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Abstract: Researchers around the world are developing technologies to minimize carbon dioxide
emissions or carbon neutrality in various fields. In this study, the dry spinning of regenerated silk
fibroin (RSF) was achieved as a proof of concept for a process using ionic liquids as dissolution
aids and plasticizers in developing natural polymeric materials. A dry spinning equipment system
combining a stainless-steel syringe and a brushless motor was built to generate fiber compacts from
a dope of silk fibroin obtained by degumming silkworm silk cocoons and ionic liquid 1-hexyl-3-
methyl-imidazolium chloride ([HMIM][Cl]) according to a general method. The maximum stress and
maximum elongation of the RSF fibers were 159.9 MPa and 31.5%, respectively. RSF fibers containing
ionic liquids have a homogeneous internal structure according to morphological investigations.
Elemental analysis of fiber cross sections revealed the homogeneous distribution of nonvolatile ionic
liquid [HMIM][Cl] in RSF fibers. Furthermore, the removal of ionic liquids from RSF fibers through
impregnation washing with organic solvents was verified to enhance industrial applications. Tensile
testing showed that the fiber strength could be maintained even after removing the ionic liquid.
Thermogravimetric analysis results show that the organic solvent 1,1,1,3,3,3-hexafluoro-2-propanol is
chemically coordinated to silk fibroin and, as a natural polymer, can withstand heat up to 250 ◦C.

Keywords: dry spinning; silk fibroin; ionic liquids

1. Introduction

As global warming progresses, various weather abnormalities such as droughts,
massive typhoons, and localized heavy snowfalls become more frequent [1]. There are
concerns that the greenhouse effect will cause permafrost to thaw, releasing unknown
frozen viruses (Morbillivirus) and causing new infections [2]. Researchers worldwide
are developing technologies to reduce carbon dioxide emissions or carbon neutrality in
various fields [3–5].

In this context, as researchers and engineers of textile materials, we are focusing
our efforts on developing new energy-effective spinning processes using renewable nat-
ural polymer materials, such as textile and polymer materials, which do not depend on
petroleum resources [6]. Since the days when naturally occurring polymeric materials such
as cellulose, silk, and wool were used directly as fibers, previous textile chemists devel-
oped a wet spinning process of dissolving natural polymers in a solvent and spinning the
solution. This is referred to as wet spinning [7]. Wet spinning spider silk protein produced
by fungi into fibers is now being researched and developed to produce high-strength, high-
toughness renewable fibers by Sekiyama et al. [8]. However, these natural polymers are
difficult to dissolve in solvents because of their strong intramolecular and intermolecular
hydrogen bonds, which often require complicated dissolution processes such as the use
of special solvents containing metal ions or minor chemical modifications to break the
hydrogen bonds [9,10]. Therefore, in many cases, designing an ecological and cost-effective
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manufacturing process is challenging. The difficulty in dissolving the polymer is greater
for high molecular weight polymers with good fiber properties [11,12]. However, it has
been reported that ionic liquids (ILs) can dissolve natural polymers such as cellulose [13]
and silk fibroin (SF) [14], and research is ongoing for using ILs as spinning solvents [15–17].
However, due to the high cost of ILs and their nonvolatile nature, the focus of development
has been on wet spinning, and little research has been conducted on dry spinning, which is
easier, less expensive, and significantly more efficient than wet spinning [18,19]. We have
developed a process to obtain natural polymer fibers by dry spinning from a solution of
natural polymers dissolved in a solvent containing a small amount of IL as a hydrogen
bond cleaver [20]. Typical hydrogen bond cleavers are metal salt compounds dissolved in a
solvent that interacts with donor types of substituents such as hydroxyl, carboxylic, and
amino groups in the solution to cleave hydrogen bonds [21,22]. During the fiber formation,
salt substances crystallize and create voids in the fiber [23]. Using an IL instead of a metal
salt compound may prevent the formation of voids [24]. The IL was expected to remain
uniformly in the fiber and function as a plasticizer [25]. The nonvolatility of ILs allows them
to function as permanent plasticizers and softeners, maintaining the fibers’ flexibility even
under vacuum conditions. In this study, we describe the development of a process that uses
ILs as a dissolution aid for natural-derived macromolecules, including a proof-of-concept
study of dry spinning using regenerated SF (RSF).

