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Abstract: Assessment of the technical condition of large-panel buildings, due to their on-going
use and covering resulting from thermomodernization works, is problematic. Results from non-
destructive tests (NDT) are subjected to high uncertainty. Destructive tests, which give results
with the highest level of confidence, are practically not used. Local sampling for testing gives only
a partial image of the condition of a prefabricated building. In this type of construction, joints
connecting the precast elements are the most vulnerable to degradation. Access to them is technically
difficult. Demolition of this type of building is extremely rare. However, it is a unique opportunity
to perform a full spectrum of both NDT and destructive testing. This gives an opportunity for
large-scale demolition sampling to identify hidden defects and compare the results obtained by
different methods. The comparison of results allows for the scaling of NDT methods and reveals
the presence of typical relationships. The paper presents visual, non-destructive, and destructive
tests’ results of an over 40-year-old large-panel building scheduled for demolition. The design of this
building is repetitive and similar to solutions found in thousands of other buildings. The usefulness
of particular research methods for evaluating the technical condition of prefabricated buildings has
been determined.

Keywords: large-panel; degradation; NDT; destructive testing; demolition

1. Introduction

Reinforced concrete structures are influenced by various factors. Their destructive
impact is important for a building’s durability [1–3].

Prefabricated buildings were commonly constructed in many European countries be-
tween 1970 and 1990 [4–8]. Prefabricated construction was characterized by using typical
wall and floor elements and repetitive system solutions. Thousands of buildings were
constructed using similar or even identical solutions of prefabricates and their connections
in the structure. This type of construction allows the whole group of system buildings to be
evaluated through numerically limited analyses. For destructive testing, even individual
cases provide valuable research material. A wide range of tests performed during the
demolition of the building allows to obtain comprehensive results.

The technical condition of structural elements made of reinforced concrete prefab-
ricates depends on many factors. The most important ones are the quality control of
prefabricates in the production plants, the way of transport and storage on the construction
site, the accuracy of their assembly, the quality of filling the joints with concrete and, in
the next stage, the proper maintenance of the building [9]. Natural processes of ageing
of materials, especially those exposed to the influence of an aggressive environment, are
nevertheless important. In terms of durability of the structure of large-panel buildings, the
potentially weak points are the vertical and horizontal joints connecting the individual pre-
fabricated elements. Moisture penetrating through the exterior wall elements propagates
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through the joints to the interior wall sections. Water from rooms that generate moisture
(kitchens, and bathrooms) penetrates the joints located directly adjacent to them. External
elements made of prefabricated elements, i.e., walls, flat roofs, balconies, and loggias, are
directly exposed to the influence of moisture, temperature and pollutants present in the
environment.

In the studied type of buildings, a typical prefabricated system was used for external
curtain walls. It consisted of a concrete structural layer, thermal insulation from expanded
polystyrene or mineral wool, and an external layer of textured concrete [8,10]. The durability
of the external partition formed in this way is determined by the effectiveness of the
implementation of the connection of the concrete layers. Examples of degradation of these
types of elements are widely discussed in the literature [10–14].

The quality of the workmanship in these types of buildings during construction and
after commissioning raised doubts regarding their durability, mainly in terms of corrosion
protection. During several decades of use, the condition of both prefabricated elements and
connections between elements was gradually degrading. Structural elements, as well as
whole buildings, required regular repairs or modernization [15–20]. Secondary elements,
such as flashings or balcony railings, were also subject to gradual degradation [11,21].
System changes in Central Europe negatively influenced the process of utilization. Many
repairs were delayed for too long for financial reasons.

Changes in energy costs and regulations concerning the limit values for heat transmis-
sion coefficients and thermal insulation of buildings have occurred in various countries.
This resulted in the need to insulate external walls [22–25]. However, the addition of new
continuous surface layers makes it impossible to monitor the surface condition of structural
elements and their connections from the external side. On the inside, ongoing maintenance
of dwellings, repairs, and surface layers of paint added by owners also make it difficult to
detect anomalies and correctly assess the extent of the processes taking place.

