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Abstract: Perovskite-type catalysts were widely used in the field of automobile exhaust purification
due to their inherent physicochemical properties and excellent doping characteristics. A series of
La1−xMxCo1−yNyO3 (M = Ce, Ca; N = Fe, Mn) perovskite-type catalyst samples were prepared by
sol-gel method for the four-way purification of PM, NOx, CO, and HC emitted by diesel exhaust.
The activity of catalyst samples was tested by simulation experiments and hydrogen temperature-
programmed reduction (H2-TPR). Catalyst samples were characterized by means of XRD, FT-IR,
SEM, BET, and XPS analysis. The results demonstrated that the perovskite-type catalyst samples
with a particle pore size of 3–5 µm can be prepared by sol-gel method. When A-site of LaCoO3

perovskite-type oxide was doped by cerium ions, the catalyst samples produced small distortion. The
doping of cerium ions to A-site was more conducive to the four-way purification of diesel exhaust
than calcium ions. La0.8Ce0.2CoO3 perovskite-type samples showed the best purification efficiency,
and the purification efficiencies of PM, NOx, CO, and HC were 90%, 85%, 94%, and 100%, respectively.
When the B-site of La0.8Ce0.2CoO3 perovskite was doped with iron ions, the purification efficiency
of catalyst samples for PM and NOx can be further enhanced. When the B-site of La0.8Ce0.2CoO3

perovskite was doped with manganese ions, the purification efficiency of the catalyst samples for PM
can be further enhanced. It can be seen from the simulation experiments that La0.8Ce0.2Co0.7Fe0.3O3

perovskite was the best doping amount, and the purification efficiencies of PM, NOx, CO, and HC
were 95%, 92%, 94%, and 100%, respectively.

Keywords: perovskite-type catalyst; diesel exhaust; sol-gel method; four-way purification; doping amount

1. Introduction

The pollutants emitted by diesel exhaust mainly include particulate matter (PM),
nitrogen oxides (NOx), carbon monoxide (CO), and hydrocarbons (HC) [1]. Among them,
the micron PM emitted from diesel engine is an important factor causing haze weather,
which can seriously damage the human respiratory system, and even lead to the increase
of lung cancer incidence rate. NOx emission is the main cause of acid rain. The combi-
nation of CO and human hemoglobin will cause headache, syncope, and even endanger
human life. HC causes serious damage to the human respiratory, nervous, and hematopoi-
etic systems, which mixed with NOx under light conditions may form photochemical
smog [2–4]. Since this century, the application research of perovskite-type catalysts in the
field of engine aftertreatment technology has been rapidly developed, reasonable doping
and modification of perovskite-type catalysts can effectively purify the pollutants emitted
by engine [5,6]. Hong Wang et al. [7] prepared three kinds of different perovskite-type
catalysts by combining sol-gel method and impregnation method. The XRD and SEM
characterization results proved that the catalysts can be uniformly supported on the zeolite
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surface. The substitution of La3+ at the A site by Cs+ can enhance the catalytic activity
of the catalysts. Xuelei Mei et al. [8] synthesized the double perovskite-type La2NiB′O6
catalyst material with a three-dimensional ordered macroporous structure successfully
by crystal template method. The purification efficiency and catalytic activity of LaNiO3
on PM can be improved by doping the B site with manganese, iron, cobalt, and copper
ions, respectively. When the molar ratio of cobalt ions to nickel ions is 1:1, the purification
efficiency of La2NiCoO6 on PM can reach 98.2%. Shiva Abedi et al. [9] synthesized LaFeO3,
LaFe0.7Mn0.3O3, and LaMn0.7Fe0.3O3 nano-scale perovskite-type catalysts with different
doping amount by sol-gel method, the CO was used as a reducing agent to selectively
reduce NO through simulation experiments, in addition to studying the function of syn-
thesized catalysts and finding the optimal catalyst in the CO-SCR process by XRD, SEM
characterization methods, and chemical reaction kinetic model. The results showed that
the conversion efficiency of CO and NO increased with the synergistic effect of manganese
ions and iron ions. When the stoichiometry of iron and manganese ions were 0.3 and 0.7,
respectively, the catalyst activity can reach the highest, and the conversion efficiency of CO
and NO improved with the increase of reaction temperature and decrease of space velocity.
Fan Fang et al. [10] synthesized porous perovskite-type La0.6Sr0.4CoO3-δ nanotubes by
sol-gel method combined with electrospinning technique following the calcination, which
were treated with nitric acid to obtain a catalyst with a larger specific surface area. The
catalysts were tested by temperature-programmed experiments. The results showed that
the catalytic activity of La0.6Sr0.4CoO3-δ nanotubes for PM was positively correlated with
its specific surface area. The research team also analyzed the specific purification mecha-
nism. Jiang, Q et al. [11] doped the A site and B site of LaNiO3 perovskite with calcium
and copper ions, respectively, and detailed the effect of different doping amount on the
physicochemical structure of the catalyst materials, revealed that the doped perovskite-type
catalysts can effectively promote O2− transport during the redox reaction of HC, and can
be used as an effective carrier for Oads in the low-temperature oxidation reaction, while
decreasing the activation temperature of the overall reaction. E. Magnone et al. [12] studied
the effects of different synthesis methods of La0.6Sr0.4CoO3-δ powder on the adsorption
and desorption of oxygen, particle size, specific surface area of the catalytic materials, the
results showed that different synthesis methods directly affect the particle size and specific
surface area of the catalysts, and indirectly affect the adsorption and desorption capacity
of the catalysts for oxygen. Long Tang et al. [13] prepared LaKCoO3/γ-Al2O3/cordierite
catalysts by a two-step impregnation method. The porous structure of γ-Al2O3 can evenly
distribute LaKCoO3 on the surface of cordierite, and obtain a high specific surface area,
thermal stability, and catalytic activity. When the reaction temperature is 390 ◦C, the con-
version rate of LaKCoO3/γ-Al2O3/cordierite catalyst for soot particles can reach 90%, and
the CO2 selectivity is 99.8%. Siran Zhang et al. [14] proposed a method of constructing
highly dispersed Pt and oxygen vacancies on the catalysts. The LaCoxNi0.87−xPt0.13O3
perovskite-type catalyst was supported on SiO2 by the citric acid method and the impreg-
nation method. Under low-temperature conditions, the LaCoxNi1−xO3 surface can form
high-dispersion double active centers, namely Pt clusters and O vacancies, which showed
significant activity for CO oxidation.

