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Abstract: Graphene is one of the most promising two-dimensional nanomaterials with broad appli-
cations in many fields. However, the variations and fluctuations in the material and geometrical
properties are challenging issues that require more concern. In order to quantify uncertainty and
analyze the impacts of uncertainty, a stochastic finite element model (SFEM) is proposed to propagate
uncertainty for carbon atomic interactions under resonant vibration. Compared with the conventional
truss or beam finite element models, both carbon atoms and carbon covalent bonds are considered
by introducing plane elements. In addition, the determined values of the material and geometrical
parameters are expanded into the related interval ranges with uniform probability density distribu-
tions. Based on the SFEM, the uncertainty propagation is performed by the Monte Carlo stochastic
sampling process, and the resonant frequencies of graphene are provided by finite element compu-
tation. Furthermore, the correlation coefficients of characteristic parameters are computed based
on the database of SFEM. The vibration modes of graphene with the extreme geometrical values
are also provided and analyzed. According to the computed results, the minimum and maximum
values of the first resonant frequency are 0.2131 and 16.894 THz, respectively, and the variance is
2.5899 THz. The proposed SFEM is an effective method to propagate uncertainty and analyze the
impacts of uncertainty in the carbon atomic interactions of graphene. The work in this paper provides
an important supplement to the atomic interaction modeling in nanomaterials.

Keywords: uncertainty quantification; graphene; carbon atomic interactions; stochastic finite ele-
ment model

1. Introduction

Graphene is a two-dimensional nanomaterial with promising potential in a wide
range of applications. The quantitative analysis methods for the extraordinary properties of
graphene mainly include both the experimental and numerical aspects [1]. Compared with
the experimental measurements, the numerical and theoretical methods are available and
efficient supplements with merits in computational costs. At present, the main theoretical
models and numerical methods for graphene research can be summarized into three categories:
density functional theory [2,3] based on quantum mechanics, molecular dynamics [4] based
on Newtonian mechanics, and finite element methods based on continuum mechanics.
Density functional theory is the most commonly used method in condensed matter physics,
computational chemistry, organic, inorganic, organometallic, and polymeric chemical
systems [5–7]. However, when constructing an intrinsic model of the mechanical properties
of graphene, the number of carbon atoms is still obviously limited by the performance of
the computer. In addition, molecular dynamics simulations describe the state of motion of
molecular systems well [8,9], but do not involve the evolution of electronic structures.
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The finite element method has long-term development in terms of nonlinear problem
solutions, parallel computing, dynamic motion modeling, etc. [10]. The high computational
performance and fast convergence speed of the finite element method make it a compet-
itive alternative to the numerical simulation of graphene. However, the variations and
fluctuations of the material and geometrical properties are difficult to quantify and analyze,
especially the uncertainty of the carbon atomic interactions [11]. Moreover, simplifying the
graphene lattice to the periodic hexagon beams or truss elements neglects the identification
of carbon atoms and carbon covalent bonds. It is necessary to introduce two different geo-
metrical configuration components. In order to propagate the uncertainty of carbon atomic
interactions in graphene, an advanced finite element model containing carbon atoms and
covalent bonds is created and combined with the Monte Carlo stochastic sampling process.

In this paper, the stochastic finite element model (SFEM) is proposed for resonant
frequency computation and uncertainty propagation. Both the carbon atoms and the
carbon covalent bonds are taken into consideration. The method descriptions, including
geometrical configuration, material parameters, and computational method, are presented
in Section 2. Based on the database of the SFEM, the statistical results of the resonant
frequency of graphene are recorded and compared with the reported literature. The
correlation coefficients of geometrical and material parameters are computed by the Pearson
and Spearman correlation methods. In addition, the vibration modes of graphene are
also presented to observe and compare the displacements. Finally, a brief conclusion is
summarized in the last section.

2. Method Description
2.1. Geometrical Configuration

According to the experimental measurements and observations, the periodic honey-
comb lattice of graphene is presented in Figure 1a. In general, carbon covalent bonds are
simplified into trusses and beams to depict the characteristic microstructure in Figure 1b.
However, the uncertainty of the carbon atomic interactions in the conventional numerical
models is not taken into consideration. On the one hand, the variations and fluctuations
in the geometrical and material parameters are not quantified or analyzed. On the other
hand, when the atomic interaction of carbon atoms in graphene is simplified as a truss or
beam element, the carbon atoms themselves disappear and are replaced by shared nodes
or points. The exact role of carbon atoms and atomic interactions are neglected without a
precise description. Considering the atomic interactions in graphene, this paper introduces
an advanced finite plane element model, as shown in Figure 1c.
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Figure 1. The geometrical configuration of the finite element model of graphene. (a–c) are the
three-dimensional model, conventional two-dimensional model and proposed hybrid finite element
model, respectively.