Almost all large-panel buildings that have been constructed over the past few decades
are still in use. Most of them are large multi-staircase and multi-storey residential buildings,
but also office buildings, hotels, and public buildings. Buildings require condition assess-
ment and ongoing monitoring for defects. Proper assessment also requires inspections
inside dwellings. Such surveys are troublesome for residents, so they are rarely performed.
The results of non-targeted scientific research on a group of buildings—using destruc-
tive [26] and only visual [16] tests—can be used as comparative material. The inspection
is limited to parts of public spaces, staircases, basements, elevations, and roofs. In the
literature, the methods of diagnosis and modernization of large-panel buildings have been
widely described. In the past, due to the specificity of local and national systems, they
were mostly European publications [7,27,28]. In recent years, there are more and more
publications showing a wide range of problems and solutions applicable to most of the
large-panel systems in different countries [29,30].

Despite thousands of prefabricated buildings, their demolition is a rarity and an
extremely valuable research field. During the demolition of many unnecessary buildings
in the former German Democratic Republic, most probably no detailed studies were
performed. It was either a purely commercial activity or the results were published in the
literature with limited scope. Mainly aesthetic and heat saving aspects were previously
analysed [31]. On the structural side, there is one available publication on the case of
demolition of a large-panel building that was damaged due to underground mining [32].
Buildings remaining in an unfinished state have also been a testing ground, with a smaller
scope of research [33,34]. An interesting study was conducted on buildings after the 2019
earthquake in Albania [35].

The present development of testing methods and equipment makes it possible to
carry out more and more non-destructive tests. Sclerometric [36–38], ultrasound [39–43],
ferromagnetic [44,45], and thermovision [46] tests, which are widely described in the
literature, are most commonly used for testing reinforced concrete structures. An interesting
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comparison of testing methods in the aspect of concrete strength assessment has been
published in [47].

Technological innovations are also revolutionizing laboratory research, such as Digital
Image Correlation (DIC), which allows for non-contact determination of selected concrete
fracture mechanics parameters [48–50]. Cracks are one of the most common signs of con-
crete degradation that cause concern to users. For the investigation and analysis of plastic
shrinkage cracks, microCT scanning, which has been widely described in [51], is used. In
the literature, an interesting application of intelligent algorithms enabling autonomous
crack detection using a digital image processing system has been presented [52]. Cracks,
apart from affecting the visual aspects, may influence the load-bearing capacity of the
elements. Crack growth is particularly undesirable in elements exposed to aggressive
environmental influences. The penetration of chlorides into the concrete can significantly
accelerate the degradation process. The diffusion properties of cracked concrete as a func-
tion of crack width have been widely reported in the literature [53], and the chloride
diffusion coefficient for degraded concrete has also been investigated [54]. In terms of
numerical analyses, a three-phase 3D computational model was developed to simulate
chloride diffusion in concrete [55]. The progress of technology and numerous scientific
studies allow for a better understanding of the fracture mechanics of concrete, which makes
it possible to predict the course and depth of cracks.

Results obtained by non-destructive methods, due to economic and technical as-
pects, are rarely confirmed by a large number of destructive tests carried out on existing
degraded objects.

Demolished buildings are not only valuable research objects but also a source of mate-
rials that can be recycled. The construction of large-panel buildings was based on the use of
large quantities of concrete. This provides an opportunity to recover aggregate, which can
be successfully used to produce new structural elements. This is an increasingly common
process in construction practice. Recycled aggregates are currently the subject of extensive
scientific research. Results of research on combining recycled aggregates with geopoly-
mer concrete are particularly interesting [56]. Intriguing studies on the reinforcement of
recycled aggregates with pozzolanic slurries have been described in the literature [57].
Research has been conducted into innovative applications for these aggregates, which
include high-temperature resistant hollow blocks, as widely described in [58]. Demolition
of a previously used building can also be a source of rubber waste. The results of analyses
related to the use of this waste for concrete production were presented in [59]. Nowadays,
the use of eco-friendly solutions throughout the construction process is highly desirable.
In addition to materials from demolition, waste from the natural environment can also be
used in the construction industry. An example of this would be the seashells that have
been tested for use in the production of cementitious materials, as described in [60,61].
Reducing the amount of solid waste as well as the consumption of primary raw materials
is an increasingly common theme in research papers. This contributes to the spread of
eco-friendly solutions in the construction industry.