2. Materials and Methods
2.1. Materials

Ethanol, methanol, and calcium chloride (CaCl2) were purchased from Kanto Chemical
(Tokyo, Japan). Sodium carbonate (Na2CO3) and lithium chloride were purchased from
FUJIFILM Wako Pure Chemical (Osaka, Japan). 1-Hexyl-3-methyl-imidazolium chloride
([HMIM][Cl], ≥95% purity) was purchased from Sigma-Aldrich (St. Louis, MO, USA) as
the ionic liquid. 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) was purchased from Fluorochem
(Derbyshire, UK). All chemical reagents were used without further purification.

Silkworm silk cocoons were kindly donated by Tsuruoka Silk (Yamagata, Japan). Mar-
seilles soap (additive free) was purchased from Miyoshi Soap (Tokyo, Japan). A cellulose
dialysis tubing (diameter, 21.4 mm; molecular weight cutoff (MWCO), 12,000–14,000 Da)
was purchased from SERVA Electrophoresis (Heidelberg, Germany). Nitrogen (N2) gas was
purchased from Taiyo Nippon Sanso (Tokyo, Japan). Water purification systems (PURELAB
flex 3, ELGA LabWater, High Wycombe, UK) were used to obtain ultrapure water.

2.2. Equipment

An SSY-30E stainless steel cylinder (23 mm i.d.) was purchased from Musashi Engi-
neering (Tokyo, Japan). A UNP-23 dispenser nozzle (0.3 mm i.d.) was purchased from
Unicontrols (Chiba, Japan). Brushless direct current electric motors (model GFV2G20) and
the speed control units (model BMUD30-A2) were purchased from Oriental Motor (Tokyo,
Japan). Stainless-steel filter membrane (vertical mesh/horizontal mesh, 500/3600; filtration
threshold, 5 µm) was purchased from Yao Kanaami (Osaka, Japan).

2.3. Silk Degumming

Degumming was executed with minor modifications according to the literature [26].
Using a temperature-controlled water bath, 5.0 g of silkworm silk cocoons and 500 mL of
alkaline solution (0.25 w/v% Marseilles soap, 0.25 w/v% Na2CO3) were boiled at 85 ◦C for
15 min. After removing the solution by decantation, the residue was rinsed six times with
ultrapure water at 80 ◦C and dried in vacuo overnight. In 100 g of Ajisawa’s solution [27]
(CaCl2/water/ethanol = 1:8:2, molar ratio), 15 g of degummed silk was dissolved. The
degummed silk was thoroughly blended with Ajisawa’s solution and heated at 55 ◦C for
1 h. The silk solution was filtered through a stainless-steel filter membrane. The filtrate
was dialyzed against ultrapure water immediately using cellulose dialysis tubing (MWCO:
12,000–14,000 g/mol) at 4 ◦C for 4 days until the conductivity was lower than 10 mS. The
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dialyzed solution (diluted with ultrapure water up to 4 w/v%) was then lyophilized, and
the resulting SF was desiccated and stored at ambient temperature.

2.4. Preparation of Dope Solution

To 3.0 g of SF, 16.25 g of HFIP was added, and the mixture was heated at 50 ◦C for 3 h.
Subsequently, 0.75 g of [HMIM][Cl] was added dropwise, and the mixture was heated at 50 ◦C
for 1 h. The final dope composition was SF/[HMIM][Cl]/HFIP = 15:3.75:81.25 (w/w/w). The
resulting IL-containing SF dope solution was brought to ambient temperature and used for
dry spinning.

