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Abstract: To study the effect of wood creep on the long-term performance of prestressed glulam
continuous beams, a 180-day test was carried out on beams configured with different numbers
of steel wires (2, 4, 6) and with different prestress values (0, 7, 14 kN). By investigating the stress
loss of the steel wires in the beam and the change in the mid-span deflection over time, the factors
influencing the creep of the continuous beam were analyzed. Three models were selected to fit the
creep process of the test beams. Moreover, the creep deformation coefficient θ was introduced to
reflect the influence of glulam creep on the deflection change in the test beams and to predict the total
deflection of the beam within 50 years. The results showed that with increasing the number of steel
wires and the prestress value on the beams, the total stress of the steel wires declined more and faster.
Increasing the number of steel wires or decreasing the prestress force value could effectively restrain
the change speed of the mid-span long-term deflection of the beam. Three models were compared,
and the power-law equation was the most accurate. At familiar steel wire quantities and force levels,
the θ value of the test beams within the design service life of 50 years was determined to be 1.28–2.29.

Keywords: glulam continuous beam; long-term; creep; deformation coefficient; prestress

1. Introduction

Timber structure has a long history and is an important element of traditional archi-
tectural culture. Various structural systems represented by light-frame timber structures,
glued laminated timber structures, and hybrid timber structures have been formed world-
wide. In addition, with the signing of the “Paris Agreement” and the policy of “emission
peak and carbon neutrality” advocated by China, the research and technology of modern
timber structures have gradually expanded. Timber structure has a series of advantages
such as green qualities, low energy consumption, livability, and superior seismic properties,
and there is a newly developed opportunity in timber-structured buildings [1–4]. Glulam is
a main timber structural material, and its cross-sectional dimensions can be freely specified.
Furthermore, glulam has fewer defects and higher available strength and stiffness com-
pared to logs. However, although glulam is widely used, it also has some weaknesses. First,
because of the limitations of raw material size and processing technology, the traditional
glulam beams generally cannot meet the length requirements for continuous beams or
long-span members. Second, most of the simply supported beams suffer brittle tensile
failure and larger deformation in the bending state. Therefore, the compressive strength is
not fully utilized [5–8], and deformation is controlled by section size. Third, the traditional
glulam joint connection needs grooving and drilling, and the secondary processing will
damage the wood at the joints. Therefore, the location of the joint connection is easily
cracked along the damaged area under the action of force, the capacity to transfer bending
moment is weak, and the joint stiffness is insufficient.
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Based on the above problems, our research group proposed the concept of the non-
damaged splint-type prestressed glulam continuous beam joint and then developed the
joint connection device [9]. According to this connection device, a type of novel composite
prestressed glulam continuous beam was proposed. When the continuous beam was bent,
the prestressed steel wires were in tension and the glulam was in compression. It incurred
ductile failure, like the prestressed glulam simply supported beam. The advantage was that
not only was the stiffness of the joint improved through the connection device and prestress
and the semi-rigid connection realized, but also the bending moment distribution was
changed, to make further full use of the materials and reduce deformation. The research
group carried out related research and tested the short-term flexural performance of contin-
uous beams in the early stage [10–12]. The creep characteristic of timber is the key factor
affecting the long-term mechanical performance of glulam continuous beams, and because
of the application of prestressing, the force of the beam is more complicated. Therefore, it is
important to investigate the long-term mechanical performance of the prestressed glulam
continuous beam and to promote the development of this composite member.