The authors of the present study participated in the demolition of a 12-storey building
(Figure 1), where they performed a number of visual, destructive, and non-destructive tests.
The obtained results and formulated conclusions may contribute to the improvement of
large-panel buildings technical condition assessment. Particularly valuable is the compari-
son of the results of visual and non-destructive tests with the results of destructive tests,
which allows calibration of assessments.

This paper aims to determine the suitability of particular testing methods for assessing
the degradation state of structural elements of prefabricated objects. The places where
destructive testing is necessary were located. Hidden defects, impossible to detect with
currently used testing apparatus, were identified.
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Figure 1. View on the analysed building: (a) before demolition; (b) after demolition of top storeys;
and (c) in the last stage of demolition.

2. Investigations

The demolished two-segment building with 11 overground storeys and one under-
ground storey was constructed in 1978 using OWT-67 technology (a prefabricated large-
panel building, one of the main types of large-panel building systems in Poland) and
served as an office building. The system was characterised by the size of the largest module
being 5.4 × 4.8 m, with a storey height of 2.7 m [8]. The 0.14 m thick floor slabs were
supported by three walls, also 0.14 m thick, and an external beam-wall. The walls were
made of slabs of the height of a storey and the length of a room. The façade of the described
office building consisted of plates attached to the gable walls and beams. There were
also two one-storey parts adjacent to the building of mixed, reinforced concrete and steel
construction, which constituted the main entrance to the entire complex. The building,
which was decommissioned in 2011, was demolished due to architectural and economic
aspects rather than damage and structural defects.

2.1. Demolition Technology

Due to the building’s location in the city centre and its proximity to the adjacent build-
ing, it was decided to demolish in a way that minimized the inconvenience to neighbouring
buildings and their occupants. The use of explosives is characterized by considerable dust,
vibration effects on the surroundings, enormous noise, as well as specific requirements
regarding the size of the construction site and type of structure. Ultimately, mechanical
demolition using demolition excavators (Figure 2b,c) and light equipment in the form
of drill hammers and steel circular saws operated by skilled manual workers (Figure 2a)
was decided upon. Working in this manner allowed the authors to monitor the ongoing
progress of the work and enabled the collection of samples for laboratory analysis and
assessment of structural degradation from each stage of demolition.
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2.2. Non-Destructive Tests

Prior to demolition works, visual assessment of the technical condition of the building
was carried out. The assessment was conducted in the context of safety of people perform-
ing the survey and dismantling works, but also in the context of visible damage and signs
of the building’s destruction. The survey was performed in accordance with the typical
methodology of periodic inspections of buildings. At this stage of the study, there were
no significant visible signs of degradation threatening the structure, which could raise
suspicion of safety hazard during demolition. Also, the visible signs were not indicative of
significant threats to the durability of the structure if it continued to be in use.

In the horizontal joints of the floor slabs, cracks were visible. They were the evidence of
vertical displacement of the edges of the adjacent slabs. In the upper parts of vertical joints
of prefabricated walls, it was found that the fillings made during the building assembly
were made without adequate precision. The concrete was very porous with an uneven
surface and was not filling the entire wall joint. In the beam-walls, corroded rebar was
inventoried where the window and door frames were supported (ref. Figure 7a). The
corrosion could have been caused by a careless demolition of the window sills. During
removal of window joinery, the workers damaged concrete layer and exposed reinforcing
steel to environmental impacts. Elsewhere, no discoloration or cracks along the bar mesh,
which could indicate an intensive corrosion process of the reinforcement bars, were found.

