 30 - - - 27.4
0.66 3.9 100 - 30 - - - 27.7
0.66 3.9 100 - 30 - - - 25
0.57 3.3 100 - 30 - - - 30.5
0.57 3.3 100 - 30 - - - 32.7
0.57 3.3 100 - 30 - - - 32.8
0.57 3.3 100 - 30 - - - 33.1
0.48 2.7 100 - 30 - - - 35.3
0.48 2.7 100 - 30 - - - 35.2
0.48 2.7 100 - 30 - - - 32.5
0.48 2.7 100 - 30 - - - 33.8
0.41 2.2 100 - 30 - - - 41.9
0.41 2.2 100 - 30 - - - 38.4
0.41 2.2 100 - 30 - - - 38.7
0.41 2.2 100 - 30 - - - 41.2

[122] 0.54 3.1 - - 32 - - - 26.8
0.35 3.1 100 - 32 2512 6.3 - 24.6
0.49 3.1 100 - 32 2670 1.8 - 26.9
0.46 3.3 - - 32 - - - 34.3
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Table A1. Cont.

Refs.

Water-
Cement
Ratio
(weff/c)

Aggregate-
Cement
Ratio
(a/c)

RCA
Replace-
ment
Ratio
(RCA %)

Parent
Concrete
Strength
(MPa)

Nominal
Maxi-
mum
RCA Size
(mm)

Bulk
Density
of RCA
(kg/m3)

Water Ab-
sorption
of RCA
(%)

Los
Angeles
Abrasion
of RCA

Compressive
Strength
(MPa)

0.27 3.3 100 - 32 2512 6.3 - 30.2
0.41 3.3 100 - 32 2670 1.8 - 34.2
0.42 3 - - 32 - - - 38.6
0.24 3 100 - 32 2512 6.3 - 35.5
0.38 3 100 - 32 2670 1.8 - 38.4

[123] 0.4 3.1 50 - 12 2420 6.8 - 43.3
0.45 3.1 50 - 12 2400 6.8 - 39.6
0.5 3.2 50 - 12 2400 6.8 - 38.1
0.55 3.2 50 - 12 2400 6.8 - 34.5
0.6 3.3 50 - 12 2400 6.8 - 31.6
0.4 3.1 50 - 22 2420 8.8 - 46.1
0.45 3.1 50 - 22 2420 8.8 - 45.8
0.5 3.2 50 - 22 2420 8.8 - 39.9
0.55 3.3 50 - 22 2420 8.8 - 36.3
0.6 3.3 50 - 22 2420 8.8 - 34.7

[124] 0.5 3.5 - - 20 - - - 28.3
0.5 3.5 20 - 20 2400 - - 27.2
0.5 3.5 40 - 20 2400 - - 26.5
0.5 3.5 60 - 20 2400 - - 25.4
0.5 3.5 80 - 20 2400 - - 25.1
0.5 3.5 100 - 20 2400 - - 20.4
0.5 3.8 20 - 20 2630 - - 26.4
0.5 4.1 40 - 20 2630 - - 25.9
0.5 4.5 60 - 20 2630 - - 23.5
0.5 4.8 80 - 20 2630 - - 15.4

[125] 0.51 3.6 - - 32 - - - 43.4
0.57 3.6 50 - 32 2489 2.4 34 45.2
0.62 3.6 100 - 32 2489 2.4 34 45.7

[126] 0.65 3.3 - - 19 - - - 20.2
0.65 3.2 25 - 19 2440 5.8 33.6 18.5
0.65 3.1 50 - 19 2440 5.8 33.6 18
0.65 3.1 75 - 19 2440 5.8 - 16.5
0.42 2.7 - - 19 - - 33.6 40
0.42 2.7 25 - 19 2440 5.8 33.6 33
0.42 2.6 50 - 19 2440 5.8 33.6 34.5
0.42 2.5 75 - 19 2440 5.8 33.6 34