Although the diesel engine exhaust purification technology by perovskite-type cata-
lysts has been developed greatly, most of them focused on the modification research of the
A site or the B site. There are few studies about four-way purification of PM, NOx, CO, and
HC emitted from diesel exhaust by modifying perovskite-type catalysts. A large number of
studies about perovskite-type catalysts showed that the doping of the A site can help to
increase the activity of the catalyst lattice oxygen and make the B site ions exist in multiple
valence states, causing the increases of oxygen vacancy in the catalyst, which reduced the
ignition temperature of the oxidation reaction. The A site of perovskite-type LaCoO3 is the
ideal adsorption site for NOx storage. which can be doped by alkali metals, alkaline earth
metals or rare earth elements. while the doping of the B site directly affects the activity
of the perovskite-type catalyst, which is the redox site of the purification process, it can
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be doped by transition metal elements [15,16]. The doped A or B site with other cations
can rationally tune the physicochemical characteristics of perovskites, including redox
performance, oxygen mobility, and ionic conductivity [17]. A large number of studies
showed that the catalytic activity of perovskite was comparable to that of noble metal
catalysts [18,19]. Therefore, new non-precious metal-doped perovskite-type catalysts can
be developed.

In this paper, the A site of the perovskite-type LaCoO3 is doped with cerium and
calcium ions, and the B site is doped with iron and manganese ions. The objective of this
work was to evaluate the effect of A site (cerium and calcium ions) and B site (iron and
manganese ions) substitution on the structural and purification properties of perovskite-
type catalyst samples. The CO, HC, and PM emitted by diesel engines are utilized as
NOx reducing agents to achieve the purpose of purifying CO, HC, NOx, and PM simul-
taneously. Perovskite-type catalyst samples particles La1−xMxCo1−yNyO3 with different
doping amount were prepared by the sol-gel method [20,21], the prepared catalyst samples
were characterized by means of XRD, FT-IR, SEM, BET, and XPS analysis. Meanwhile,
by related simulation experiments and H2 temperature-programmed reduction (H2-TPR)
experiments, the influence factors of the four-way purification efficiency were analyzed
from the perspective of purification mechanism.