The assumptions and characteristics of the advanced finite plane element model of
graphene are as follows.

(a) The finite plane element model projects the precise three-dimensional structure in
Figure 1a into the two-dimensional x-y plane, which is more computationally eco-
nomic than three-dimensional models, but is more sophisticated than the truss or
beam finite element model;

(b) The finite plane element model is an advanced method with a similar computational
competence to the truss and beam finite element model of graphene, as shown in
Figure 1b. However, the finite plane element model includes not only the carbon
covalent bonds but also the carbon atoms;

(c) The related geometrical parameters in the finite plane element model presented in
Figure 2a are flexible to describe different special hexagons. Specifically, L, R1, and R2
are the length of the carbon covalent bonds, the radius of the carbon atoms, and twice
the width of the carbon covalent bonds, respectively;

(d) Since the carbon atoms and carbon covalent bonds in graphene are described as
different geometrical components, the corresponding material parameters can be
assigned to them;

(e) The carbon atoms and carbon covalent bonds, as presented in Figure 1c, share the
common lines, ensuring the geometrical connection and mechanical compatibility.
There will be common nodes on the shared lines after meshing the finite plane ele-
ment model.
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Figure 2. The geometrical parameters and typical examples in the finite plane element model
of graphene.

In the initial geometrical model of graphene, the values of L, R1, and R2 are equal to
0.27 nm, 0.05 nm, and 0.032 nm, respectively. The typical examples are provided according
to the changes in related geometrical parameters. For example, when L is as short as
0.1 nm, the period characteristic hexagon in graphene is presented in Figure 2b. When
L is extruded to 0.4 nm, the period characteristic hexagon in graphene is presented in
Figure 2c. Furthermore, the change of geometrical parameter R2 also evidently impacts
the configuration of the period hexagon cell in graphene and then influences the entire
intrinsic lattice description. In Figure 2d,e, R2 equals 0.01 nm and 0.04 nm, respectively.
Therefore, the proposed geometrical configuration of the finite plane element is flexible to
represent different shapes and combinations.

2.2. Material Parameters

In addition to the related geometrical parameters in the finite plane element model
of graphene, the material parameters are listed in Table 1. According to the reported
literature [10,11], the distinguished mechanical properties are measured and predicted.
However, the uncertainty and obvious fluctuations of mechanical properties are the es-
sential issues that require effective solutions. In this paper, the specific value intervals
of the geometrical and material parameters are provided according to the data in the
literature [10,11] and presented in Table 1.

Table 1. Material and geometrical parameters in the finite plane element model of graphene.

Symbols Definitions Value Intervals Units

E1 The Young’s modulus of carbon atoms 1011–1013 Pa
E2 The Young’s modulus of carbon covalent bonds 106–108 Pa
v1 The Poisson’s ratio of carbon atoms 0.1–0.4 -
v2 The Poisson’s ratio of carbon covalent bonds 0.1–0.4 -
P1 The physical density of carbon atoms 500–5000 Kg/m3

P2 The physical density of carbon covalent bonds 500–5000 Kg/m3

R1 The radius of carbon atoms 0.04–0.09 nm
R2 The two times width of carbon covalent bonds (0.1–0.5) ∗ R1 nm
L The length of carbon covalent bonds 0.1–0.4 nm

The Monte Carlo stochastic simulation propagates the uncertainty of the parameters
in the specific value intervals according to the uniform distribution. As presented in
Figure 3, the stochastic samples of material and geometrical parameters in the finite plane
element model are uniformly distributed in the specific interval ranges. The stochastic
samples provided by the Monte Carlo simulation for material parameters of E1 and P1 are
presented in Figure 3a, and those for geometrical parameters of R1 and L are presented in
Figure 3b. In order to simplify the problem, the internal correlation between the material
and geometrical parameters is supposed to be zero. The independent stochastic samples
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provided by the Monte Carlo simulation for the finite element computation are performed.
The correlation between the corresponding parameters and the resonant frequencies of
graphene is analyzed with the stochastic samples as input data and computational results
of the finite element model as output data.
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Figure 3. The stochastic samples of corresponding parameters in the finite plane element model of
graphene based on Monte Carlo simulation. (a) are for the material parameters E1 and P1, (b) are for
the geometrical parameters R1 and L, respectively.