[127] 0.65 3.4 - - 16 - - - 31.9
0.66 3.3 20 - 16 2400 5 - 31.7
0.68 3.1 50 - 16 2400 5 - 32.4
0.68 2.8 100 - 16 2400 5 - 30.1
0.5 2.6 - - 16 - - - 44.8
0.51 2.5 20 - 16 2400 5 - 43.7
0.53 2.3 50 - 16 2400 5 - 37.5
0.56 2.1 100 - 16 2400 5 - 40.5

[128] 0.45 1.9 - - 19 2420 5.4 - 35.2
0.45 3.4 64 - 19 2420 5.4 - 41.4
0.45 2.3 100 - 19 2420 5.4 - 43.9
0.45 2.1 - - 19 2500 3.3 - 34.1
0.45 3.1 64 - 19 2500 3.3 - 44.8
0.45 2.5 100 - 19 2500 3.3 - 45.9
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Table A1. Cont.

Refs.

Water-
Cement
Ratio
(weff/c)

Aggregate-
Cement
Ratio
(a/c)

RCA
Replace-
ment
Ratio
(RCA %)

Parent
Concrete
Strength
(MPa)

Nominal
Maxi-
mum
RCA Size
(mm)

Bulk
Density
of RCA
(kg/m3)

Water Ab-
sorption
of RCA
(%)

Los
Angeles
Abrasion
of RCA

Compressive
Strength
(MPa)

[129] 0.65 3.4 - - 16 - - - 31.9
0.65 3.3 20 - 16 2400 5 34 31.7
0.65 3.1 50 - 16 2400 5 34 32.4
0.65 2.8 100 - 16 2400 5 34 30.1
0.5 2.6 - - 16 - - - 44.8
0.5 2.5 20 - 16 2400 5 34 43.7
0.5 2.8 50 - 16 2400 5 34 37.5
0.5 2.1 100 - 16 2400 5 34 40.5

[130] 0.43 3.1 - - 20 - - - 51.8
0.43 3 25 - 20 2661 1.9 - 47
0.43 2.9 50 - 20 2602 2.6 - 46
0.43 2.8 100 - 20 2510 3.9 38.8 42.5

[131] 0.45 2.3 - - 19 - - - 44.4
0.45 2.3 100 - 19 2490 4.8 37 41
0.55 2.9 - - 19 - - - 36.7
0.55 2.9 100 - 19 2490 4.8 37 33.3
0.65 3.5 - - 19 - - - 30.4
0.65 3.5 100 - 19 2490 4.8 37 24.8

[132] 0.6 4.6 - - 19 - - - 25
0.6 4.6 25 - 19 - - - 26.7
0.6 4.5 50 - 19 - - - 21.5
0.6 4.5 75 - 19 - - - 21.4
0.6 4.4 100 - 19 - - - 20
0.45 2.6 - - 19 - - - 39.5
0.45 2.6 25 - 19 - - - 38.3
0.45 2.5 50 - 19 - - - 37
0.45 2.5 75 - 19 - - - 35
0.45 2.5 100 - 19 - - - 33.3

[133] 0.49 3.1 - - 25 - - - 44.3
0.37 3 100 26.3 25 2490 2.9 - 37.6
0.43 3 100 42.7 25 2570 2.9 - 43.3
0.36 2.9 100 42.7 25 2440 5.6 - 42.6
0.36 2.9 100 65.3 25 2470 5.3 - 44.7

[134] 0.53 6.5 - - 32 - - - 39.3
0.43 5.4 100 - 32 2263 6 - 33.2
0.49 5.1 100 - 32 2283 4.2 - 35.6
0.53 5.1 100 - 32 2292 4.3 - 34.6
0.6 5.3 100 - 32 2301 5 - 37.3
0.54 6.4 90 - 32 2609 1.5 - 45.4
0.46 5.9 60 - 32 2518 2.7 - 54.3
0.44 5.8 60 - 32 2584 1.6 - 54.4
0.45 6.4 25 - 32 2594 1.6 - 53.4

[135] 0.43 3 - - 32 - - - 34.8
0.47 2.9 30 - 32 - - - 31.9
0.49 2.8 50 - 32 - - - 30.6
0.54 2.7 100 - 32 - - - 29.7
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Table A1. Cont.