2. Materials and Methods
2.1. Sample Preparation

Perovskite-type catalyst samples with formula of La1−xMxCo1−yNyO3 (M = Ce, Ca;
N = Fe, Mn; x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6; y = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were prepared
by sol-gel method. La(NO3)3·6H2O, Co(NO3)2·6H2O, Ce(NO3)3·6H2O, Ca(NO3)2·6H2O,
Mn(NO3)2·4H2O, Fe(NO3)3·9H2O, citrate acid, and deionized water were purchased from
Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China. All the chemicals are
analytical grade. Suitable amounts of chemicals based on stoichiometry were dissolved in
deionized water to get a sol and the obtained solution was stirred vigorously using magnetic
stirrer (JXX1-85-2, stirring speed 100–2000 r/min, Changzhou, China). The solution was
heated on a water-bath pot (HH-1, control temperature 25–100 ◦C, accuracy ± 1.5 ◦C,
Tsingtao, China); when the temperature of the solution was raised to 70 ◦C, a suitable
amount of citric acid (the molar ratio of citric acid to metal ions is 1.2–1.5) was added and
temperature was justified at 80 ◦C to evaporate to dryness with vigorous stirring. During
the dehydration process, a poly condensation reaction carried out between nitrate ions
and citric acid leading to formation of gel, the obtained wet gel was placed in a constant
temperature drying box (WGL-125B, control temperature 25–300 ◦C, Tianjin, China) at
110 ◦C for 10 h to form a fluffy solid. The obtained bulk solid was placed in a Tube furnace
(TL1200 Mini, Rated temperature 1100 ◦C, Guangzhou, China) calcined at 700 ◦C for 5 h
and was cooled slowly to room temperature. Finally, the powders were finely ground to
obtain the La1−xMxNyCo1−yO3 perovskite-type catalyst samples. The preparation process
route of the catalyst samples is shown in Figure 1.
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2.2. Characterization

The phase structure state, and ionic valence state of the catalyst crystal have a sig-
nificant impact on the catalytic performance of the catalyst samples [22,23]. The phase
composition of catalyst samples was characterized by an X-ray diffractometer (XRD; XRD-
6100; Shimadzu, Japan) with monochromator in the continuous mode in the range 2θ =
20~80◦, using Cu Kα radiation, with a scanning rate of 8◦·min−1 and time per step of 0.5 s.
The fourier transform infrared spectrometer (FTIR; Spectrum 400; PerkinElmer, Waltham,
MA, USA) as utilized to characterize the chemical composition of catalyst samples, using
diffuse reflection method to test the samples that were prepared by mixing crushed catalyst
samples and KBr with a mass ratio about 1:100. The number of scans was 80 and the reso-
lution was set to 4 cm−1. The Scanning Electron Microscope (SEM; Quanta 200; FEI, Valley
City, ND, USA) utilized to characterize the microscopic morphology of catalyst samples.
The samples were mounted on the aluminum holder with conductive adhesive and then
sputtered with gold. Then the microscopic morphology of the samples was observed under
the acceleration voltage of 13 kV. The N2 adsorption isotherms and pore size distribution
(PSD) curves of perovskite-type catalyst samples were measured by Automatic Surface
Area and Porosity Analyzer (ASAP 2020). XPS analysis was performed on an Amicus
spectrometer equipped with Mg Kα X-ray radiation.

2.3. Experimental System and Methods

A simulation test bench for activity tests of catalyst samples is shown in Figure 2.
The simulated exhaust gas can be provided by the gas cylinder group 2 (O2, N2, C2H4,
CO, and NO) and mixed by the gas mixing chamber 14. The tube furnace 10 was used to
control the temperature of the mixed gas and the water-bath pot 6 can maintain the exhaust
temperature in the Quartz tube 7. According to reference [24], the exhaust gas temperature
of diesel engine is allowed to vary from 550 ◦C to 650 ◦C. Therefore, the simulated exhaust
gas temperature can be maintained at 600 ◦C by adjusting the tube furnace. The cordierite
was used to support PM and catalyst samples, the mass of supported PM and catalyst
samples was 18 mg, the mass ratio of PM to catalyst samples was 1:1, the supporting
process of PM and catalyst samples is shown in Figure 3. The moderate PM and catalyst
samples were set in the circulating blower, which was sealed before the supporting process.
When the circulating blower started, the porous structure of cordierite can capture all of the
powder PM and catalyst samples. The cordierite supported with PM and catalyst samples
was placed inside the quartz tube 7, the length of quartz tube is 200 mm, which is twice that
of cordierite, and their diameter is 80 mm, the gas analyzer (Horida Ltd., MEXA-4000FT,
relative error 1.7%, Kyoto, Japan) was used to detect the concentration of gas generated
after purification, the electronic balance (PWN224ZH, repeatability deviation 0.01 mg,
Shanghai, China) was used to measure the mass of cordierite before and after purification.
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Figure 2. The overall structure of the simulation test bench. 1. Pressure-reducing valve. 2. Gas cylinder
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Figure 3. The supporting process of PM and catalyst samples.