For non-destructive testing, the authors used specialized testing equipment in the
form of ultrasound (Figure 3a,b) and ferromagnetic (Figure 3c) methods.
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Non-destructive testing methods for the diagnosis of concrete structures have been
widely described in the literature [62–64]. Their limitations and possibilities of supplement-
ing the results by combining individual methods have also been formulated [65]. Taking
into account the wide availability of methods’ descriptions in the literature, they have been
omitted in this case, and only the main parameters of the equipment used in the conducted
tests are presented.

In the first stage, linear scans of longitudinal and transverse walls were made using
ultrasound equipment with 54 kHz heads. Two-way access to the elements was used,
thanks to doorways and openings created after excavations and core drilling. Five walls
on each of floors −1, 3, 5, and 10 were examined. The diameter of the longitudinal wave
transducer was 5 cm. The measurement points were marked with wax chalk at 10–15 cm
intervals. Considering the dimensions of the transducers, in reality, the spacing between
the edges of the heads was between 5 to 10 cm. A measurement grid with this spacing
allows the surface under examination to be scanned accurately. Defects that could hide
between the measuring points are negligibly small and would not affect the load-bearing
capacity of the component. A total of 5 to 10 readings were taken on each wall. The number
of readings was due to difficult access and the limited length of the cables feeding the
transducers (testing with two-way access was only possible in walls with openings). Wave
propagation velocities for all readings taken ranged from 3500 to 4000 m/s. According
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to the classification presented in [66], this indicates good concrete quality. The results
obtained during the testing of the 5-storey transverse wall, along with two graphs of wave
propagation in concrete are presented in Figure 4.
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Figure 4. Ultrasound tests: (a) P-wave measurement graph at 10 points; and (b) P-wave propagation
graph at points 1 and 5.

The next stage was surface scans of walls and floors using a Pulse-Echo head. The
thickness of the elements and the location of any voids and material discontinuities, as
well as the propagation velocities of the shear waves, were analysed. The measurement
grid ranged from 50 × 50 to 50 × 100 cm, with intervals of 10 cm. The thicknesses of
the elements were within the execution deviations, i.e., ±0.5 cm. No areas indicating the
presence of material discontinuities were located on the obtained images. The transverse
wave velocity was within the range of 1800–2000 m/s, while the average wave velocity
for concrete is usually 2000 m/s [67]. Images of post-surface scans for one of the 3rd floor
walls are presented in Figure 5.
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Due to one-sided access to the vertical joints, the concrete quality was checked using
indirect measurement mode, i.e., setting the heads on one surface. The tests were performed
using 54 kHz transducers. In order to eliminate the uncertainty related to the length of
the measurement path, one of the device functions was used. It allows to take readings by
moving one of the heads while keeping the other one stationary. After taking 4 readings,
with known path length, the device is able to draw a curve and estimate the longitudinal
wave velocity. The obtained velocities ranged from 1700 to 2100 m/s. This may be an
indication of poor concrete quality, but it should be noted that in surface measurement
mode, the quality of the top layer of the element has a significant influence on the results.
Micro-cracks and defects lead to under-estimation of wave velocity.

The next stage was to perform B-scans of vertical joints and walls using the Pulse-Echo
head. B-scan generates an image of the cross-section of the tested element, perpendicular
to the scanning surface. The defects and discontinuities in the presented results are colour-
coded from pink to purple. Heterogeneities in the concrete affect the propagation of the
ultrasound pulse. They cause scattering of the signal coming from the Pulse-Echo head.
The device measures the transit time of the wave and its amplitude. The colour in the
image becomes darker as the amplitude of the wave increases. The local maximum of the
amplitude results from the reflection of the wave at the boundary between the concrete
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and the air filling the structural defect. In the case of the darkest colour (purple), the
wave amplitude was the highest. This indicates that the wave encountered significant
material heterogeneity in the form of voids or delaminations. B-scans performed revealed
the presence of voids and delaminations in the fillings (Figure 6a), which were caused
by incorrect placement and compaction of the concrete mix during construction of the
elements. In the walls, no irregularities indicating poor concrete structure were detected
(Figure 6b).
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Figure 6. B-scans: (a) vertical wall joint; and (b) walls.

