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Abstract: Point defects are crucial in determining the quality of germanium crystals. A quantitative
understanding of the thermodynamic formation properties of the point defects is necessary for
the subsequent control of the defect formation during crystal growth. Here, molecular dynamics
simulations were employed to investigate the formation energies, total formation free energies and
formation entropies of the point defects in a germanium crystal. As far as we know, this is the first
time that the total formation free energies of point defects in a germanium crystal have been reported
in the literature. We found that the formation energies increased slightly with temperature. The
formation free energies decreased significantly with an increase in temperature due to the increase
in entropy. The estimated total formation free energies at the melting temperature are ~1.3 eV for
self-interstitial and ~0.75 eV for vacancy, corresponding to a formation entropy of ~15 kg for both
types of point defects.

Keywords: germanium; point defects; formation free energy; formation entropy; molecular dynamics
simulation; thermodynamic integration

1. Introduction

Germanium, as a semiconductor material, has excellent electrical, optical and struc-
tural characteristics. However, unlike silicon, germanium has attracted relatively less
attention among the academic community and in industry. It has more than twice the
mobility of charge carriers in comparison with silicon. This property makes it favorable
to be used in the fabrication of high-speed electronic devices, e.g., memory cells. The
dislocation-free germanium crystals are used as substrates for epitaxial structures when
creating radiation-resistant power MOSFET-transistors for photoelectric converters and
nanoscale transistor structures [1,2]. All of the various applications lead to high demands
on the quality of crystals and, in particular, on the grown-in defects. The Czochralski
(CZ)-grown germanium crystals usually inevitably include defects, which would influence
the yield and performance of electronic devices built on Ge substrates [3]. The native
point defects are the most fundamental lattice defects in the crystal, which can form voids,
clusters and other complexes through diffusion and combination. A quantitative under-
standing and the subsequent control of the point defect formation in germanium crystals
are therefore fundamentally important from the perspectives of both theory and technology.
However, having an accurate knowledge of these atomic-scale phenomena is usually chal-
lenging due to the lack of reliable experimental data [4]. The classical molecular dynamics
(MD) simulations are an alternative to provide useful information for this task. In compar-
ison with calculations based on density functional theory (DFT), classical MD based on
empirical potentials is less accurate but can provide large-scale and long-time simulations.
In particular, thermo-physical properties related to free energies that require sampling over
different configurations across the phase space can hardly be estimated through DFT.

The migration and formation energies of point defects in germanium crystals have
been studied by épiewak et al. [3] and Kang et al. [5] based on atomic simulations.
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Spiewak et al. calculated the vacancy and self-interstitial migration and formation en-
ergies using MD simulations based on several empirical potentials and compared their
results to DFT and experimental values. They concluded that the Stillinger-Webber (SW)
potential with the parameters of Wang et al. [6] can provide experimental comparable
formation energies of neutral vacancy in germanium. The formation free energies of point
defects in germanium crystal, however, are much less reported in previous research. As the
temperature rises, the entropy contribution to the free energy is no longer ignorable. There
may be some new features appearing driven by the entropy, i.e., Cowern et al. [7] suggested
that there is a normal to “morph” structure transition of point defects in germanium from
low to high temperature. The “morph” structure has a much higher configurational entropy,
i.e., 30 kp. Unlike the perfect crystal whose free energy can be calculated easily using the
Einstein crystal (EC) method [8], the estimation of defective crystal formation free energies
is a more complex task. The EC method cannot work for the crystal with defects due to the
mobility of the point defects, which will cause convergence problems at the end point of
the thermodynamic integration (TT) [9,10]. Chiesa et al. [9] calculated the formation free en-
ergies of interstitial defect in bec iron, where they took the harmonic crystal as the reference
state in the TI and encountered severe convergence problems. They simply extrapolated
the integration curve to the end point, which may bring in unexpected errors. Cheng and
Ceriotti [10] calculated the vacancy formation free energy in bcc iron where they used two
steps to obtain the high-temperature free energies. They first calculated the system free
energy at a very low temperature, i.e., 100 K, to circumvent the above-mentioned diffu-
sion problem, and then performed temperature-dependent thermodynamic integrations to
obtain the desired free energy at a high temperature. Considering the above difficulties,
people either use (formation) potential energies to replace the formation free energies or
employ harmonic approximation (HA) to account for the entropic part.