Refs.

Water-
Cement
Ratio
(weff/c)

Aggregate-
Cement
Ratio
(a/c)

RCA
Replace-
ment
Ratio
(RCA %)

Parent
Concrete
Strength
(MPa)

Nominal
Maxi-
mum
RCA Size
(mm)

Bulk
Density
of RCA
(kg/m3)

Water Ab-
sorption
of RCA
(%)

Los
Angeles
Abrasion
of RCA

Compressive
Strength
(MPa)

[136] 0.66 4.6 - - 20 - - - 21
0.66 4.6 30 - 20 2340 5.3 - 20
0.61 4.3 50 - 20 2340 5.3 - 19
0.58 4 100 - 20 2340 5.3 - 18
0.55 3.8 - - 20 - - - 21
0.55 3.8 30 - 20 2340 5.3 - 23
0.51 3.5 50 - 20 2340 5.3 - 24
0.48 3.4 100 - 20 2340 5.3 - 21
0.5 3.5 - - 20 - - - 31
0.5 3.5 30 - 20 2340 5.3 - 25
0.47 3.2 50 - 20 2340 5.3 - 29
0.44 3 100 - 20 2340 5.3 - 30
0.48 3.3 - - 20 - - - 33
0.48 3.3 30 - 20 2340 5.3 - 39
0.44 3.1 50 - 20 2340 5.3 - 31
0.42 2.9 100 - 20 2340 5.3 - 34

[137] 0.6 4.3 - - 32 - - - 36.6
0.6 3.8 100 - 32 2264 2 - 33.6
0.52 3.6 - - 32 - - - 41.8
0.52 3.2 100 - 32 2276 2 - 41.1
0.47 3 - - 32 - - - 48.6
0.47 2.7 100 - 32 2273 2 - 48.1

[138] 0.6 3 - 37.3 12 - - - 39.5
0.59 3.2 10 37.3 12 2010 10.9 - 40
0.57 3.5 30 37.3 12 2010 10.9 - 38.6
0.54 3.8 50 37.3 12 2010 10.9 - 37.6
0.46 4.6 100 37.3 12 2010 10.9 - 38.6
0.45 3.2 - 37.3 12 - - - 53.3
0.44 3.3 10 37.3 12 2010 10.9 - 53.7
0.42 3.7 30 37.3 12 2010 10.9 - 51
0.67 4 50 37.3 12 2010 10.9 - 47.8
0.68 4.8 100 37.3 12 2010 10.9 - 45.1
0.67 3.3 - 37.3 12 - - - 65.2
0.7 3.4 10 37.3 12 2010 10.9 - 64.6
0.53 3.8 30 37.3 12 2010 10.9 - 65.4
0.53 4.1 50 37.3 12 2010 10.9 - 63.2
0.53 5 100 37.3 12 2010 10.9 - 63

[139] 0.54 3 - 41.4 20 - - - 49.8
0.54 3 20 41.4 20 2451 7.3 40 50.5
0.54 3 50 41.4 20 2451 7.3 40 48.1
0.54 2.9 100 41.4 20 2451 7.3 40 45.2
0.45 3.1 - 41.4 20 - - - 59.7
0.45 3.1 20 41.4 20 2451 7.3 40 64.7
0.45 3.1 50 41.4 20 2451 7.3 40 55
0.45 3.1 100 41.4 20 2451 7.3 40 53.9
0.4 3.2 - 41.4 20 - - - 78.7
0.4 3.2 20 41.4 20 2451 7.3 40 69.9
0.4 3.2 50 41.4 20 2451 7.3 40 63.8
0.4 3.1 100 41.4 20 2451 7.3 40 62.8

[140] 0.48 4.1 - - 10 - - - 38.9
0.48 3.5 100 - 10 2360 4.7 15.1 38.6
0.39 3.1 100 - 10 2280 6.2 22.1 38.1
0.29 2.6 100 - 10 2220 7.8 25 39.3
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Table A1. Cont.