2.5. Dry Spinning and Heat Stretching

A schematic of the dry spinning equipment is shown in Figure 1a. Under N2 pressure,
the dope solution in a stainless-steel cylinder (23 mm i.d.) with a dispenser nozzle (0.3 mm
i.d.) was discharged into the air. The distance between the spinneret and the first guide
roller was 100 cm. The pressure was controlled between 0.3 and 0.02 MPa to stabilize the
spinning operation. Simultaneously, the roller winding speed was reduced from 12.0 to
4.0 m/min. The thread was predried among the guide rollers shortly after discharging
and led to the take-up roller (4.2 m/min) as shown in Figure 1a. The resulting solidified
thread was dealt as the as-spun fiber. The obtained yarns were dried in vacuo at ambient
temperature for >5 h with bobbins.

Figure 1. Conceptual images of dry spinning and heat stretching for regenerated silk fibroin.
(a) Dry spinning system. The extruded dope solution was dried in ambient air to mold into the fiber
on the guide rollers equipped with polytetrafluoroethylene tubes to prevent sticking of the dope in
process and collected to the take-up roller. (b) Heat stretching system. The molded silk fiber was sent
from the let-off roller and collected to the take-up roller directly. Spinning fiber was heated for 3 mm
tolerance over the heating plate and stretched among the two rollers.

The equipment for heat stretching is shown in Figure 1b. The speeds of the let-off and
take-up roller were set to 0.25 and 0.88 m/min, respectively (3.5-fold stretch). A hot plate
was located between the two rollers and maintained at 120 ◦C. The obtained heat-stretched
fiber was dried in vacuo for >5 h. To examine the physical properties of the fiber with
or without the IL-washing process, the heat-stretched fiber was soaked in methanol to
remove [HMIM][Cl].

2.6. Characterization

Scanning electron microscopy (SEM) was performed using a JSM-7100F field-emission
scanning electron microscope (JEOL, Tokyo, Japan). The acceleration voltage was 2 kV.
Elemental analysis of the fibers was performed using a JED-2300F energy-dispersive X-ray
spectroscopy (EDX) instrument (JEOL) equipped with a solid-state detector. An Instron
Model 3342 single-column testing system (Instron, Norwood, MA, USA) was equipped
with grips with high frictional faces for flats, and a static load cell (maximum load, 500 N)
was used for tensile testing. Instron Bluehill Lite Software (version 2.28.832) was used for
data collection. Microsoft Excel (version 2202, Microsoft, Redmond, WA, USA) was used to
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process the data. The fiber specimens (randomly taken) were cut and fixed to paper mounts.
The initial gauge length was 20 mm. The elongation rate was 2 mm/min (10% initial
length). Using Microsoft Excel, the cross-sectional area of the fiber was determined from
the cross-sectional images of the SEM results. A Thermo Plus TG8120 (Rigaku, Tokyo, Japan)
was used to perform thermogravimetric (TG)–differential thermal analysis (DTA). Data
acquisition was performed at a temperature of 50–400 ◦C, the rising rate was 10 ◦C/min,
and the flow rate of N2 gas was 200 mL/min. The sampling time was set at 1.0 s. Al2O3
was used as the reference material.

3. Results and Discussion
3.1. Morphological Observation

SEM was used to clarify the surface and cross-sectional images of as-spun (Figure 2a,b)
or heat-stretched (Figure 2c,d) RSF fibers. The RSF fibers before/after heat stretching had
homogeneous internal structures, contrary to the possibility of forming a heterogeneous
sea–island structure. A belt-like flat fiber cross section was observed for both the as-spun
and heat-stretched fibers.

Figure 2. SEM images of regenerated silk fibroin (RSF) fibers: (a) sectional and (b) side images of RSF
as-spun fibers; (c) sectional and (d) side images of RSF heat-stretched fibers. Each picture has a 10 µm
scale bar. The cross-sections were made by direct immersion to liquid nitrogen and cutting with a
razor blade.