In this research, we used MD simulations to calculate the formation free energies
of point defects in germanium crystal based on our recently proposed method [11,12].
Wherever possible, the calculated results are compared with existing experimental or
theoretical values. The remainder of the article is organized as follows: Section 2 introduces
the methodology, which includes the description of the employed empirical potentials, the
thermodynamic integration pathways and the simulation details. Results are shown in
Section 3, while Section 4 presents the conclusions.

2. Methodology
2.1. Interatomic Potential Models for Germanium

We employed two empirical interatomic potential models: SW [6] and Tersoff [13] to
describe the interaction between geranium atoms. These two potential models are very
popular due to their relative simplicity and are widely applied to describe the covalent
bonding of semiconductors such as: Si-Si, [14] Si-C, [15] Ga-N, [16], etc. However, these two
potentials are very different, i.e., SW predicts the melting temperature T, of germanium to
be 1487 K, which is close to the experimental value of 1210 K, while Tersoff overestimates
Ty to be 2737 K. This is a widely known weakness of the Tersoff potential; it also overesti-
mates the Ty, of a silicon crystal. Considering the very large temperature difference, we
used the scaled temperature T /Ty, in the results to make comparisons between different
potentials as in our previous research [17,18]. There are several parameterizations for
SW potential to model germanium. The comparisons between different potentials are
reported in Refs. [3,19]. Here, we adopted the parameter set of Wang et al. [6] for SW,
which is reported to predict experimental comparable formation energies of point defects
in germanium crystal. The Tersoff potential can provide accurate cohesive energy and
lattice parameters for germanium, silicon and their alloy systems [19]. In the following, we
simply describe the format of the potential functions.
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(a) SW potential
Within the SW potential, the overall potential energy U of the system is given by

U =YY 02(rg) + L1 1 0 (i e Oie) o

ioj>i i jEik>j

where ¢, and ¢3 represent the two-body and three-body interactions between the atoms.
rij is the atom distance between atom i and j, and 6;j is the bond angle subtended at the
central atom i between the bonds ij and ik. ¢, and ¢ take the form of:

o\’ o\’ o
Bl — — | — ex 2
(w) (fff)] p<rff”"> N
2 o (o
$3 (7’1‘]'/ Tiks eijk) = Ag [cos 9ijk — h} exp <7’ij,)/_ aa) exp (f’ik’y— aa) 3)

The summations in Equation (1) are over all neighbors j and k of atom i within a cutoff
distance a. A, B, 0, €, p, q, A, h and 7y are the potential parameters, which are given in Table 1.

¢2(rif) = Ae

(b) Tersoff potential
The overall potential energy U of the system described by the Tersoff model is given by:

1
u= §§fc (rif) [f& (rij) + bifa(rij)] @)
17]

where fg(rij) = Aexp(—A1rij) and f(rij) = —Bexp(—Aqryj) are pair repulsion and
attraction functions between atoms i and j, respectively, and fc(r;j) is a switching function:

1, Tij <R
) =41+1 U5 R} Re<ri<s 5
fe(rij) =4 3+ 3cos|m Sr | R<rij< (5)

0, Tij > S

In Equation (4), the attraction part is modulated by the bond-order term:

)71/211 (6)

b= (1+p"C}
which represents the influence of the local environment on the pair-wise interaction, render-

ing the Tersoff potential a many-body function. Moreover, the function {;; includes angular
contributions based on three-body terms, i.e.,

Zij= ). fc(rik)wg(gijk> @)
K#ij
where:
g(Gijk) - K{l LR 2 [dz + (h ~ cos ei]-k)z] } ®)

A,B, A1, A3, R, S, B, n, w, x, c,d and h are given parameters listed in Table 1.
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Table 1. Empirical potential parameters.