In order to identify the quality of the reinforcement work, line scans (Figure 7c) and
area scans were performed using ferromagnetic testing equipment. Line scanning allows
to check the quality of the reinforcement work along one line. This measurement mode
can be used for scanning beam elements or columns, while area scans should be used
for surface elements such as walls and slabs. Measurement is performed on the basis
of a defined measurement grid. Area scanning makes it possible to quickly determine
the distribution of the reinforcement and the thickness of the coverings over large areas,
where the distribution of rebars can be highly variable. Excavations were made at the
non-destructive test locations to compare the results.
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Figure 7. Determining the quality of reinforcement work: (a) corroded rebar and lack of cover;
(b) uncovering of reinforcement; and (c) ferromagnetic scan—distribution of reinforcement and
thickness of cover.

The results of the scans indicated insufficient cover thickness locally. The reinforcement
distribution was consistent with the available original documentation.

Using the sclerometric method, the concrete class of the precast elements was estimated
based on the reflection number. It was determined that it is equivalent to the current class
C16/20 according to EC2 [68].

Locally, scratches were observed in the walls above the door openings. The cracks were
measured with a Brinell magnifying glass and ranged from 0.3 to 1.1 mm. An ultrasound
method was used to identify the depth of the cracks. The longitudinal wave transducers
were placed on both sides of the crack. First, each transducer was placed at a distance of
a = 100 mm from the crack, after which the ultrasound wave transit time was measured.
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The transducers were then moved apart to a distance of 2a = 200 mm and a second reading
was taken. Based on the difference in transit times obtained from the two readings, the
crack penetration depth was estimated. Debris was removed from the crack using an
industrial vacuum cleaner. Cleaning is very important in penetration measurements
using the ultrasound method, because wave propagation through the contamination can
significantly under-estimate the readings relative to the actual condition. The depth of
penetration was determined to be between 20 and 65 mm. An example of crack depth for a
longitudinal wall and a transverse wall is shown in Figure 8.
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Figure 8. Ultrasound measurement of the crack depth: (a) crack in the longitudinal wall; and (b) crack
in the transverse wall.

2.3. Destructive Tests

The accuracy of the non-destructive testing results was continuously verified by
performing a large number of wall (Figure 7b), beam-wall and floor (Figure 9b) excavations.
The building was scheduled for demolition, so the only limitation of the testing was to
maintain structural integrity. The rebar exposed in the excavations showed no signs of
corrosion. The concrete in the precast elements was of good quality and had no high
porosity. Attention was paid to the large dimensions of the aggregate used to make the
elements, exceeding as much as 40 mm in places. The thickness of the floor screeds ranged
from 35 to 50 mm. Numerous explorations have not revealed excessive thickness values of
surface layers added during renovations, which could lead to excessive slab deflection and
stippling of the partitions [69].
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Figure 9. Drilled cores and excavations: (a) core-drilling machine; (b) view of excavations and drill
core in floor slab; and (c) samples in the laboratory.