2.3. Computational Method

The plane element used in the finite element model of graphene is a two-dimensional
8-node quadrilateral element, as shown in Figure 4. The finite element model of graphene
is meshed by the 8-node quadrilateral elements. The material parameters of carbon atoms
and the covalent bonds are distributed in certain components, and the connecting lines in
the different components share the common nodes.
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The shape functions of the two-dimensional 8-node quadrilateral element in the finite
plane element model are expressed as,

u = 1
4
(
uI(1 − s)(1 − t)(−s − t − 1) + uJ(1 + s)(1 − t)(s − t − 1) + uK(1 + s)(1 + t)(s + t − 1)

+uL(1 − s)(1 + t)(−s + t − 1))

+ 1
2
(
uM
(
1 − s2)(1 − t) + uN(1 + s)

(
1 − t2)+ u0

(
1 − s2)(1 + t) + up(1 − s)

(
1 − t2)) (1)
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where u represents the displacement. The fundamental equations are derived from the
element formulations and based on the principle of virtual work [12,13],∫

v
σijδeijdV =

∫
v

f B
i δuidV +

∫
s

f s
i δuids (2)

where σij is the Cauchy stress component, eij =
1
2 (

∂ui
∂xj

+ ∂ui
∂xj

) is the deformation tensor, and

f B
i and f S

i represent the component of body force and surface traction, respectively. V and
s are the volumes of the deformed body and the surface of the deformed body on which
tractions are prescribed, respectively.

The internal virtual work W can be indicated by:

δW =
∫

v
σijδeijdV (3)

Element formulations are obtained by differentiating this virtual work expression. In
derivation, only linear differential terms are kept, and all higher-order terms are ignored, so
that finally a linear set of equations can be obtained. In addition, the material constitutive
law is used to create the relationship between stress increment and strain increment.

.
σ

J
ij =

.
σij − σik

.
ω jk − σjk

.
ωik (4)

where
.
σ

J
ij is the Jaumann rate of Cauchy stress,

.
ωij =

1
2 (

∂vi
∂xj

− ∂vj
∂xi

) is the spin tensor, and
.
σij

is the time rate of Cauchy stress.
Therefore, the Cauchy stress rate is:

.
σij =

.
σ

J
ij + σik

.
ω jk + σjk

.
ωik (5)

According to the constitutive law, the stress change due to straining can be expressed as:

.
σ

J
ij = cijkldkl (6)

where cijkl is material constitutive tensor, and the rate of deformation tensor is computed as,

dij =
1
2

(
∂vi
∂xj

+
∂vj

∂xi

)
(7)

where vi is the velocity and xi is the coordinates.
The Cauchy stress rate can be written as:

.
σij = cijkldkl + σik

.
ω jk + σjk

.
ωik (8)

The hydrostatic pressure P or volume change rate is interpolated on the element level
and solved on the global level independently in the same way as displacement. The final
stiffness matrix has the format of:[

Kuu Kup
Kpu Kpp

]{
∆u
∆P

}
=

{
∆F
0

}
(9)

where ∆u is displacement increment, ∆P is hydrostatic pressure increment.
The competitive merits of the finite element model used for the numerical investiga-

tion of graphene are the economics of computational cost and feasibility of computation
of a massive number of atoms. The resonant frequency computation by the finite plane
element model based on Monte Carlo stochastic simulation is programmed in the follow-
ing flowchart.
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As shown in Figure 5, the green boxes represent the Monte Carlo stochastic sampling
procedure of the geometrical and material parameters. The geometrical configuration
is defined above. The different values of material parameters of carbon atoms and car-
bon covalent bonds are distributed according to the specific interval ranges. The Monte
Carlo simulation is performed to provide the unified distributed stochastic samples for
the corresponding parameters. The characteristic lattice of graphene is meshed by the
two-dimensional 8-node quadrilateral element. The finite element computation is per-
formed under the ANSYS Parameter design language. The result accuracy and convergence
are verified by the comparison with the reported literature [14–23]. The program loop will
continue to execute until a sufficient number of Monte Carlo stochastic samples is reached.
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3. Results and Discussion
3.1. Statistical Results