SW Tersoff
A 7.049556 A (eV) 1769.0
B 0.602225 B (eV) 491.23
o (A) 2.181 A (AT 2.4451
e (eV) 1.918 Ay (A1) 1.7047
P 4 R (/§) 2.8
q 0 S (A) 3.1
A 21 B 9.0166 x 1077
h 0.33333 n 0.75627
¥ 1.2 w 1
a 1.8 K 1.0
c 1.0643 x 10°
d 15.652
h 0.43884

2.2. TI for Calculating the Free Energies of Defective Crystals

The thermodynamic integrations were realized based on alchemical pathways by
converting a germanium atom (acting as the alchemical atom) to an ideal gas particle [11,12].
Along the path, an atom on the lattice of the perfect crystal was converted into an ideal
gas particle for calculating the free energy of the vacancy-containing crystal, while for the
interstitial case, the self-interstitial atom was converted into an ideal gas particle. The Gibbs
free energies of the crystal containing a vacancy G" and a self-interstitial G’ at temperature
T and pressure P are given by

Gv:GP+/Ol<M;(A)‘>>dA+kBT1n(§\‘9\§> )
" Gl =GP - /(;1 <agg’\)>dA - kBTln((N<J‘:>11;A3) (10)

respectively. G is the free energy of the perfect crystal containing N atoms, which is
calculated through the Einstein crystal method [8]. A = h/+/2mmkpT is the thermal
de-Broglie wavelength, kp is Boltzmann’s constant, / is Plank’s constant, and m is the
atomic mass. (V), and (V) are the equilibrium volume of the vacancy-containing system
and the perfect crystal system, respectively. H(A) = U(A) + PV(A), where U(A) is the
potential energy of the system described by a softcore modification of the original potential
function [11,12]. The alchemical pathway was realized by varying A from 0 to 1. When
A =0, the alchemical atom is a real germanium atom, and it becomes an ideal gas particle

when A = 1. The integrand aﬁay) in Equations (9) and (10) is given by

9H(A) _ aU(A) | paV(A)

oA oA oA (1)

The integration of the second term in Equation (11) is PAV with AV being the volume
difference between the systems at the end and beginning of the pathway. It vanishes when
the system pressure P is 0.

The free energies at other temperatures were calculated using another temperature-
dependent thermodynamic integration. The entropy of the system as a function of T was
calculated according to

S(T) = S(Tm)+/TT (;ag(TT)>PdT (12)
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taking the entropy at the melting temperature S(T,) as the reference. H is the enthalpy of
the system, which is equal to the total energy when pressure is 0. The TI in Equation (12) is
conducted under constant pressure. The free energies G(T) at different temperatures are
then given by

G(T) =E(T) —TS(T) (13)

where E(T) is the total energy of the system.

2.3. Simulation Details

The free energy calculations were based on molecular dynamics (MD) simulations.
The simulation boxes were cubic with periodic boundary conditions in the three directions.
The atom number N was set to 512. The system size effect was checked by varying the
atom number from 216 to 1000, and the results showed that 512 atoms were enough for
the calculations. All the free energies were calculated at 0 pressure. The temperature and
pressure were maintained using the Nosé-Hoover thermostat and barostat implemented
in the LAMMPS software package [20]. Twenty-one integrands in Equations (9) and (10)
were computed at different A values evenly distributed between 0 and 1 (additional points
were added in the curve at positions with steep slopes). At each A, 100,000 MD steps were
used to equilibrate the system, and more than 5 million steps were used for averaging. The
time-step size was set to be 1 fs. The convergence was checked by monitoring the running
average values. The integration in Equations (9) and (10) was estimated numerically using
the trapezoidal rule. Another series of MD simulations for more than 3 ns were conducted
to obtain the total energies and the equilibrium volumes of the systems as a function of
temperature. The total energies of the system were fitted to quadratic polynomials and
were applied in Equation (12) for the temperature-dependent thermodynamic integrations.

3. Results

The formation energies A
according to

E'"V and formation free energies AG""V were computed

AEMY(T) = EWV(T) - N—;,EP(T) (14)
NI,V
AG"Y(T) = GM"V(T) — N7 GP(T) (15)

where the superscripts I, V and P represent interstitial, vacancy and perfect crystal. The
formation energies of self-interstitial and vacancy as a function of temperature are shown in
Figure 1a,b, respectively. For both types of point defects, the formation energies increased
with temperature, indicating that higher energy configurations were being accessed. The
temperature dependence of formation energies predicted by SW is relatively slight in
comparison with those by Tersoff. The ground-state formation energies predicted by
SW potential were 3.2 eV and 2.3 eV for interstitial and vacancy, respectively, which
are very close to the DFT results (3.5 eV for interstitial and 2.6 eV for vacancy) [21-23].
At higher temperatures near the melting point, AE' and AEY increased to 3.5 eV and
2.5 eV, respectively, which are in agreement with previous computational results as well
as experimental values [3,24]. The Tersoff potential, however, predicted higher formation
energies, changing from 3.8 eV to 4.8 eV for interstitial and 3.6 eV to 4.1 eV for vacancy.