All the experiments were carried out under the condition of room temperature and
shading. The simulated gas was prepared by mixing O2, N2, C2H4, CO. and NO, and the
gas ratio concentration was strictly controlled by the throttle valve and the flowmeter (DMF-
1-S6, accuracy ± 1%), the gas flow rate of O2, N2, C2H4, CO, and NO can be controlled to
10 mL/min, 89.81 mL/min, 0.3 mL/min, 0.8 mL/min, and 0.8 mL/min separately. And
the total flow rate was set to 10 mL/min, the concentration of simulated exhaust gas was
shown in Table 1 [25,26]. The space velocity was 8.5× 104 h−1. When the experiment
starts, the simulation test bench works stably for 10 min, according to the experimental
requirements firstly. Then, experimental results were recorded and the test flow chart is
shown in Figure 4. The conversion of CO, HC, NOx, and PM were calculated as follows:

ηCO =
Cin

CO − Cout
CO

Cin
CO

(1)

ηHC =
Cin

HC − Cout
HC

Cin
HC

(2)

ηNOx =
Cin

NOx − Cout
NOx

Cin
NOx

(3)

ηPM =
MB

PM −MA
PM

MBPM
(4)

where ηCO is the purification efficiency of CO; Cin
CO and Cout

CO are concentration of before
and after the experiment, ppm; ηHC is the purification efficiency of HC; Cin

HC and Cout
HC

are concentration of before and after the experiment, ppm; ηNOx is the purification efficiency
of NOx; Cin

NOx and Cout
NOx are concentration of before and after the experiment, ppm;

ηPM is the purification efficiency of PM; MB
PM and MA

PM are the mass of the filter before
and after the experiment, mg.

Table 1. Concentration of simulated exhaust gas pollutants.

Gas Composition Concentration

O2 10%
C2H4 300 ppm
CO 800 ppm
NO 800 ppm
N2 dilution gas
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3. Results and Discussion
3.1. Results of Characterization on Catalyst Samples Doping at A Site

X-ray diffraction patterns of catalyst samples La1−xMxCoO3 (M = Ce, Ca; x = 0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6) are shown in Figure 5. As can be observed from Figure 5a, per-
ovskite diffraction patterns were observed for LaCoO3, La0.9Ce0.1CoO3, La0.8Ce0.2CoO3,
and La0.7Ce0.3CoO3. These samples have characteristic diffraction peaks of LaCoO3 near
2θ = 23.3◦, 33.0◦, 42.4◦, and 47.0◦, and they all correspond to the perovskite-type cubic crys-
tallized (PDF# 97-002-8921). There are CeO2 (PDF# 97-002-8709), Co3O4 (PDF# 00-009-0418)
impurity phases in the samples. Therefore, when Ce-content > 0.3, the XRD characteristic
diffraction peaks of LaCoO3 near 2θ = 33.0◦ was extraordinarily inconspicuous. According
to reference [27], the effective ionic radius of lanthanum ions and cerium ions are 1.10 Å
and 0.87 Å, respectively, therefore, excessive cerium ions and cobalt ions cannot be com-
pletely dissolved in the LaCoO3 lattice. As can be observed from Figure 5b, perovskite
diffraction patterns were observed for La0.9Ca0.1CoO3, La0.8Ca0.2CoO3, La0.7Ca0.3CoO3,
La0.6Ca0.4CoO3, La0.5Ca0.5CoO3, and La0.4Ca0.6CoO3. All samples have characteristic
diffraction peaks of LaCoO3, and they all correspond to the perovskite-type cubic crys-
tallized (PDF# 97-002-8921). The effective ionic radius of calcium ions is 1.06 Å, which is
close to the ion radius of lanthanum ions, therefore, there are only small amounts of CaCO3
(PDF# 97-002-8827) and Co3O4 (PDF# 00-009-0418) in the impurity phase in the crystal sam-
ples. Through the above analysis, it can be concluded that the structure of La0.8Ce0.2CoO3
and La0.8Ca0.2CoO3 perovskite-type catalyst samples reaches the best catalyst conditions.
As can be observed from Figure 5a,b, the characteristic diffraction peaks of LaCoO3 doping
with cerium ions and calcium ions near 2θ = 23.3◦ moved left slightly. This information
would confirm the accommodation of these compounds within the perovskite lattice.
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catalyst samples.