At present, the scholarly research in related fields has mainly focused on the reinforce-
ment of timber members, timber connection, and long-term mechanical performance of
timber structures. The timber members are reinforced mainly by adding steel bars, steel
plates, and fiber-reinforced materials. In addition, because of the impact on building con-
struction, strength, ductility, and the ability to increase structural performance in service,
timber connections have been studied widely [13–16]. Eurocode 5 part 1-1 [17] provides
simplified equations for calculating the load-carrying capacity of a single-shear and double-
shear plane in different connection types, and double-shear timber connections with steel
fasteners have been used in heavy wood structures [18]. Fonseca et al. [19] presented
methodologies to evaluate the safe design of three types of timber connections in double
shear, which was proposed by Eurocode 5, part 1-1, and analyzed the influence of the design
parameters. Creep is an important characteristic of wood, so it is of great significance to
study its deformation development law. Scholars have discussed the mechanisms of inter-
nal and external influences on wood creep from factors such as load size, temperature and
humidity, tree species, repeated load, and load type. G. Hunt et al. [20] summarized a set of
methods for predicting long-term creep of timber through short-term creep test data, which
has been widely considered and applied. Yazdani et al. [21] conducted a full-scale model
test on 16 T-section glulam simply supported beams, and obtained parameters closely
related to the Burger creep model. Guo et al. [22,23] carried out long-term loading tests
and short-term flexural tests on pure glulam beams, internally reinforced glulam beams,
and internally reinforced prestressed glulam beams, and systematically analyzed the in-
fluence of factors such as loading level, reinforcement rate, and prestress value. In-depth
research and discussion have been carried out on glulam simply supported beams with
different cross-section and reinforcement forms, and the creep basic theory. It has provided
a reference for this study in terms of long-term test methods and considerations, but a
reinforcement method for external prestressed steel wires and the long-term performance
research on continuous beams are still lacking, which indicates the necessity of carrying
out long-term tests on prestressed glulam continuous beams.

In this paper, a total of 10 prestressed glulam continuous beams were subjected to a
180-day long-term loading test. By comparing the changes in steel wire stress and mid-span
long-term deflection over time under the influence of creep, the effects of the number of
prestressed steel wires and the prestress level on the long-term mechanical performance
of prestressed glulam continuous beams were studied. Three models were selected to fit
the creep process of the test beams. The creep deformation coefficient that reflected the
long-term deflection growth of the test beams was determined, which lay the foundation
for establishing the long-term deflection calculation formula for the prestressed glulam
continuous beam.
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2. Materials and Methods
2.1. Materials and Specimens

The same batch of spruce materials was used to produce the prestressed glulam
continuous beams and the small clear specimens. 1860-grade, 7 mm diameter low-relaxation
prestressed steel wires were recommended for all wire. Based on Chinese standards
GB/T50329-2012 [24], GB/T1938-2009 [25], and GB/T228.1-2010 [26], material properties
experiments were conducted at the laboratory of Northeast Forestry University. The
relevant mechanical properties of each material as shown in Table 1.

Table 1. Material properties.

Material Characteristics Average (N/mm2) COV (%)

Spruce

Modulus of elasticity in compression 8.301 × 103 4.630
Compression strength parallel to grain 38.67 6.151

Modulus of elasticity in tensile 9.750 × 103 6.42
Tensile strength parallel to grain 81.32 6.184

Steel wire
Modulus of elasticity 1.92 × 105 1.710

Tensile strength 1.640 × 103 0.354

The prestressed glulam continuous beam was composed of glulam, high-strength
steel wires, and steel components, as shown in Figure 1. The steel components included
connection apparatuses, prestressed control devices, steel plates, and anchors. Five
pieces of 20 mm-thick spruce sheets bonded together to form glulam with dimensions of
3080 mm × 80 mm × 100 mm (length × width × height). Therefore, the size of the prestressed
glulam continuous beam was 6160 mm × 80 mm × 100 mm (Length × width × height). All
the specimens were designed by the Chinese standard GB50005-2017 [27] and Canadian
standard CSA O86-14 [28].
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Figure 1. Diagrams of prestressed glulam continuous beam: (a) steel plate and anchor, (b) prestressed
control device, (c) connection apparatus, (d) details of specimen, (e) photo of the connection apparatus,
and (f) photo of the steel plate and anchor.

To study the effect of the number of steel wires and prestress level on the long-term
performance of prestressed glulam continuous beams, the test beams were divided into two
groups, A and B. Group A was used to research the effect of the number of steel wires, the
first number represents the different number of steel wires, the second number indicates
that there are two test beams under the same condition. Group B was used to research the
effect of prestress level; the first number represents the different prestress values, and the
second number indicates that there are two test beams under the same conditions. More
grouping details are shown in Table 2. It is worth noting that the prestress was realized by
turning the nut counterclockwise caused the screw to rotate, as shown in Figure 1b. The
deviation block moved downward, and thus, the reinforcements were stretched, and the
prestress was applied to glulam beams. By adjusting the distance from the deviation block
to the bottom of the beam, the value of prestressing can be controlled.