From the morphology inside the cross-section of the fibers, the void formation could
be effectively prevented using ILs instead of metal salts. Because no rapid volatilization
of HFIP occurred during the first solidification process, all the RSF fibers had smooth
surfaces. The authors considered that belt-shaped RSF fibers were formed and caused by
tensile tension from the guide rollers during solidification into fiber bodies or shrinkage
tension from drying between the guide rollers. To investigate the more intrinsic mechanical
properties, a circular fiber needed to be used as a test specimen for tensile testing. Therefore,
extending the vertical distance from the spinneret to the first guide roller and extending the
time for HFIP volatilization was effective. The plasticity of nonvolatile ILs is high during
the drying process despite the belt-shaped formation. Furthermore, the thermo-melting-
like state of the RSF fibers in heat stretching allowed us to achieve further deformed and
modified fibers that had star-shaped, Y-shaped, or other odd-shaped cross sections. In
the case of the RSF fibers in this research, it may have been possible to develop from dry
spinning to melt spinning.
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3.2. Elemental Analysis

Figure 3 shows the distribution of ILs in RSF fibers. Elemental mapping revealed the
distribution of chlorine atoms specifically in the chemical structure of [HMIM][Cl] using
EDX analysis. The uniform distribution of chlorine atoms in the cross-section corresponding
to the SEM images was confirmed in the picture.

Figure 3. SEM picture (a) and an EDX mapping image (b) of regenerated silk fibroin fibers. Areas of
dense green dots indicate the presence of chlorine atoms. Each picture has a 10 µm scale bar.

3.3. Removal of IL from the RSF Fibers

Figure 4 shows the EDX spectra of heat-stretched RSF fibers before and after methanol
immersion. In addition, the extracted EDX spectrum of the RSF fiber after heat stretching
is shown in Figure 4a, as well as the 2.6 keV indicated chlorine atoms from [HMIM][Cl].
Figure 4b shows the extracted EDX spectrum of the RSF fiber that was washed with
methanol after heat stretching, and chlorine was not confirmed.

Figure 4. EDX spectra for heat-stretched regenerated silk fibroin (RSF) fibers with/without washing
using methanol to confirm the remaining ionic liquid. The RSF fiber (a) without washing and
(b) with washing using methanol. The peaks of copper, platinum, and aluminum in the picture are
backgrounds from sample holders or sputter deposition in sample preprocessing.

After heat stretching, IL was easily removed using a washing process that involved
immersing the fibers in a suitable organic solvent. This process suggested the possibility
of not only removing ILs used specifically as forming aids from RSF fibers as needed but
also controlling the amount of IL expected to function as a plasticizer. Furthermore, under
solution equilibrium, the immersion process was expected to allow for the exchange and
distribution of the ILs eventually remaining in the RSF fibers.

3.4. Mechanical Strength of the RSF Fibers

Figure 5 shows the stress–strain (S–S) plots of heat-stretched RSF fiber (closed circles, •)
and the plots washed with methanol (open squares, �) to compare the mechanical strength
of the RSF fiber from a practical viewpoint. Methanol was selected as a typical solvent for
ILs. The IL-washing process after heat stretching was designed for industrial application,
and methanol was selected as a typical solvent for [HMIM][Cl], which was added as a
plasticizer. The main physical values that characterize the RSF fibers in the tensile testing
are shown in Table 1. For non-washed (closed circle plots, •) and washed-off IL (open
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square plots, �), corresponding to Figure 5, the tensile stress at the point of the maximum
load was 159.9 and 105.4 MPa (tensile strain: 3.6% and 2.3%, respectively), the fracture
strain was 31.5% and 35.8%, Young’s modulus was 4.86 and 4.83 GPa (to the top yield),
and toughness was 43.2 and 39.4 MJ/m3 (where calculated from the area under the curve
integration with a trapezoidal approximation of the plots), respectively.

Figure 5. Stress–strain (S–S) plots for heat-stretched regenerated silk fibroin (RSF) fibers. Closed
circles (•) represent S–S plots of heat-stretched RSF without wash using methanol. Open squares (�)
represent S–S plots of heat-stretched RSF after wash using methanol.