Figure 6 shows the FT-IR spectra of La0.8Ce0.2CoO3 and La0.8Ca0.2CoO3 catalyst sam-
ples. As can be observed from Figure 6, there are several vibration bands at 424, 500, 596,
668, 712, 875, 1415, 1460, and 1628 cm−1. FT-IR peaks located below 1000 cm−1 has been re-
ported to represent metal oxides [28]. The vibration band at 424 cm−1 and 596 cm−1 belongs
to the bending vibration of Co–O bonding in the BO6 octahedron, and the vibration band at
500 and 669 cm−1 belongs to the bending vibration of Co–O and Ce–O bonding, which are
attributed to Co3O4 and CeO2 [29,30]. The absorption peaks of 875 and 712 cm−1 belong to
the calcite crystals, which are related to the bending vibration of C–O bond. The absorption
peaks appeared at 1415, 1460, and 1628 cm−1 of catalyst samples, representing the bending
mode of C–H. Compared to FTIR spectra of La0.8Ca0.2CoO3 and La0.8Ce0.2CoO3 catalyst
samples, in the FTIR spectra of La0.8Ce0.2CoO3, the band at 596 cm−1 becomes broad and
up-shifting, suggesting that some amounts of Co3+ changed to Co2+ when some La3+ was
replaced by Ce3+ and Ce4+. However, there is no change in the valence state of Ca2+, so
there is no other absorption spectrum in the FTIR spectra of La0.8Ca0.2CoO3. After the FTIR
analysis, it can be confirmed that some impurities like carbonate group and hydroxyl group
presented in samples.
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3.2. Results of Simulation Experiments on Catalyst Samples Doping at A Site

MATLAB software was used to fit the experimental data. Figure 7a–d show the time
curve of the purification efficiency of NOx, PM, HC, and CO when the A site was doped
with different concentrations of cerium ions. As can be observed from Figure 7, when the
purification time does not exceed 90 s, the purification efficiency increases with time. At



Materials 2022, 15, 4149 8 of 18

this time, the catalyst samples are in the heating stage and do not exert the best catalytic
performance. When the time exceeds 90 s, the purification efficiency reaches the highest.
When the purification time exceeds 120 s, the purification efficiencies of NOx and PM show
an obvious downward trend, which can be attributed to the decrease of PM load with
purification time increases, decreasing the NOx and PM redox reaction rate. When the
doping amount does not exceed 0.2, the purification efficiencies of NOx, PM, HC, and CO
improve with the increase of the doping amount. When x = 0.2, the purification efficiency
can reach the highest, which can reach 85%, 90%, 94%, and 100%, respectively. When
x > 0.3, excessive cerium ions were not doped in perovskite-type oxide, too much impurity
phase was introduced into the catalyst samples. These impurities have poor purification
efficiency on NOx, PM, HC, and CO, which are consistent with the results of XRD.
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Figure 8a–d show the time curve of the purification efficiency of NOx, PM, HC, and
CO when the A site was doped with different concentrations of calcium ions. Upon
comparison of perovskite-type catalyst samples doped with calcium ions and cerium ions,
the purification trend and efficiency of PM, HC, and CO are basically the same. However,
the doping of calcium ions shows a lower efficiency in purifying NOx, and the highest
purification efficiency is 72%, which can be attributed to the factor that the valence state
of the doped calcium ions has not changed, and the Co3+ in the catalyst samples change
to Co4+, but not to Co2+. The existence of Co2+ is more conducive to the formation of O
vacancies and adsorbed NO, which is beneficial to the reduction of NO, and the change
of ions valence state promotes the adsorption and desorption of O. In addition, When
A-site of LaCoO3 perovskite was doped with cerium ions, the catalyst crystal produces
small distortion and enhances the purification efficiency of PM, NOx, CO, and HC, which
is consistent with the research content reported in the literature [3–31]. According to
the literature [32–36] on the mechanism analysis of purifying the exhaust pollutants by
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perovskite-type catalysts, combined with the experiment results of this study, the overall
purification and purification process is inferred as Formulas (5)–(19).

NO↔ NOads (5)

CO↔ COads (6)

2Nads ↔ N2 (7)

O2 ↔ 2Oads (8)

C2H4 ↔ C2H3ads + Hads (9)

NOads → Nads + Oads (10)

COads + Oads → CO2 (11)

PM + Oads → CO2 + CO (12)

NOads + Oads → NO2 (13)

PM + NO2ads → CO + CO2 + N2 (14)

COads+NO2ads → CO2 + N2 (15)

C2H3ads+NO2ads → CO2 + N2 + H2O (16)

Hads+NO2ads → N2 + H2O (17)

Hads+NOads → N2 + H2O (18)

C2H3ads+NOads → CO2 + N2 + H2O (19)
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The deconvolution of O 1 s signals was conducted in order to estimate the species in
detail. As shown in Figure 9, The O 1 s spectrum for La0.8Ca0.2CoO3 and La0.8Ce0.2CoO3
could be decomposed into two components. The peak at about 529.1 eV was ascribed
to the lattice oxygen species (Olatt). Another component at 531.2 eV was assigned to
adsorbed oxygen species (Oads) [37], which has been reported as active species in oxidation
reactions due to the electrophilic nature [38]. Since the surface Oads/Olatt molar ratio of
the La0.8Ce0.2CoO3 sample (0.78) was higher than that of the La0.8Ca0.2CoO3 sample (0.62).
Therefore, the La0.8Ce0.2CoO3 sample showed the better purification efficiency in NO,
which are consistent with the reaction pathway reported in Equations (5)–(19).
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Figure 9. X-ray photoelectron of the O 1 s for La0.8Ca0.2CoO3 and La0.8Ce0.2CoO3.