Table 2. Groups and information of specimens.

Group Number of the
Component

Prestress
Value (kN)

The Number
of Steel Wire

Long-Term Loading
Value (kN)

Loading
Time (day)

A

LA1-1 7 2 8.24

180

LA1-2 7 2 8.92
LA2-1 * 7 4 9.24
LA2-2 * 7 4 9.24
LA3-1 7 6 10.06
LA3-2 7 6 9.55

B

LB1-1 0 4 8.24

180

LB1-2 0 4 8.92
LB2-1 * 7 4 9.24
LB2-2 * 7 4 9.24
LB3-1 14 4 10.06
LB3-2 14 4 9.55

Note: “*” indicates that LA2-1 and LB2-1 in the table are the same beams, but they are in different groups, so
different subscript characters are labeled. LA2-2 and LB2-2 are the same situation.
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2.2. Long-Term Test
2.2.1. Loading Device and Method

A long-term loading test device was designed by our research team, the plane layout
and object pictures of the device are shown in Figures 2 and 3. The device was composed
of three identical parts, and each part includes four steel columns, two I-type steel beams,
and one II-type steel beam. The steel column and I-type steel beams are connected by
prefabricated bolt holes to form foundation support, and then the II-type steel beam is
placed on top of the two foundation supports. The device can be used to carry out long-term
tests on five beams at the same time, with high efficiency. The device has a large bearing
capacity and rigidity and has little influence on the test results. In addition to this, it also
can adjust the distance between two parts according to the length of the test beams, which
has good applicability.
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The test adopted the form of four-point bending for long-term loading. To ensure
the constant loading value during the loading period, the long-term load was applied
by hanging the corresponding weight in the midspan of the left and right spans of the
continuous beam, respectively. Two steel plates were placed on the upper surface of the
mid-span position of the left and right spans, and a small wooden block was placed on
each steel plate, which prevents local compression failure at the loading point. Single-span
loading is shown in Figure 4.
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2.2.2. Determine Long-Term Loads and Times

According to the Chinese standard GB50009-2012 [29] for the derivation process of
the design value of the bearing capacity of the flexural member and the relevant content of
the load effect combination. In terms of ultimate bearing capacity, the average value of the
ultimate bearing capacity of the beams (µR) was obtained based on the short-term bending
experiment data of prestressed glulam continuous beams conducted by the research group
in the early stage [12]. The standard value of the ultimate bearing capacity (Rk) under
certain reliability was obtained through the probability distribution, and then the design
value (R) was obtained through the resistance partial coefficient. In terms of load effects, the
load effects (Sd) of prestressed members under the serviceability limit state and the ultimate
limit state were calculated based on the ratio of dead load and live load effect of floor and
office buildings was 2:3. The serviceability limit state shall adopt the standard combination,
and the bearing capacity limit state shall adopt the basic combination. The process is shown
in Figure 5. It is calculated that the normal service load of the beam was 0.33 times its
ultimate bearing capacity. According to the tests performed by previous researchers, the
loading level range is generally 30–70% of the ultimate failure load [30], so the long-term
load value was determined to be 30% of the ultimate bearing capacity obtained from the
short-term loading test. By consulting Chinese standards [31] and referring to previous
experience [32–35], the long-term loading time of the beam was determined to be 180 days.
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2.2.3. Measurement Layout

Test measurements include beam mid-span displacement, glulam beam strain, and
steel wire strain. In order to monitor the change in beam mid-span deflection with time,
two LVDTs with a range of 150 mm were set in the midspan of the left and right spans. The
use range of the LVDT used in the test was between 20% and 80% of the total range, and the
LVDT connected to the line was calibrated and placed on the upper surface of the middle
span of the test beam through the magnetic seat fixed on the support. To measure the strain
of the glulam beams, five 100 mm × 3 mm strain gauges were pasted at equal intervals on
the mid-span sides of the left and right spans of the continuous beam, a strain gauge was
pasted at the beam top and bottom of the mid-span of the left and right spans, respectively.
To measure the strain of the steel wires, the 2 mm × 3 mm strain gauges were pasted to
the steel wire surfaces at a distance of 155 mm from the support points at both ends of the
beam, the steel wires were polished by an angle grinder in advance. The specific details are
shown in Figure 6.
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First, the beam was applied to prestress, and at the same time, JM3813 static strain
acquisition systems (Yangzhou Jing Ming Technology Co., Ltd., Yangzhou, China) were
applied to collect the strain and deflection measurements synchronously. The professional
Shield wire was used to connect JM3813 static strain acquisition box with LVDT and strain
gauge, and in order to make the collected data more accurate, glulam, steel wire and strain
acquisition box had connection compensation wire. Secondly, after the beam reached the
expected prestress value, the heavyweight was hung to supply the load. According to the
development law of the long-term deformation of the beam, the time interval between
two data collections gradually increases as the experiment continues. The method of man-
machine combination reading data was used, the details of the data collection arrangement
are shown in Table 3.