The free energies of germanium crystals containing a self-interstitial and a vacancy
were calculated, respectively, using thermodynamic integrations based on the alchemical
pathways. The integrands in Equations (9) and (10) are shown as a function of A in Figure 2.
The integration curves are relatively smooth. There is no divergence occurring at the two
ends of the integration.
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Figure 1. Formation energies of (a) self-interstitial (b) vacancy in germanium crystal. Red diamond
and green delta symbols represent SW and Tersoff potential results, respectively. The lines are
quadratic-fitted.

15.0
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0 02 04 06 0.8 1
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Figure 2. The integrands at different A for (a) self-interstitial and (b) vacancy. Red for SW and green
for Tersoff. The lines are guides for eyes.

The formation free energies as a function of temperature are shown in Figure 3a,b for
self-interstitial and vacancy, respectively. In Figure 3, also shown are the 0 K formation
energies (long dashed lines) and the harmonic formation free energies (short dashed lines)
for comparison. The harmonic formation free energies were calculated using

AGyY(T) = AE"V(0) — TAS, (16)
where AS }IZ’V is the harmonic formation entropy. AS{,’V was computed according to
AS;Y = 8V(T) — —-SP(T) (17)

In Equation (17), the harmonic entropies S ,I1’V and S}’ were computed using the formula

SX(T) = kBSNi_g {1 "I < i‘;’? )] (18)

n=1

where {wff} is the normal modes associated with the ground-state structure, X = {P,V, I},
and NX is the system atom number. The normal modes were calculated using the Hessian
matrix evaluated from the ground state structure defined as

U
Y 9q;0q;

(19)
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where the set {g;} specifies the 3NX atomic coordinates.
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Figure 3. Formation free energies as functions of temperature for (a) self-interstitial and (b) vacancy.
Red and green represent SW and Tersoff results, respectively. The long dashed lines are 0 K formation
energies, the short dashed lines are harmonic formation free energies, solid lines are total formation

free energies.

In Figure 3, it is shown that the formation free energies decreased with temperature.
For the SW potential (red lines), the harmonic formation free energies are very close to
the 0 K formation energies for both interstitial and vacancy. The differences are within
0.5 eV, even near T}, which indicates that the harmonic entropy only contributes a small
part to the formation free energy of point defects. From the perspective of the potential
landscape, the inherent structure [25,26] of the ground basins for the perfect crystal and the
defective crystals may be very similar. The total formation free energies, however, deviate
significantly from the 0 K and harmonic values at a high temperature, decreasing by 1.3 eV
for interstitial and 1.1 eV for vacancy at T}, in comparison with harmonic values. For the
Tersoff potential, both the harmonic and total formation free energies decreased faster with
temperature than those of SW potential. Interestingly, the total formation free energies
predicted by the two potentials are very close at melting temperature, ~1.3 eV (on average)
for self-interstitial and ~0.75 eV (on average) for vacancy. The point defects formation
energies in silicon and germanium at melting temperature are listed in Tables 2 and 3.
The relative deviations were calculated by taking the experimental or DFT formation
energies as reference. By comparison, several similarities may be drawn from the values in
Tables 2 and 3. For both silicon and germanium, the deviations of the formation energies
predicted by Tersoff are larger than those by SW. However, the deviations of the free energies
are pretty close for the two potentials. In comparison with the formation energies, the
formation free energies decreased significantly, by approximately 50-70%. The consistency
between the two very different potential models increases the confidence of the present
results, although it is very hard to evaluate the accuracy of these values due to the rarity of
reported results.

Table 2. Formation energies of vacancy in silicon and germanium at T},.