The SEM micrographs clearly show large differences in the micro-structure and morphol-
ogy of La0.8Ce0.2CoO3 and La0.8Ca0.2CoO3 perovskite-type catalyst samples from Figure 10a,b,
La0.8Ce0.2CoO3 perovskite-type catalyst samples represent porous morphologies, La0.8Ca0.2CoO3
perovskite-type catalyst samples represent spongy morphologies. Both samples are uniformly
dispersed without sintering. The porous structure of La0.8Ce0.2CoO3 perovskite-type catalyst
samples are clearer than La0.8Ca0.2CoO3, the pore size of which ranging from 3 µm to 5 µm.
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3.3. Results of Characterization on Catalyst Samples Doping at B Site

On the basis of the above research results, the A-site doping amount of cerium ions
was selected, and the doping amount was 0.2. The B-site doping of manganese and iron
ions on the catalytic performance of the La-based perovskite-type catalyst should be further
studied. According to reference [27], the effective ionic radius of iron ions, cobalt ions and
manganese ions are 0.645 Å, 0.61 Å, and 0.645 Å, respectively, which meet the 15% rule.
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Therefore, La0.8Ce0.2Co1−yNyO3 (N = Fe, Mn; y = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) can form
continuous series of solid solutions.

X-ray diffraction patterns of catalyst samples La0.8Ce0.2Co1−yNyO3 (N = Fe, Mn; y = 0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6) are shown in Figure 11. As can be observed from Figure 11a, per-
ovskite diffraction patterns can be observed for La0.8Ce0.2Co0.9Fe0.1O3, La0.8Ce0.2Co0.8Fe0.2O3,
La0.8Ce0.2Co0.7Fe0.3O3, La0.8Ce0.2Co0.6Fe0.4O3, La0.8Ce0.2Co0.5Fe0.5O3, and La0.8Ce0.2Co0.4Fe0.6O3.
All samples have characteristic diffraction peaks of LaCoO3 near 2θ = 23.3◦, 33.0◦, 42.4◦,
and 47.0◦, they all correspond to the perovskite-type cubic crystallized (PDF# 97-002-8921).
There are CeO2 (PDF# 97-002-8709), FeO (PDF# 97-008-2236), and Fe3O4 (PDF# 00-026-1136),
as well as a small amount of Co3O4 (PDF# 00-009-0418) impurity phases in the crystal
samples. However, the doping of iron ions enhances the solubility of cerium ions in the
crystal lattice. As can be observed from Figure 11b, perovskite diffraction patterns can
be observed for La0.8Ce0.2Co0.9Mn0.1O3, La0.8Ce0.2Co0.8Mn0.2O3, La0.8Ce0.2Co0.7Mn0.3O3,
and La0.8Ce0.2Co0.6Mn0.4O3, they all correspond to the perovskite-type cubic crystallized.
There are amount of MnO2 (PDF# 00-053-0633), CeO2 (PDF# 97-002-8709), and Co3O4
(PDF# 00-009-0418) impurity phases in the crystal samples. LaCoO3 perovskite seems to
accept a higher cobalt ions substitution degree by iron ions than manganese ions, without
destabilizing the perovskite structure. In fact, the continuous series of solid solutions
of atoms in perovskite crystals has not been realized. This may be due to the fact that
cerium atoms cannot achieve continuous series of solid solutions in perovskite crystals.
Through the above analysis, it can be concluded that the structure of La0.8Ce0.2Co0.7Fe0.3O3
and La0.8Ce0.2Co0.7Mn0.3O3 perovskite-type catalyst samples reaches the best catalyst con-
ditions. As can be observed from Figure 11a,b, the characteristic diffraction peaks of
La0.8Ce0.2CoO3 doping with cerium ions and calcium ions near 2θ = 33◦ moved right
slightly. This information would confirm the accommodation of these compounds within
the perovskite lattice.
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Ce0.2Co1−yMnyO3 catalyst samples.