Table 3. Information on data collection interval.

Test Time Collection Time Interval Manual Data Collection
Time Interval

Days 1~4 0.25 h/time 0.25 h/time
Days 5~12 0.25 h/time 0.5 h/time
Day 13~20 0.5 h/time 1 h/time
Day 21~28 0.5 h/time 2 h/time
Day 29~56 1 h/time 4 h/time

Day 57~180 2 h/time 12 h/time

3. Test Results and Analysis
3.1. Change in Temperature and Relative Humidity

According to the previous research results [36], the external environment (temperature
and moisture content) can obviously affect the creep deformation of wood chipboard under
bending. With the increase in the temperature and relative humidity, the creep deformation
of wood would increase. In this study, the whole long-term loading process was carried
out under normal indoor environment in Harbin, and test beams were divided into two
batches and loaded in the same season. During this period, measures such as sprinkling
water in summer and heating in winter were taken, and the temperature and humidity
of each batch of the beams were regularly monitored so that the relative stability of the
indoor environment could be ensured, so the influence of the change in the temperature
and humidity on the analysis of the test results could be ignored.

3.2. Test Phenomenon

On the first day, the 60th day, the 120th day, and the 180th day of the long-term test,
the changes in the test beam were observed, as shown in Figure 7. Compared with the first
day of the experiment, cracks at the wood-knot position of the test beam expanded slightly
on the 60th day of the test and did not expand on the 120th and 180th days. Since the load
applied in the long-term test was equivalent to the normal service load of the beam, and
the force state of the beams under normal service condition were simulated, there were no
obvious damage phenomenon such as cracks and wrinkles, except that the deflection of the
test beam had obvious changes.
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3.3. Stress Variation Law of Prestressed Steel Wire

Based on the previous experiments, it has been shown that when the initial stress of
the prestressed steel wire was less than 0.5 times the value of the ultimate tensile strength
Ry, the influence of the relaxation of the steel wire could be ignored [37–42]. The maximum
initial prestress applied to the steel wire in this test was 0.3Ry (0.3Ry < 0.5Ry). Therefore,
the influence of the relaxation of the prestressed steel wires(0.3Ry) could be ignored, which
indicates the creep of the glulam results in the main stress loss of steel wires.

For the beams in groups A and B, the time-varying curve of the total stress of the steel
wire is shown in Figure 8. The total stress means the stress sum of all steel wires in a test
beam. The time process is from the initial loading to the end of loading. For the continuous
beams, the stress changes for left and right spans were plotted separately.

It is known from Figure 8 that for the beams in group A, when the prestress value was
unchanged and the number of prestressed steel wires was 2, 4, and 6, respectively, from
the beginning to the end of the loading, the total stress values of the steel wires decreased
by 60.39%, 66.49% and 69.61%, respectively. For the beams in group B, when the number
of prestressed steel wires was unchanged and the prestress values were 0, 7, and 14 kN,
respectively, from the beginning to the end of the loading, the total stress values of the
steel wires decreased by 61.60%, 66.53%, and 68.74%, respectively. It is worth noting that
the total stress values were the average values of the left span and the right span of the
same continuous beam. Due to the increase in the number of prestressed steel wires or the
prestress value, the external load on the continuous beam increased, then the section stress
of the glulam also increased, and the wood creep was more obvious, and the total stress of
the steel wires decreased more.
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In order to study the influences of the number of prestressed steel wires and the
prestress level on the change rate of the steel wire stress value, the initial stress of the steel
wire was set to 0, and the variation of steel wire stress value during the experiment was
defined as the relative stress value of the steel wire. The time-varying curve of the relative
stress of the steel wire is shown in Figure 9.