Based on the Monte Carlo simulation, the stochastic sampling is performed within
the specific interval ranges of the geometrical and material parameters, and the statistical
results are presented in Figure 6. The amplitudes of the resonant frequency of the first
four vibration modes are in THz. The mean, maximum, minimum, and standard variance
of the resonant frequency of graphene are recorded and compared with the results in the
reported literature [14–23], as shown in Table 2.
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Figure 6. The statistic results of resonant frequency in the finite plane element model of graphene.

Table 2. The statistic results of resonant frequency in the finite plane element model of graphene.

F1 (THz) F2 (THz) F3 (THz) F4 (THz)

Mean 3.4905 4.0902 4.1838 5.2333
Maximum 16.894 19.554 21.362 26.402
Minimum 0.2131 0.2808 0.2816 0.3319
Variance 2.5899 2.7923 2.9301 3.8381
Liu [14] 1.6081 3.7232 4.3172 6.4323

Kudin [15] 1.5818 3.6623 4.2466 6.3271
Gupta [16] 1.7581 4.0706 4.7201 7.0325

Lu [17] 1.4311 3.3135 3.8422 5.7246
Wei [18] 1.5946 3.6921 4.2811 6.3786

Cadelano [19] 1.5649 3.6232 4.2012 6.2595
Reddy [20] 1.3869 3.2111 3.7234 5.5475
Zhou [21] 1.8716 4.3334 5.0248 7.4865

Khatibi [22] 1.6030 2.4970 2.5980 3.5770
Chu [23] 1.7282 3.2925 3.7442 5.1892

Compared with the reported results, the mean values of the resonant frequency of
the first vibration mode are evidently larger than the expected value. However, it is worth
noting that the minimum resonant frequency of the first vibration mode is as small as
0.2131 THz. In addition, the maximum resonant frequency of the first vibration mode
is extended to 16.894 THz. Therefore, the results in the reported references [14–23] are
completely included within the result interval range of the proposed model. In addition,
the statistical results of the resonant frequency of the second, third, and fourth vibration
modes match the results in the reported literature well, both in the mean results and the
interval ranges. Moreover, the variances of resonant frequencies are limited to 2.5–3.9 THz,
even the interval ranges of resonant frequencies are amplified from the first to the fourth
modes. In other words, the convergences of the proposed stochastic finite element model
present satisfied property, while the risk of Monte Carlo simulation is controlled at an
acceptable level. Therefore, the proposed finite plane element model of graphene is an
effective alternative method for the currently available approaches in accordance with the
result interval range and variances.

In order to describe the results more exactly, the probability density distributions of
the resonant frequency of the stochastic samples are also presented in the histograms with
the fitting curves, as shown in Figure 7. The uniform distribution of the input material and
geometrical parameters in the finite plane element model leads to the solely concentrated
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peaks in the histograms of the resonant frequency. For the first vibration mode, even
though the computed mean value is 3.4905 THz, the peak value of the probability density
distribution in Figure 7a is located on the left side of the mean value. As a consequence, the
mean value of the first vibration mode is enlarged by a few large values on the right side of
the probability density distribution. Furthermore, the probability density distributions in
Figure 7 all peak in the middle left.
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of graphene. (a–d) are for the first-fourth resonant vibration, respectively.

3.2. Parameter Discussion

The correlation coefficients of geometrical and material parameters in the finite plane
element model of graphene are computed by the Pearson and Spearman methods, as
presented in Figure 8. The correlation coefficients computed by the Pearson and Spearman
methods have substantial agreements with small discrepancies. In Figure 8a, compared
with the geometrical parameters, R1, R2, and L are the more critical factors to impact
the resonant frequency of graphene. In other words, the length and the width of the
carbon covalent bonds are essential in the finite plane element model of graphene. This
consequence reaches good agreements with the assumption of the reported beam or truss
finite element model of graphene [10,11,23].
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In addition, the widths of the carbon covalent bonds have positive correlation coef-
ficients, while the lengths of the carbon covalent bonds present negative values. For the
negative correlation coefficients, the Young’s modulus of carbon atoms in Figure 8b, the
Poisson’s ratio of the carbon covalent bonds in Figure 8c, and the mass density of carbon
atoms and carbon covalent bonds in Figure 8d present negative values. It is reasonable
to find the negative influences of mass density on the resonant frequency since the mass
matrix is in the denominator. However, compared with the length of carbon covalent bonds,
the impacts of other parameters with negative effects are smaller.