Refs.

Water-
Cement
Ratio
(weff/c)

Aggregate-
Cement
Ratio
(a/c)

RCA
Replace-
ment
Ratio
(RCA %)

Parent
Concrete
Strength
(MPa)

Nominal
Maxi-
mum
RCA Size
(mm)

Bulk
Density
of RCA
(kg/m3)

Water Ab-
sorption
of RCA
(%)

Los
Angeles
Abrasion
of RCA

Compressive
Strength
(MPa)

0.34 2.3 - - 10 - - - 61.9
0.31 2.1 100 - 10 2360 4.7 15.1 60.1
0.27 1.8 100 - 10 2280 6.2 22.1 60.2
0.19 1.5 100 - 10 2220 7.8 25 62.8

[141] 0.52 3 100 - 25 2490 4.9 - 37.6
0.52 3 100 - 25 2570 2.9 - 43.3
0.52 2.9 100 - 25 2440 5.6 - 42.6
0.52 2.9 100 - 25 2470 5.3 - 44.7
0.52 3.1 - - 25 - - - 44.3
0.58 3.2 - - 32 - - - 44.6
0.52 3.2 53 - 32 2720 4.8 - 41.4

[142] 0.58 3.2 100 - 32 2720 4.8 - 40.7
0.52 3.2 54 - 32 2650 4.6 - 38.3
0.58 3.2 100 - 32 2650 4.6 - 36.6
0.52 3.2 53 - 32 2880 4.4 - 41.2
0.58 3.2 100 - 32 2880 4.4 - 40.3

[143] 0.41 1.7 15 - 20 2330 4.4 - 50.8
0.41 1.7 30 - 20 2330 4.4 - 44.9
0.41 1.7 45 - 20 2330 4.4 - 44.6
0.41 1.7 60 - 20 2330 4.4 - 42.4
0.41 1.7 15 - 20 2370 4 - 54
0.41 1.7 30 - 20 2370 4 - 56
0.41 1.7 45 - 20 2370 4 - 54.4
0.41 1.7 60 - 20 2370 4 - 40.6
0.41 1.7 15 - 20 2390 3.6 - 55.2
0.41 1.7 30 - 20 2390 3.6 - 53.5
0.41 1.7 45 - 20 2390 3.6 - 56.9
0.41 1.7 60 - 20 2390 3.6 - 54.7
0.41 1.7 15 - 20 2320 4.6 - 50.5
0.41 1.7 30 - 20 2320 4.6 - 48.9
0.41 1.7 45 - 20 2320 4.6 - 45.8
0.41 1.7 60 - 20 2320 4.6 - 40
0.41 1.7 15 - 20 2390 3.7 - 54.4
0.41 1.7 30 - 20 2390 3.7 - 50.2
0.41 1.7 45 - 20 2390 3.7 - 49.5
0.41 1.7 60 - 20 2390 3.7 - 40.4
0.41 1.7 15 - 20 2390 3.5 - 45
0.41 1.7 30 - 20 2390 3.5 - 46.9
0.41 1.7 45 - 20 2390 3.5 - 51.4
0.41 1.7 60 - 20 2390 3.5 - 53.2
0.41 1.7 15 - 20 2380 3.8 - 55.3
0.41 1.7 30 - 20 2380 3.8 - 55.9
0.41 1.7 45 - 20 2380 3.8 - 52.6
0.41 1.7 60 - 20 2380 3.8 - 48
0.41 1.7 15 - 20 2380 3.8 - 49.1
0.41 1.7 30 - 20 2380 3.8 - 49.9
0.41 1.7 45 - 20 2380 3.8 - 50.3
0.41 1.7 60 - 20 2380 3.8 - 47.5
0.41 1.7 15 - 20 2400 3.5 - 43.2
0.41 1.7 30 - 20 2400 3.5 - 53.7
0.41 1.7 45 - 20 2400 3.5 - 50
0.41 1.7 60 - 20 2400 3.5 - 43.3
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Table A1. Cont.