It can be seen from Figure 9 that for the magnitude of the relative stress change, LA2
is 1.71 times larger than LA1, and LA3 is 2.87 times larger than LA1; in addition, LB2 is
1.58 times larger than LB1, and LB3 is 2.94 times larger than LB1. The relative stress of the
left and right spans of continuous beams changes with time in the same law. This shows
that by increasing the number of prestressed steel wires and the applied prestress value,
the relative stress value increased, the total stress of the steel wires declined faster, and the
effect on the creep of glulam was more obvious.
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3.4. Variation Law of Beam Mid-Span Deflection

The typical creep curve is shown in Figure 10. It can be divided into three stages:
the first stage is the transient creep, which means that the wood is applied with a certain
load, and produces an instantaneous deformation. The deformation rate of this stage is
continuously reduced until it reaches a relatively stable state. The second stage is the
steady-state creep, the rate of deformation remains basically unchanged. That is, at the
same time, the deformations are approximately equal. This stage lasts the longest and is the
most typical during the entire creep development process. The third stage is the accelerated
creep, where the deformation rate increases suddenly until the material damages.
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During the long-term loading test, the total deflection of the continuous beam is
divided into three parts: the first part is the height of anti-arch f A of the beam when the
prestressing is applied, the second is the instantaneous deflection of the beam when the
hanging weight provides an instantaneous load, and the third is the additional deflection f C
caused by the creep of wood under continuous long-term loading. It is worth mentioning
that the deflection of the first and second parts are identified as short-term deflection f S,
and the deflection of the third part was identified as long-term deflection f L. The sum of
the three parts was the total deflection, as shown in Figure 11. The downward deflection
is specified to be positive and the upward deflection to be negative. Due to the initial
prestress was applied, the beams is reversed and the initial value of mid-span deflection
was negative. The short-term, long-term, and total deflection values of beams of A and B in
the test are shown in Table 4.
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Figure 11. Deformation diagram of the prestressed glulam continuous beam during loading.

Table 4. Midspan deflection value of prestressed glulam continuous beams.

Beam
Number

Short-Term
Deflection f S (mm)

Long-Term
Deflection f L (mm)

Total Deflection f T
(mm)

LA1
Left span −26.61 8.70 −17.91

Right span −25.35 8.42 −16.93

LA2
Left span −20.03 6.00 −14.03

Right span −20.09 5.64 −14.45

LA3
Left span −10.18 4.33 −5.85

Right span −10.28 4.56 −5.72

LB1
Left span 7.51 4.93 12.44

Right span 7.60 4.87 12.47

LB2
Left span −20.03 6.00 −14.03

Right span −20.09 5.64 −14.45

LB3
Left span −29.21 8.97 −20.24

Right span −28.87 9.49 −19.38

To explore the creep law of prestressed glulam continuous beams under long-term
loading, the time-varying curve of midspan deflection of group A and B are drawn, as
shown in Figure 12.

It can be seen from Figures 10 and 12 that the time-varying curve of midspan deflection
of the continuous beam is close to the typical creep curve. For group A, the midspan long-
term deflection of the beams had reached 60.8% to 85.0% of the total deflection on the
60th day, and the deflection at the 120th day had reached 96.1% to 99.8%; for group B,
the midspan long-term deflection of the beams had accomplished 66.1% to 80.1% of the
total deflection on the 60th day, and the deflection at the 120th day had accomplished
95.7% to 99.0%. It could be seen that the beam completed the primary creep faster and the
creep rate decreased with time, which was consistent with the characteristic of the creep
development of glulam. It is worth noting that LB1 was not applied prestressing. Therefore,
the beam had a downward initial deflection after loading, and the initial deflection value
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was positive. In other cases, due to the application of different prestressing, the beams
produced an upward anti-arch with a negative initial deflection value.
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To analyze the influences of the number of prestressed steel wires and the prestress
level on the long-term creep rate of the continuous beams in the mid-span, the short-term
deflection was ignored, which was assumed that the deflection of the beam was zero after
instantaneous loading, then the time-varying curve of the creep deformation is gained and
shown in Figure 13.