Figure 12 shows the FT-IR spectra of La0.8Ce0.2Co0.7Fe0.3O3 and La0.8Ce0.2Co0.7Mn0.3O3
catalyst samples. As can be observed from Figure 12, there are several vibration bands at
424, 470, 500, 530, 543, 550, 561, 562, 596, 668, 1460, and 1628 cm−1 for La0.8Ce0.2Co0.7Fe0.3O3
and La0.8Ce0.2Co0.7Mn0.3O3 catalyst samples. The vibration band at 470 and 550 cm−1 be-
longs to the bending vibration of Fe–O bonding in the BO6 octahedron, and the peak at
561 cm−1 is attributed to asymmetrical modes of the Mn–O bond of MnO6 octahedrons
groups of LaMnO3 perovskite. The vibration band at 543 and 560 cm–1 belongs to the bend-
ing vibration of Fe–O bonding in the FeO and Fe3O4 crystals, respectively. The vibration
band at 530 cm–1 belongs to the bending vibration of Mn–O bonding in the MnO2 crys-
tals [39,40]. Several vibration band of some impurities like carbonate group and hydroxyl
group also can be observed from Figure 12, which would not be analysed in this paper.
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Figure 12. FTIR spectra of La0.8Ce0.2Fe0.3Co0.7O3 and La0.8Ce0.2Mn0.3Co0.7O3 catalyst samples.

3.4. Results of Simulation Experiments on Catalyst Samples Doping at B Site

Figure 13a–d shows the fitting curves of the purification efficiencies of NOx, PM,
HC, and CO over time when the B site was doped with different concentrations of iron
ions. As can be observed from Figure 13, when the purification time does not exceed
90 s, the purification efficiency increases with time. When the time exceeds 90 s, the
purification efficiency reaches the highest. When the purification time exceeds 180 s, the
purification efficiency of NOx and PM shows an obvious downward trend. When y =
0.3, the purification efficiency can reach the highest. Compared with La0.8Ce0.2CoO3, the
highest purification efficiency for PM and NOx is increased by 5% and 7%, respectively,
while the purification efficiency for HC and CO is hardly improved.
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Figure 14a–d shows the time curve of the purification efficiency of NOx, PM, HC, and
CO when the B site is doped with different concentrations of manganese ions. Comparison
of perovskite-type catalysts doped with iron ions and manganese ions, the purification
trend of NOx, PM, HC, and CO are basically the same. Compared with La0.8Ce0.2CoO3,
when y = 0.3, the highest purification efficiency for PM and NOx is increased by 6% and 2%,
which can be speculated that the doping of manganese ions at the B site is more conducive
to the oxidation reaction, and the doping of iron ions at the B site is more conducive to the
reduction reaction.
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Figure 14. Purification efficiency curve of catalyst when B site was doped with manganese ions:
(a) NOx; (b) PM; (c) CO; and (d) HC.

The H2-TPR experiments were conducted on a TPDRO instrument (TP-5080, Xianquan,
Tianjin, China) using a thermal conductivity detector (TCD). H2-TPR techniques were used
to measure the reducibility of La0.8Ce0.2Co0.7Fe0.3O3 and La0.8Ce0.2Co0.7Mn0.3O3 catalyst
samples. The corresponding H2-TPR profiles are presented in Figure 15. Both of the samples
exhibit two major reduction peaks, the first reduction peak of La0.8Ce0.2Co0.7Fe0.3O3 at
340 ◦C can be attributed to the reduction of Fe4+ to Fe3+ and consumption of adsorbed
oxygen [41]. The first reduction peak of La0.8Ce0.2Co0.7Mn0.3O3 at 339 ◦C can be attributed
to the reduction of Mn4+ to Mn3+ consumption of adsorbed oxygen [42]. The second
reduction peak of La0.8Ce0.2Co0.7Fe0.3O3 appears at 551 ◦C, which can be ascribed to the
reduction of Fe3+ to Fe2+ and consumption of lattice oxygen [43]. The second reduction
peak of La0.8Ce0.2Co0.7Mn0.3O3 appears at 762 ◦C, which can be ascribed to the reduction
of Mn3+ to Mn2+ and consumption of lattice oxygen [44]. Through the analysis above, it
can be concluded that the redox properties and the oxygen mobility of the catalysts are
important influencing factors in purification efficiency of NOx, PM, HC, and CO.
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Figure 15. H2-TPR profiles of La0.8Ce0.2Co0.7Fe0.3O3 and La0.8Ce0.2Co0.7Mn0.3O3.

The SEM micrographs of La0.8Ce0.2Co0.7Fe0.3O3 and La0.8Ce0.2Co0.7Mn0.3O3 perovskite-
type catalyst crystal samples are shown in Figure 16a,b, La0.8Ce0.2Co0.7Fe0.3O3 perovskite-
type catalyst samples are more uniformly dispersed, and La0.8Ce0.2Co0.7Mn0.3O3 perovskite-
type catalyst samples are partially reunited. Both of the perovskite-type catalyst samples
exist porous structure. The macropore with diameter ranging from 3 µm to 5 µm in
perovskite-type catalyst samples. Perovskite-type catalyst crystal samples can contact the
PM and hazardous gas sufficiently emitted from engine owing to their high specific surface
area and porosity [45]. La0.8Ce0.2Co0.7Fe0.3O3 perovskite-type catalyst samples were more
conducive to the application in the field of automobile exhaust purification.
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Figure 16. SEM of catalyst samples: (a) La0.8Ce0.2Co0.7Fe0.3O3; and (b) La0.8Ce0.2Co0.7Mn0.3O3.