Refs.

Water-
Cement
Ratio
(weff/c)

Aggregate-
Cement
Ratio
(a/c)

RCA
Replace-
ment
Ratio
(RCA %)

Parent
Concrete
Strength
(MPa)

Nominal
Maxi-
mum
RCA Size
(mm)

Bulk
Density
of RCA
(kg/m3)

Water Ab-
sorption
of RCA
(%)

Los
Angeles
Abrasion
of RCA

Compressive
Strength
(MPa)

0.41 1.7 15 - 20 2370 4 - 52.9
0.41 1.7 30 - 20 2370 4 - 49.9
0.41 1.7 45 - 20 2370 4 - 53.7
0.41 1.7 60 - 20 2370 4 - 46

[144] 0.48 5.1 - 36 25 - - - 41.3
0.48 5 27 36 25 2250 7 - 51.4
0.48 4.9 64 36 25 2250 7 - 45.6
0.48 5 37 36 25 2250 7 - 44.7
0.48 5 37 36 25 2250 7 - 41.9

[145] 0.5 2.4 100 - 25 2452 4.1 - 51
0.5 2.4 100 - 25 2452 4.1 - 49
0.5 2.4 100 - 25 2452 4.1 - 48
0.5 2.6 - - 25 2452 4.1 - 52
0.5 2.5 50 - 25 2452 4.1 - 51
0.5 2.5 50 - 25 2452 4.1 - 51
0.5 2.5 50 - 25 2452 4.1 - 51
0.5 2.5 25 - 25 2452 4.1 - 52
0.5 2.5 25 - 25 2452 4.1 - 50
0.5 2.5 25 - 25 2452 4.1 - 49

[146] 0.38 2 - - 25 - - - 54.1
0.28 2 100 - 25 2260 7.5 - 38.3
0.28 2 100 - 25 2260 7.5 - 32.9
0.23 2 100 - 25 2260 7.5 - 33.2
0.46 2.4 - - 25 - - - 42.2
0.34 2.4 100 - 25 2260 7.5 - 31.3
0.34 2.4 100 - 25 2260 7.5 - 28.4
0.28 2.4 100 - 25 2260 7.5 - 28
0.58 3.1 - - 25 - - - 28.8
0.43 3.1 100 - 25 2260 7.5 - 26.5
0.43 3.1 100 - 25 2260 7.5 - 23.3
0.35 3.1 100 - 25 2260 7.5 - 21.6
0.67 3.5 - - 25 - - - 23.6
0.49 3.5 100 - 25 2260 7.5 - 21.6
0.49 3.5 100 - 25 2260 7.5 - 18
0.4 3.5 100 - 25 2260 7.5 - 18.8
0.8 4.2 - - 25 - - - 17.3
0.59 4.2 100 - 25 2260 7.5 - 16.1
0.59 4.2 100 - 25 2260 7.5 - 13.4
0.48 4.2 100 - 25 2260 7.5 - 13.9

[147] 0.6 3.6 - - 20 - - - 38
- - - - - - - - -
0.59 3.3 20 - 20 2320 5.3 42 41
0.57 3.3 50 - 20 2320 5.3 42 44
0.54 3 100 - 20 2320 5.3 42 45
0.46 2.6 - - 20 - - 42 51.5
0.45 2.5 20 - 20 2320 5.3 - 50.5
0.44 2.5 50 - 20 2320 5.3 42 45
0.42 2.3 100 - 20 2320 5.3 42 56
0.67 3.6 - - 20 - - - 37
0.68 3.4 20 - 20 2320 5.3 42 33.5
0.67 3 50 - 20 2320 5.3 42 32
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Table A1. Cont.

Refs.