In order to perform laboratory tests, core drillings were made in different parts of
the structure (Figure 9a). The locations and diameters of the drill holes were selected in
accordance with EN 13,791 [70]. In the beam-wall elements, the thickness of individual
layers was measured in situ. The thickness of the insulation was found to be 5 cm, while
the texture layer was characterized by different thickness values, ranging from 3.5 to 7.5 cm,
which is inconsistent with the design specification. The differences were not visible from
the outside because of the facade made of folded sheet metal attached to the beam-walls
with steel strips.
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The samples were adjusted to standard dimensions using electric tools, their sur-faces
were polished and then they were subjected to compressive strength tests under laboratory
conditions (Figure 9c). Samples were taken using diamond crowns with two diameters;
d = 100 mm and d = 160 mm. The thicknesses of the precast wall and floor elements were
140 mm, so samples with l = 140 mm were taken. In order to determine the compressive
strength, the samples with a diameter of d = 100 mm, were cut to l = 100 mm. This resulted
in specimens with a ratio of l/d = 1. According to EN 13,791 [70], for cylindrical specimens
with l/d = 1, the compressive strength corresponds to the strength obtained on cubic
specimens with a side a = 15 cm. This eliminated the need for a strength correction due to
the specimen dimensions. Samples of d = 160 mm were taken for future testing to determine
Young’s modulus in compression and dynamic Young’s modulus. The calculation of the
characteristic compressive strength of the concrete in the structure was also carried out in
accordance with EN 13,791 [70]. The results of strength tests of core drillings taken from
walls, floor slabs, and beam-walls were similar to each other. All of them were in the range
of 20 to 30 MPa. According to [70], an average compressive strength of 20.5 MPa was
calculated, qualifying the concrete to the current class C16/20, which is an approximate
equivalent of the then class B20, according to the design assumptions. Noteworthy is the
fact that the results obtained by non-destructive and destructive methods, i.e., sclerometric,
ultrasound, and during testing in the machine (Figure 10) are comparable.
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Figure 12. Beam-wall tests: (a) core drilling; (b) sample for testing; and (c) pH test. 

Figure 10. Concrete strength testing: (a) sclerometric method; (b) ultrasound method; and
(c) destructive method.

Drill holes were also made at the joints of the floor slabs (Figure 11c) and walls
(Figure 11a,b). The quality of the floor slab and wall joints was unsatisfactory. The concrete
mix was not carefully placed, and numerous cracks were found inside the concrete structure
and in the contact areas of the infill with the wall dowels (Figure 11a,b). The crack opening
widths of the samples were measured using Brinell magnifier. The fillings were internal
elements (exposure class XC1), for which, according to EC2 [68], the crack opening width is
wk,max = 0.4 mm. Cracks exceeding the opening width of 0.4 mm have been classified as
not fulfilling standard recommendations.
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Samples taken from the floor slabs revealed missing rebar cover, which was only
3 mm in places. The pH tests of the concrete were also carried out (Figure 12). The roof
slabs were characterized by advanced carbonation. The surface of the concrete was not
discoloured throughout the cross-section. The effects and characteristics of carbonation as
well as theoretical models to predict its depth have been described in the literature [71,72].
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Phenolphthalein solution was used for preliminary pH testing. The test is carried out
by spraying the substance on a fresh break of the concrete sample. At pH values higher
than approximately 9, the indicator turns the concrete red-violet. Only such coloured
concrete shows alkalinity sufficient to ensure passivity of reinforcement steel. Testing was
conducted in accordance with EN 14,630 [73]. In the tests conducted for the textured layers
of all storeys, the obtained results indicated that the layers had corroded concrete that
ranged from 15 to 30 mm. In the interior walls and the structural layer of the beam-walls,
the depth of carbonation ranged from 13 to 37 mm. Such deep corrosion of concrete in
the interior elements is probably due to the non-usage of the building and lack of heating
for over 10 years, as well as damages and defects in the window and door joinery, which
affected the intensity of the aggressive environmental impact.

The level of concrete carbonatization in the texture layer was also determined in water
extracts obtained by leaching the crushed concrete with distilled water. The samples taken
from the core drillings were used for this purpose. Concrete was crushed in porcelain
mortars, then coarse aggregate grains were removed, ground, and sieved. The sieved
product was poured with distilled water and aqueous suspensions were obtained. The
evaluation of the concrete’s suitability as a protective and load-bearing layer was carried out
on the basis of tests using laboratory equipment with electrodes ensuring pH measurement
accuracy within ±0.01. The results obtained for samples taken from the textured layer,
within the pH range of 9.26–9.38, confirmed the occurrence of advanced carbonatization
processes.