It can be seen from Figure 13 that for the beams in group A, compared with the
continuous beam with two steel wires, the long-term deflection average of the beams with
four and six steel wires decreased by 32.0% and 48.0%, respectively. It showed that the
long-term deflection gradually decreased with the increase in the steel wires. Therefore,
increasing the steel wire could effectively reduce the long-term deflection of the prestressed
glulam continuous beam. For the beams in group B, compared with the continuous beam
without prestressing, the long-term deflection average of the beams with 7 kN and 14 kN
prestress values increased by 18.75% and 88.40%, respectively. It could be seen that the long-
term deflection grew gradually with the increase in the applied prestress level. Because the
anti-arch value of the beam increased with the applied prestress level, resulting in more
stress on the beam, the creep deformation of the glulam was more significant.
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For group A, due to the number of steel wires increased, the growth rate of long-term
deflection gradually slowed down. Increasing the number of steel wires can effectively
restrain the long-term deflection change rate of the continuous beams; for group B, with
the increase in applied prestress level, the growth rate of long-term deflection sped up.
Therefore, increasing the prestress value could make the creep of glulam beams more
obvious, promote the change rate of the long-term deflection of the continuous beams, and
cause the deformation to develop rapidly.

3.5. Theoretical Analysis
3.5.1. Establishment of Creep Model

In order to research the creep law of the test beams with time, the existing long-term
test data is applied to establish creep model. According to previous experience [30], the
prediction models for wood creep are as follows:

y = a
(

1 − e f (t)
)

(1)

Equation (1) shows the Exponential Equation [43]. Where y is the strain of material or
deformation of component, t is the time when the member occurs creep deformation, a is a
test parameter which is obtained by fitting the curve, and f (t) is a function related to t.

y = a + bxc (2)
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Equation (2) shows the power-law equation [44,45]. Where y is the strain of material
or deformation of component, x is the time when the member occurs creep deformation,
and a, b, and c are the test parameters that are obtained by fitting the curve.

y = a + bt − ct2 (3)

Equation (3) shows the Polynomial Equation [46]. Where y is the strain of material or
deformation of component, t is the time when the member occurs creep deformation, and a,
b, and c are the test parameters that are obtained by fitting the curve.

Based on the three models, the mid-span deflection variation of the test beam LB1
under long-term loading was simulated, and the results are shown in Figure 14.
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For the fitted curves, R2 reflects the fitting degree of the regression equation, and
expresses the relationship between the dependent variable and all independent variables,
it means the percentage of the dependent variable whose variability can be explained by
the regression equation. The fit result is better with the increase in the R2 value, R2 is
represented by Equation (4):

R2 = 1 − RSS
TSS

(4)

where R2 is the coefficient of determination, RSS is the sum of squared differences between
the fitted data and the original data, and TSS is the sum of squared differences between the
original data and the mean value.

Research shows that the most commonly used empirical model is the power-law
model [46,47]. It can be seen from Figure 14 that the determination coefficients R2 of the
creep model of the power-law equation, exponential equation, and polynomial equation
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were 0.938, −0.442, and −0.964, respectively. The comparison results show that the power-
law equation could effectively predict the creep process, and the model is simpler and
more effective than the other two. Therefore, the power-law equation was selected to fit the
midspan deflection of the test beams, the fitting parameters a, b, c, and the determination
coefficient R2 were shown in Table 5.

Table 5. Result of fitting parameters.

Beam Number a b c R2

LA1 −29.24 3.04 0.28 0.96
LA2/LB2 −26.49 6.18 0.34 0.96

LA3 −14.75 2.82 0.22 0.94
LB1 4.04 12.77 0.09 0.97
LB3 −30.71 3.11 0.42 0.98

Note: LA2 and LB2 in the table are the same beams, but they are in different groups, so different subscript
characters are labeled.

It can be seen from Table 5 that all the R2 values obtained by fitting the test beams
are greater than 0.9, indicating that the fitting accuracy of the mid-span deflection results
and the fitting curve is high, and the creep behavior of the prestressed glulam continuous
beams was shown preferably.