Si Ge
Exp./DFT AE (eV) 3.132 241b
SW Tersoff SW Tersoff
AE (eV) 2.85¢ 3.99 ¢ 2.54 4.36
Relative deviation (%) 8.9 27 13 81
AG (eV) 111°¢ 1.06 € 0.88 0.62
Relative deviation (%) 65 66 63 74

2 Average of experimental values in Ref. [27] and Ref.

values in Ref. [12].

[28]; b Ref. [3] and references therein; ¢ MD simulation
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Table 3. Formation energies of interstitial in silicon and germanium at T},.

Si Ge
Exp./DFT AE (eV) 4.054 35¢
SW Tersoff SW Tersoff
AE (eV) 405°¢ 454°¢ 3.62 4.82
Relative deviation (%) 0 12 34 38
AG (eV) 212¢ 1.88°¢ 1.45 1.19
Relative deviation (%) 48 53 58 66

¢ MD simulation values in Ref. [12].9 Ref. [29] and references therein; ¢ DFT value in Ref. [22].

The significant decrease in formation free energies indicates that the anharmonic or
configurational entropy is increasing dramatically. The harmonic formation entropies
calculated based on the ground states for I and V were 3.6 kg and 3.0 kg by SW, and 3.8 kp
and 3.1 kg by Tersoff, respectively. The consistency between the two potential models is
shown again here. We then calculated the total formation entropy based on the formation
free energies,

ASMY(T) = [AELV(T) - AGW(T)} /T (20)

The formation entropy of self-interstitial and vacancy are shown as functions of
temperature in Figure 4. The total formation entropies predicted by the two potentials are
also very close at melting temperature, ~15 kg for self-interstitial and ~14 kg for vacancy.
The harmonic formation entropy accounts for ~20% of the total formation entropy at
melting temperature for both point defects. The point defect entropies are relatively less
characterized in germanium. Considering the similarity of structure and properties between
silicon and germanium, we may make a comparison between the calculated results and
those of silicon crystals. Atomic simulations with both electronic structure and empirical
methods suggest that the point defect vibrational entropies of formation are significant in
silicon crystal: ~4-8 kg [30-34]. Cowern and coworkers [7] found that the point defects in
silicon and germanium crystal transform from “point like” to “extended defects” as the
temperature increases. The extended defects have very high configurational entropy in
germanium (i.e., 30 k). Adding the configurational entropy, it is very possible that the
melting point total formation entropy will be comparable to our estimated results.

200 200
15.0 b 150f |
—gﬂ : gm : A/A/Ax/A)i
2 L (g I O/O/M/o‘
100 10.0
(a) - (b)
TR R | T R T [RRTERE TR N NN SRR R,
50002 04 06 08 1 500="02 04 06 08 1

T/T

m

TIT

m

Figure 4. Formation entropies of (a) self-interstitial and (b) vacancy in germanium crystal. Red and

green are results of SW and Tersoff, respectively. The lines are quadratic-fitted.

4. Conclusions

In the research, the thermodynamic formation properties of point defects in germa-
nium crystal were calculated using molecular dynamics simulations based on two empirical
interatomic potentials, SW and Tersoff. The results were compared with previous research
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and experimental values wherever possible. The formation energies predicted by both
potentials increased slightly with temperature, and the values predicted by SW are in
agreement with experimental values, while those by Tersoff are overestimated. The total
formation free energies calculated through thermodynamic integrations decreased signifi-
cantly with temperature due to the increase in entropy. The two potential models showed
very good consistencies in the results of total formation free energies and formation en-
tropies at a high temperature. The total formation free energies predicted by the two
potentials are very close at melting temperature, ~1.3 eV for self-interstitial and ~0.75 eV for
vacancy. The harmonic formation entropies estimated by the two potentials were ~3—4 kg
for both interstitial and vacancy, which are relatively low and account for only ~20% of the
total formation entropy, i.e., ~15 kg at the melting temperature.

Unfortunately, due to the lack of experimental values, it is relatively hard to evaluate
the accuracy of the present results. However, the consistency between the results obtained
from the different potential models increases the confidence of these calculations. In addi-
tion, it should be pointed out that most empirical potential models do not include (or only
include the single ground-state configurational) point defect thermodynamic properties
during the parameter-fitting procedure. To improve the reliability of MD simulations, it is
worthwhile to consider the potential energy landscape more globally in the fitting of an
empirical model.
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