Part of the research work was carried out during the disassembly of individual storeys.
After removal of the floor slabs, photographic documentation of the welded joints of the
precast elements was made (Figure 13). Subsequently, the hidden tops of the walls were
locally uncovered, and the joint sheets were cut out for laboratory testing.

Examination of several dozen specimens collected showed localized missing welds
(Figure 14b), both between the tie beam and the steel plate and between the plate and the
flat bars. Many of the joints had significant geometric deviations—the plates were bent on
site to allow them to be installed on irregularly positioned precast wall elements. Moreover,
flat bars were found to be too short and point-welded, contrary to the design’s intent. In
isolated cases, flat bars were overlapped welded to another flat bar instead of to a plate
embedded in the wall (Figure 14c). All plates were covered with only a superficial layer
of corrosion, and it is likely that they were installed in this state when the building was
constructed. The thickness of the plates, determined mechanically with a micrometer screw
and by ultrasound method after cleaning from corrosion products, was in accordance with
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the catalog of system joints and was 6 mm. Using the ultrasound hardness tester and the
correlation between steel hardness and strength, an average tensile strength of 402 MPa
was estimated (Figure 14a). The steel parameters were confirmed by tensile testing in a
testing machine.
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3. Discussion. Practical Aspects of Diagnostics

The increasing age of large-panel buildings in service requires numerous assessments
of their technical condition. Structural defects caused during assembly, such as inaccurate
steel connections or filling of joints, are implemented in the building’s structure from
the beginning of its existence. The fact that such buildings are in operation for several
decades despite these defects indicates that there are large reserves of capacity and re-
distribution of internal forces throughout the structural system. However, structures are
constantly exposed to loss of durability due to environmental aggression and material
ageing. This means that in spite of the relatively good condition of the buildings and the
absence of confirmed failures, the structural condition of large-panel buildings must be
continuously monitored.

Demolition of such structures is rare and allows for a great number of tests, including
destructive ones, which are most troublesome to the residents of the exploited structures.

In the examined construction, the authors found both execution defects and those
caused by environmental aggression. Degradation that can be dangerous to the safety of
the structure manifests itself by:

• concrete carbonation and insufficient concrete cover thickness of prefabricated elements;
• careless filling of the joints between the prefabricated elements;
• workmanship defects in welded joints;
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• local corrosion of reinforcing steel; and
• exceeding of dimensional tolerance both in the prefabricated elements themselves and

during assembly.

The results of ultrasound and destructive testing of vertical joints were consistent.
B-scans and surface measurements of longitudinal wave velocity allowed to locate the areas
of lower concrete quality, which was confirmed by examining samples obtained from core
drillings. The change of concrete structure can significantly affect its material properties
and it is reasonable to take it into account in terms of structural capacity.

The ultrasound and sclerometric methods for testing the quality and strength of precast
concrete, were found to be consistent with the results obtained in the testing machine. It
is probably correlated with the good quality of concrete, without voids, in the precast
elements. The good quality of concrete was confirmed by comparing the Pulse-Echo
(B-scans) and longitudinal wave velocity measurements, which clearly excluded defects in
the structure of the partitions.

The lack of double-sided access to the tested elements (e.g., in the case of floors or walls
without openings) limits the usefulness of the ultrasound method for precise longitudinal
wave measurement. Testing is reduced to performing measurements using the Pulse-Echo
method, which immediately reveals discontinuities of materials and geometric deviations.
It is also helpful in locating existing installations, which is important during repair works.

The results of this study indicate that the ferromagnetic method is effective in evalu-
ating the cover thickness and determining the distribution of reinforcing bars in precast
large-panel elements, and can be helpful in selecting appropriate repair methods or locating
sampling places for laboratory testing.

Testing the pH of the concrete on both fresh splits and water extracts clearly showed
the carbonation processes of the concrete. For buildings in use, the least invasive approach
may be to take a sample using a small-diameter diamond core and then test it under
laboratory conditions, which are the most precise.