Figure 17a,b show N2 adsorption isotherms and pore size distribution (PSD) curves
of LaCoO3, La0.8Ce0.2Fe0.3Co0.7O3, and La0.8Ce0.2Co0.7Mn0.3O3 perovskite-type catalyst
samples separately. Based on the International Union of Pure and Applied Chemistry clas-
sification (IUPAC), the isotherms curves in Figure 17a reveals an H3 hysteresis loop related
to mesoporous or macroporous materials. It can be seen that the order of specific surface
area is LaCoO3, La0.8Ce0.2Fe0.3Co0.7O3, and La0.8Ce0.2Co0.7Mn0.3O3. Significant increase in
nitrogen adsorption at high relative pressure (0.9 < P/P0 < 1) and the PSD curves illustrate
the extensive existence of the mesopores and macropore, which are well consistent with the
analysis of SEM. Figure 17b reveals that La0.8Ce0.2Fe0.3Co0.7O3 perovskite -type catalyst
sample has the largest pore volume of mesopores (mainly concentrated in 50 nm). The de-
tailed textural parameters of catalyst samples are listed in Table 2. It is widely accepted that
the impurities formation as a consequence of the limited accommodation of A and B cations
leads to a progressive decrease of specific surface area [46]. Based on the above analysis, it
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can be further inferred that the impurity content of La0.8Ce0.2Co0.7Fe0.3O3 perovskite-type
catalyst crystal samples is less than that of La0.8Ce0.2Co0.7Mn0.3O3 perovskite-type catalyst
crystal samples, which are consistent with the results of XRD and FT-IR.
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Table 2. The Textural parameters of catalyst samples.

Samples BET Surface Area (m2/g) Average Pore Diameter (nm)

LaCoO3 8.19 26.75
La0.8Ce0.2Fe0.3Co0.7O3 6.38 34.50
La0.8Ce0.2Co0.7Mn0.3O3 3.63 39.64

Based on the above analysis, the purification data for the best samples (x = 0.2; y = 0;
0.3) are shown in Table 3. It can be seen that appropriate doping of A and B sites is effective
for the four-way purification efficiency. Combined with the analysis results of t SEM and
BET, La0.8Ce0.2Co0.7Fe0.3O3 perovskite-type catalyst samples can be further proved to be
the optimal doping concentration.

Table 3. The purification data for the best samples (x = 0.2; y = 0; 0.3).

Doping Amount

Purification Data (%)
NOx PM HC CO

M = Ce; x = 0.2; y = 0 85 90 94 100
M = Ca; x = 0.2; y = 0 72 90 94 100

M = Ce; N = Mn; x = 0.2; y = 0.3 87 96 94 100
M = Ce; N = Fe; x = 0.2; y = 0.3 92 95 94 100

4. Conclusions

Several perovskite-type catalyst samples were developed for the four-way purification
of diesel engine exhaust by doping A and B Sites in perovskite LaCoO3. The prepared
perovskite-type catalyst samples were characterized by XRD, SEM, FT-IR, and BET analysis,
and their activity were tested by simulation experiments. The following conclusions
were reached:

1. The porous perovskite structures can be observed from prepared perovskite-type
catalyst samples. When the A-site and B-site doping amount of LaCoO3 exceeds a
certain value, more impurity phases will be produced;

2. Macropores of 3 µm to 5 µm are presented in La0.8Ce0.2Fe0.3Co0.7O3 and La0.8Ce0.2Co0.7
Mn0.3O3 perovskite-type catalyst samples, and La0.8Ce0.2Fe0.3Co0.7O3 has the largest
pore volume of mesopores (mainly concentrated in 50 nm);
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3. Doping the A site of LaCoO3 perovskite-type oxide can change the valence state of the
B site ions to a certain extent, which is conducive to the occurrence of redox reactions;

4. On the basis of cerium ions doping the A site of LaCoO3 perovskite-type oxide, the
doping of manganese ions at the B site can further improve the purification ability on
PM. However, the doping of iron ions at the B site can enhance the purification ability
on PM and NOx; and

5. La0.8Ce0.2Co0.7Fe0.3O3 shows the best purification ability and the least impurity phase
in the samples, the purification efficiency of PM, NOx, HC, and CO are 95%, 92%,
94%, and 100%, respectively.
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