Furthermore, the Young’s modulus of carbon covalent bonds has more evident impacts
on resonant frequency than that of carbon atoms in Figure 8b. However, the mass density
of carbon atoms presents more obvious influences than that of carbon atoms in Figure 8d.
More importantly, with the increment of the number of stochastic samples, the correlation
coefficients tend to converge to a certain value for each parameter. On the other hand, the
fluctuations of Monte Carlo relative errors caused by the number of stochastic samples
are also observed in Figure 8. According to the increase of the stochastic samples, the
Monte Carlo relative errors in correlation computation for R1, R2, and L in Figure 8a are
steady, and those for E1 and E2 in Figure 8b are steady as well. However, the Monte Carlo
relative errors in correlation computation for V1, V2, P1, and P2 present evident variations
in Figure 8c,d. Therefore, a sufficient number of stochastic samples is necessary to ensure
the correlation coefficient accuracy.

3.3. Vibration Modes

In addition to the resonant frequency of graphene, the vibration modes are also com-
puted by the finite plane element model of graphene. According to the above results, the
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length and width of the carbon covalent bonds are the more important factors influencing
the resonant frequency of graphene. The extreme values of the geometrical parameters are
introduced in the finite plane element model of graphene to compare the vibration modes.

The differences in the vibration modes of the first four resonant vibration modes are
presented and compared, as presented in Figures 9–12. It is evident that the displacement
contour results in the first-order resonant vibration are not evident, but in the second,
third, and fourth resonant vibrations, the differences are evident. Compared with the truss
and beam finite element model, the proposed finite plane element model of graphene is
more competitive. On the one hand, both the carbon atoms and carbon covalent bonds
are considered, and the vibration modes reflect the existence of the carbon atoms in the
lattice of graphene, while the conventional truss and beam finite element model simplifies
the graphene into the periodic honeycomb hexagon structure. On the other hand, the
two-dimensional 8-node quadrilateral element used in the proposed model provides more
accurate results than that of the truss and beam finite element. With the additional middle
points on each edge of the quadrilateral element, the finite plane element model is more
sensitive to deformation and displacement. Especially for the common nodes shared by
the carbon atoms and the carbon covalent bonds, additional middle points in each edge
strengthen the mechanical compatibility.

Furthermore, the resonant vibration modes in Figure 10 are similar to those in Figure 11.
However, the discrepancies of resonant vibration modes in Figures 9 and 12 are evident in
others. Compared with the results in the reported literature [10,11,23], the displacement
results in Figures 10 and 11 are more approximated and reach good agreements in graphene
vibration modes. The computational vibration modes are sensitive to the involved pa-
rameters in the proposed stochastic finite element model. The appropriate values for the
corresponding parameters are the key essentials to the results’ accuracy. Therefore, the
proposed finite element model not only has merits in terms of computational expense and
feasibility in the massive stochastic sampling process but is also flexible in presenting the
precise vibration modes of graphene, considering both carbon atoms and covalent bonds.
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4. Conclusions

The proposed stochastic finite plane element model of graphene is an effective alter-
native to the currently available approaches with competitive competencies in terms of
computational performances and result consistency. In short, the following key points can
be concluded based on the results.

(1) The commonly shared nodes in carbon atoms and carbon covalent bonds in the
two-dimensional 8-node quadrilateral element keep the geometrical connection and
mechanical compatibility well.

(2) The interval ranges of resonant frequencies computed by the finite plane element
model completely include the results in the reported literature.

(3) The correlation coefficients computed by the Pearson and Spearman methods have sub-
stantial agreements with small discrepancies in the geometrical and material parameters.

(4) The length and the width of the carbon covalent bonds in the finite plane element
model of graphene are the essential factors that impact the resonant frequencies.

(5) The proposed finite element model not only has merits in terms of computational
expense and feasibility in the massive stochastic sampling process but also is flexible
in presenting the precise vibration modes of graphene with consideration of both
carbon atoms and covalent bonds.
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