Water-
Cement
Ratio
(weff/c)

Aggregate-
Cement
Ratio
(a/c)

RCA
Replace-
ment
Ratio
(RCA %)

Parent
Concrete
Strength
(MPa)

Nominal
Maxi-
mum
RCA Size
(mm)

Bulk
Density
of RCA
(kg/m3)

Water Ab-
sorption
of RCA
(%)

Los
Angeles
Abrasion
of RCA

Compressive
Strength
(MPa)

0.7 2.3 100 - 20 2320 5.3 42 32
0.53 2.7 - - 20 - - - 45
0.53 2.5 20 - 20 2320 5.3 42 44
0.53 2.2 50 - 20 2320 5.3 42 41
0.52 1.8 100 - 20 2320 5.3 42 41.5
0.51 3.1 - - 20 - - - 46.5
0.52 3.2 20 - 20 2320 5.3 42 44
0.54 3 50 - 20 2320 5.3 42 41
0.58 2.8 100 - 20 2320 5.3 42 33.5
0.42 2.7 - - 20 - - - 58
0.42 2.9 20 - 20 2320 5.3 42 53.5
0.44 2.7 50 - 20 2320 5.3 42 54
0.49 2.5 100 - 20 2320 5.3 42 40

[148] 0.42 2.6 50 - 20 2330 6.1 34.6 41.6
0.51 2.3 100 - 20 2330 6.1 34.6 31.4
0.52 2.6 50 - 20 2330 6.1 34.6 35.5
0.61 2.3 100 - 20 2330 6.1 34.6 26
0.44 2.6 50 - 20 2320 5.8 32.2 44.6
0.51 2.3 100 - 20 2320 5.8 32.2 36.7
0.62 2.3 100 - 20 2320 5.8 32.2 29.5
0.41 2.8 20 - 20 2360 3.9 30.8 46.1
0.42 2.6 50 - 20 2360 3.9 30.8 45.1
0.45 2.3 100 - 20 2360 3.9 30.8 42.9
0.5 2.8 20 - 20 2360 3.9 30.8 39.3
0.52 2.6 50 - 20 2360 3.9 30.8 39.5
0.54 2.3 100 - 20 2360 3.9 30.8 37.7
0.42 2.8 20 - 20 2350 4.5 28.5 48.1
0.43 2.6 50 - 20 2350 4.5 28.5 41
0.4 2.3 100 - 20 2350 4.5 28.5 38.7
0.51 2.8 20 - 20 2350 4.5 28.5 42.7
0.52 2.6 50 - 20 2350 4.5 28.5 35.4
0.5 2.3 100 - 20 2350 4.5 28.5 31.4
0.42 2.8 20 - 20 2350 4.7 30.1 48.5
0.42 2.6 50 - 20 2350 4.7 30.1 45.4
0.43 2.3 100 - 20 2350 4.7 30.1 37
0.52 2.8 20 - 20 2350 4.7 30.1 41.3
0.52 2.6 50 - 20 2350 4.7 30.1 36.8
0.56 2.3 100 - 20 2350 4.7 30.1 31.2

[149] 0.41 2.6 - - 32 - - - 47.2
0.38 2.6 33 - 32 2578 9.3 - 42.4
0.36 2.6 53 - 32 2578 9.3 - 45.7
0.34 2.6 72 - 32 2578 9.3 - 36.7
0.31 2.6 100 - 32 2578 9.3 - 38.9

[150] 0.47 3.8 - - 20 - - - 53.1
0.47 3.7 20 - 20 2336 3.6 - 50
0.47 3.6 50 - 20 2315 3.6 - 45.3
0.47 3.6 75 - 20 2295 3.6 - 44
0.47 3.5 100 - 20 2273 3.6 - 41.6

[151] 0.29 2.9 - - 10 - - - 102.1
0.29 2.8 20 100 10 2470 3.7 24 108
0.29 2.8 50 100 10 2470 3.7 24 104.8
0.29 2.7 100 100 10 2470 3.7 24 108.5
0.29 2.8 20 60 10 2390 4.9 25.2 102.5
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Table A1. Cont.