Table 1. Mechanical property values of heat-stretched regenerated silk fibroin (RSF) fibers on the
tensile testing.

Heat-Stretched RSF Top Yield (MPa) Fracture Strain (%) Young’s Modulus (GPa) Toughness (MJ/m3)

Non-washed (containing IL) 159.9 31.5 4.86 43.2

Washed off IL 105.4 35.8 4.83 39.4

The process of washing off the IL did not cause the significant degradation of fiber
properties according to the S–S plots after heat stretching. The tensile strain at the yield
point was reduced by 1.3% points when methanol was used. This is reasonably explained
by the loss of IL, which allowed it to function as a plasticizer. Conversely, the fracture
strain increased by 4.3% points in heat-stretched RSF fibers (closed circles (•) in Figure 5)
compared with that in the RSF without IL washing (open squares (�) in Figure 5). These
results were considered a trade-off between the increased secondary structure of SF protein
from an alcohol-induced β-coil structure [28] in SF molecules and the loss of flexibility due
to the removal of IL as a plasticizer.

The authors hypothesized that fibers containing ILs were momentarily fractured
because of an imbalance between the relaxing fiber’s body caused by the plasticizing
function of ILs and the fracture of microscopic defects caused by elongation, in which
the tearing force prevailed. The methanol-washed fibers lost ILs; however, the secondary
structure was increased overall, as described in the literature [28]. The SF molecules
themselves exhibit more elongation, as shown in the data. There would be no relaxation
in the elongation mechanism as there would be in the presence of the plasticizer, and an
instantaneous fracture of the microscopic defects in the fiber was occurring.

3.5. Thermophysical Properties

Figure 6 shows the TG–DTA curves of as-spun RSF fiber. Data showed a 2.0 wt% loss
relative to the initial weight from 50 ◦C to 100 ◦C, with a further 5.1 wt% loss in steps from
110 ◦C to 185 ◦C. Desorption of equilibrated moisture from the atmosphere would account
for the initial 2.0 wt%. Because the fiber already contains ILs that interact with hydrogen
bonds among SF molecular chains, it could be assumed that the moisture was volatilized by
heating below 100 ◦C. Furthermore, the weight loss of approximately 150 ◦C suggested that
the heating desorption of HFIP (boiling point 58 ◦C for a single chemical entity) and the
desorption of HFIP from SF materials at a temperature greater than the boiling point had
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been considered as the formation of specific hydrogen bonds between SF and HFIP [29,30].
The 10 wt% loss temperature, except for the mass of volatile components (water and HFIP),
was 258 ◦C, and the decomposition temperature was observed in the range of 260–320 ◦C.
The temperatures corresponding to the maximum degradation rate are 285.43 ◦C (random
coil), 281.38 ◦C (silk-I structure), and 313.73 ◦C (silk fiber) according to the literature [31].
The current findings backed up these claims.

Figure 6. Thermogravimetric–differential thermal analysis curve of as-spun (nondrawing) regener-
ated silk fibroin fiber.

4. Conclusions

In this study, the dry spinning of SF was shown as a proof of concept for a process
that uses ILs as dissolution aids and plasticizers in the development of natural polymeric
materials. The mechanical properties of the RSF fibers reached 159.9 MPa and 31.5% at
maximum stress and elongation, respectively. ILs were uniformly distributed in the fiber,
indicating that they can effectively function as a plasticizing additive. Further studies are
needed to clarify the function–property relationship between natural polymeric materials
and ILs. Currently, there is no way to produce such materials more cheaply than petroleum-
derived materials. However, in the future, protein materials may be produced more cheaply
than petroleum-derived materials. In such a development situation, the concept of this
research, which pioneered a new method of producing raw materials obtained from natural
sources, will become even more important.

5. Patents

The research reported in this article is based on the following patent: Sato, T.; Mori-
naga, T.; Satoh, R. Method for producing polymer substance molding. Japan patent
JP2021028434A. Publication date, 25 February 2021.
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