The removal of the floor slabs allowed to gain access to and assess the steel connections,
which are not available for examination with current non-destructive testing equipment.
The parameters of the steel used in the joints tested by correlating hardness and strength
are sufficient to properly determine the strength characteristics, which was confirmed in
the testing machine.

The assessment of the structure’s technical condition should be based on a comparison
of the results of initial visual assessment with the results of non-destructive and destructive
tests. The number of destructive tests for large prefabricated structures may be reduced to
a minimum, due to cost and damage to the structure in service.

4. Conclusions

Demolition of a structure built of large-panel prefabricated system elements and
according to system solutions is an invaluable source of knowledge about the technical
condition of the examined building. It also allows to conclude on the technical condition of
the whole category of similar buildings.

This paper presents a range of visual, non-destructive, and destructive tests that are
helpful in determining the technical condition of reinforced concrete precast structures.
On the basis of the research and correlation of the individual results, the following con-
clusions concerning the applied research methods of assessment of large-panel building’s
degradation were drawn:

• to test the quality of concrete in vertical joints, it is recommended to use surface
measurements of longitudinal wave velocity and B-scans;

• for one-sided access to the examined elements, surface scans using the Pulse-Echo
method are helpful in detecting discontinuities and geometric deviations, as well as
hidden installations;
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• the quality and strength of concrete should be determined comparatively by sclero-
metric and ultrasound methods, and in case of discrepancies it is recommended to
perform destructive tests;

• for testing the pH of concrete, it is recommended to take samples with small diameter
diamond cores and then test under laboratory conditions;

• ferromagnetic testing is sufficient to determine the quality of the reinforcement work;
• the use of ultrasound method for crack penetration depth is helpful in monitoring

crack propagation and making a possible decision to implement repair measures; and
• despite the development of technology, in practice there is still a lack of equipment

allowing for the assessment of the degradation of joints hidden in structural elements,
such as wall joints in large-panel buildings.

The identification of defects in existing buildings with no signs of failure gives reasons
for optimism about hidden capacity reserves. Nevertheless, further research is warranted
to analyse their impact on structural performance. In the process of ageing of buildings,
hidden safety reserves may be exhausted, especially under exceptional loads like gas
explosions [29]. Therefore, it is reasonable to make maximum use of the data source,
which are the few buildings to be demolished or decommissioned, or which have not
been completed.

A new contribution to the knowledge of large-panel buildings will also be the analysis
of the impact of hidden defects, such as carelessly made steel joints of walls, on the safety
of the structure. The authors identify a research gap here and intend to perform analyses
using the materials obtained from the demolition.

In order to make a reliable assessment of the condition of structural elements and
their connections, it is necessary to perform static calculations of the elements that are most
severely degraded. On this basis, further decisions related to the repair, reinforcement
or demolition of the structure should be made. Actual values of physical and strength
parameters of materials exploited for many years should be used for calculations. These
parameters can be obtained from non-destructive testing.
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Wielkopłytowych. Jak Naprawiać Błędy Systemu. Biul. Inf. 2020, 3, 16–19. (In Polish)
15. Hrischev, L. Defects of Large Panel Prefabricated Buildings. In Proceedings of the 14th International Scientific Conference

VSU’2014, Sofia, Bulgarian, 20–21 February 2014. (In Bulgarian).
16. Knyziak, P. The Quality and Reliability in the Structural Design, Production, Execution and Maintenance of the Precast Residential

Buildings in Poland in the Past and Now. Key Eng. Mater. 2016, 691, 420–431. [CrossRef]
17. Knyziak, P.; Kanoniczak, M. Difficulties in Operation of Elevations in Large-Panel Buildings. IOP Conf. Ser. Mater. Sci. Eng. 2019,

661, 012059. [CrossRef]
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19. Ligęza, W. Budownictwo Wielkopłytowe Po Latach. Wybrane Problemy Remontowe (Large-Panel Buildings after Years of

Exploitation. Selected Problems of Repairs). Bud. I Archit. 2014, 13, 15–25. (In Polish) [CrossRef]
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