Refs.

Water-
Cement
Ratio
(weff/c)

Aggregate-
Cement
Ratio
(a/c)

RCA
Replace-
ment
Ratio
(RCA %)

Parent
Concrete
Strength
(MPa)

Nominal
Maxi-
mum
RCA Size
(mm)

Bulk
Density
of RCA
(kg/m3)

Water Ab-
sorption
of RCA
(%)

Los
Angeles
Abrasion
of RCA

Compressive
Strength
(MPa)

0.29 2.7 50 60 10 2390 4.9 25.2 103.1
0.29 2.6 100 60 10 2390 4.9 25.2 100.8
0.29 2.8 20 40 10 2300 5.9 24.3 104.3
0.29 2.7 50 40 10 2300 5.9 24.3 96.8
0.29 2.5 100 40 10 2300 5.9 24.3 91.2

[152] 0.65 4.6 - - 20 - - - 18
0.65 4.7 25 - 20 2380 6.94 29 14.7
0.65 4.8 50 - 20 2380 6.94 29 14.6
0.65 4.8 75 - 20 2380 6.94 29 14.2
0.72 5.8 - - 20 - - - 30.8
0.72 5.9 20 - 20 2380 6.94 29 26.8
0.72 6 40 - 20 2380 6.94 29 26.6
0.45 1.9 - - 16 - - - 66.9
0.45 2.3 20 - 16 2380 6.94 29 49.3
0.45 2.5 40 - 16 2380 6.94 29 40.9

[153] 0.6 3.5 - - 16 - - - 42
0.6 3.4 20 - 16 2380 6.9 - 42.9
0.6 3.4 50 - 16 2380 6.9 - 42.5
0.6 3.2 100 - 16 2380 6.9 - 40.9
0.5 2.7 - - 16 - - - 50.2
0.5 2.6 20 - 16 2380 6.9 - 51.6
0.5 2.5 50 - 16 2380 6.9 - 51.6
0.5 2.4 100 - 16 2380 6.9 - 50.3

[154] 0.5 3.4 - - 22 - - - 46.7
0.5 3.4 50 - 12 2380 - - 46.9
0.5 3.4 50 - 22 2380 - - 46.4
0.5 3.4 100 - 22 2380 - - 48.6

[155] 0.52 2.2 - - 19 - - - 29.9
0.49 2.1 25 - 19 2500 6.6 - 32.6

[156] 0.5 3.5 50 - 8 2330 3.8 41.4 33
- - - - - - - - -

[157] 0.5 3.2 50 - 8 2280 4.1 - 29.1
0.68 3.8 - - 20 - - - 34.5
0.68 3.6 100 - 20 2450 3.1 - 35
0.68 3.4 100 - 20 2370 7.1 - 29.2
0.68 3.4 100 - 20 2360 7.8 - 27.7
0.51 3.3 - - 20 - - - 48.3
0.51 3.1 100 - 20 2450 3.1 - 47.6
0.51 3 100 - 20 2370 7.1 - 42
0.51 3 100 - 20 2360 7.8 - 42.9
0.44 2.5 - - 20 - - - 61.6
0.44 2.4 100 - 20 2450 3.1 - 60
0.44 2.3 100 - 20 2370 7.1 - 53.7
0.44 2.3 100 - 20 2360 7.8 - 53.2
0.34 2.2 - - 20 - - - 80.8
0.34 2.1 100 - 20 2450 3.1 - 78.2
0.34 2 100 - 20 2370 7.1 - 71.2

[158] 0.34 2 100 - 20 2360 7.8 - 65.4
0.5 3.1 - - 19 - - - 36.5
0.5 3 30 - 19 2570 2.7 - 33.6
0.5 3 60 - 19 2570 2.7 - 30.4

[159] 0.5 2.8 100 - 19 2570 2.7 - 29.1
0.65 3.1 - - 20 - - - 40.5
0.65 3.2 20 - 20 2300 5.2 40.2 39.5
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Table A1. Cont.