3.5.2. Creep Deformation Coefficient θ and the Total Deflection

Three types of allowable value and calculation formulas were given for the deflection
of flexural members in Eurcode5 [17]. Three types of allowable values contain instantaneous
deflection ωinst, final total deflection ωfin, and final net deflection ωnet, fin. The calculation of
the total deformation of the flexural members is also specified clearly in American standards
NDS-1997 [48]. According to the above standards, the creep deformation coefficient θ is
defined as the ratio of the additional deflection produced by creep and the elastic deflection
produced by loading in this paper. It is expressed by Equation (5):

θ =
fC

fS
=

fL

fS
(5)

where θ is the creep deformation coefficient, f c is the additional deflection value produced
by the creep of the test beam, f s is the elastic deflection produced by the load (the short-
term deflection value of the prestressed glulam continuous beam), and f L is the long-term
deflection value of the prestressed glulam continuous beam.

The total deflection of flexural members under normal service conditions includes
the elastic deflection caused by loading and the creep deflection caused by the creep of
wood under continuous load. The elastic deflection f S of the flexural members could be
calculated according to structural mechanics, while the creep deflection could be calculated
by multiplying the deformation f Q by the creep deformation coefficient θ. The calculation
formula was shown in Equation (6):

fT = fS + θ fQ (6)

where f T is the total deflection of the test beam, f Q is the deformation due to quasi-
permanent combination of loads.

Because the service life of the building is generally 50 years, the power-law model is
used to predict the total deflection value of the beams for 50 years in this paper, and the
creep deformation coefficient of the test beams is calculated by Equation (5), the results
are shown in Table 6. Table 6 shows the value range of creep deformation coefficient was
1.28–2.29 when the steel wires on the beam were from 2 to 6, and the θ value decreased with
the steel wires increased; the value range of creep deformation coefficient was 1.69–2.17
when the prestress was from 0 to 14 kN, and the θ value decreased with the prestress
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increased. Therefore, the creep deformation coefficient θ was determined to be 1.28–2.29 in
the range of familiar steel wire quantities and applied prestress.

Table 6. Creep deformation coefficient for 50 years.

Project
Group A Group B

LA1 LA2 LA3 LB1 LB2 LB3

Short-term deflection f s (mm) 6.12 5.53 3.54 7.01 5.53 5.44
50-year total deflection f T (mm) 20.15 15.38 8.08 22.20 15.38 14.63
Creep deformation coefficient θ 2.29 1.78 1.28 2.17 1.78 1.69

4. Conclusions

• When the number of the prestressed steel wires was 2, 4, and 6, the total stress of steel
wires decreased by 60.39%, 66.49%, and 69.61%, respectively, from the beginning to
the end of loading; when the prestress value was 0, 7, and 14 kN, the total stress of
steel wires decreased by 61.60%, 66.53%, and 68.74%, respectively, from the beginning
to the end of loading. This is because by increasing the number of prestressed steel
wires and the prestress value, the external load on the continuous beam increased,
then the section stress of the glulam also increased, and the wood creep was more
obvious, and the total stress of the steel wires decreased more.

• Compared with the continuous beam with two steel wires, the long-term deflection
average of the beams with four and six steel wires decreased by 32.0% and 48.0%,
respectively; compared with the continuous beam without prestressing, the long-term
deflection average of the beams with 7 kN and 14 kN prestress value increased by
18.75% and 88.40%, respectively, which shows that increasing the number of steel
wires could effectively restrain the long-term deflection change rate of the continuous
beams, and increasing the prestress value made the creep of glulam beams more
obvious and promoted the long-term deflection change rate of the continuous beams,
the deformation developed faster.

• Based on the comparison between three common creep models of exponential equa-
tion, power-law equation, and polynomial equation, it found that the power-law
equation was the most suitable for simulating the creep process of the prestressed
glulam continuous beams, and the fitting curve had higher accuracy. According to the
experiment and numerical fitting results, at familiar steel wire quantities and prestress
levels, the creep deformation coefficient of the test beams within the design service
life of 50 years was determined to be 1.28–2.29.

• The calculation formula of long-term deflection and creep deformation coefficient of
test beams were given by long-term experiment and model fitting. Later, the accuracy
of fitting can be verified by longer longer-term experiments.

• The long-term performance of prestressed glulam continuous beams was mainly
studied from the perspective of experiment in this paper. In the future, its long-term
constitutive relation can be exploited by finite element analysis.
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