Refs.

Water-
Cement
Ratio
(weff/c)

Aggregate-
Cement
Ratio
(a/c)

RCA
Replace-
ment
Ratio
(RCA %)

Parent
Concrete
Strength
(MPa)

Nominal
Maxi-
mum
RCA Size
(mm)

Bulk
Density
of RCA
(kg/m3)

Water Ab-
sorption
of RCA
(%)

Los
Angeles
Abrasion
of RCA

Compressive
Strength
(MPa)

0.65 3.2 50 - 20 2300 5.2 40.2 40.8
0.65 3.2 100 - 20 2300 5.2 40.2 43.7
0.65 3.1 - - 20 - - - 40.5
0.65 3.1 20 - 20 2300 5.5 28.6 41
0.65 3.1 50 - 20 2300 5.5 28.6 38.8

[160] 0.65 3.2 100 - 20 2300 5.5 28.6 39.9
0.42 2.7 - - 25 - - - 38.6
0.4 2.7 16 - 25 2200 5.4 - 32.7
0.39 2.2 37 - 25 2200 5.4 - 31.7

[161] 0.36 2.7 52 - 25 2200 5.4 - 29
0.86 4.6 - - 22 - - - 23.9
0.65 3.4 - - 22 - - - 38.7
0.41 2.9 - - 22 - - - 71.1
0.87 4.6 100 - 22 2451 7.8 - 19.7
0.66 3.4 100 - 22 2387 6.9 - 35.7
0.42 2.8 100 - 22 2362 4.2 - 66.8
0.86 4.6 100 - 22 2456 7.5 - 21.8
0.65 3.5 100 - 22 2455 6.4 - 36.1
0.42 2.9 100 - 22 2496 4.2 - 68.5
0.81 4.9 - - 22 - - - 27.5
0.63 3.6 - - 22 - - - 42.4
0.4 3 - - 22 - - - 72.3
0.84 4.5 100 - 22 2401 7.6 - 21
0.63 3.5 100 - 22 2484 5.4 - 41.1
0.4 2.8 100 - 22 2363 3.6 - 70.2
0.82 4.7 100 - 22 2447 6.9 - 23.6
0.64 3.4 100 - 22 2458 5.8 - 39.7

[162] 0.42 2.9 100 - 22 2464 3.9 - 66.5
0.64 3 - - 19 - - - 33
0.77 3.1 100 - 19 2268 4.9 - 27.5

[163] 0.7 3.4 100 - 19 1946 11.9 - 29.9
0.6 3.6 - - 19 - - - 47.8
0.59 3.3 20 - 19 2320 5.3 37 49.3
0.57 3.3 50 - 19 2320 5.3 37 47.5
0.54 3 100 - 19 2320 5.3 37 53.7
0.46 2.6 - - 19 - - - 62
0.45 2.5 20 - 19 2320 5.3 37 64.8
0.44 2.5 50 - 19 2320 5.3 37 63.5
0.42 2.3 100 - 19 2320 5.3 37 65.1
0.67 3.6 - - 19 - - - 62
0.68 3.4 20 - 19 2320 5.3 37 64.8
0.67 3 50 - 19 2320 5.3 37 63.5
0.7 2.3 100 - 19 2320 5.3 37 65.1
0.53 2.7 - - 19 - - - 57.3
0.53 2.5 20 - 19 2320 5.3 37 54.9
0.53 2.2 50 - 19 2320 5.3 37 51.5
0.52 1.8 100 - 19 2320 5.3 37 50.3
0.51 3.1 - - 19 - - - 60.1
0.52 3.2 20 - 19 2320 5.3 37 56.5
0.54 3 50 - 19 2320 5.3 37 48.9
0.58 2.8 100 - 19 2320 5.3 37 43.1
0.42 2.7 - - 19 - - - 72.9
0.42 2.9 20 - 19 2320 5.3 37 67.4
0.44 2.7 50 - 19 2320 5.3 37 61.2
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