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Abstract: Concrete tensile properties usually govern the fatigue cracking of structural components
such as bridge decks under repetitive loading. A fatigue life reliability analysis of commonly used
ordinary cement concrete is desirable. As fatigue is affected by many interlinked factors whose
effect is nonlinear, a unanimous consensus on the quantitative measurement of these factors has
not yet been achieved. Benefiting from its unique self-learning ability and strong generalization
capability, the Bayesian regularized backpropagation neural network (BR-BPNN) was proposed to
predict concrete behavior in tensile fatigue. A total of 432 effective data points were collected from the
literature, and an optimal model was determined with various combinations of network parameters.
The average relative impact value (ARIV) was constructed to evaluate the correlation between fatigue
life and its influencing parameters (maximum stress level Smax, stress ratio R, static strength f,
failure probability P). ARIV results were compared with other factor assessment methods (weight
equation and multiple linear regression analyses). Using BR-BPNN, S-N curves were obtained for
the combinations of R = 0.1, 0.2, 0.5; f = 5, 6, 7 MPa; P = 5%, 50%, 95%. The tensile fatigue results
under different testing conditions were finally compared for compatibility. It was concluded that
Smax had the most significant negative effect on fatigue life; and the degree of influence of R, P,
and f, which positively correlated with fatigue life, decreased successively. ARIV was confirmed
as a feasible way to analyze the importance of parameters and could be recommended for future
applications. It was found that the predicted logarithmic fatigue life agreed well with the test results
and conventional data fitting curves, indicating the reliability of the BR-BPNN model in predicting
concrete tensile fatigue behavior. These probabilistic fatigue curves could provide insights into
fatigue test program design and fatigue evaluation. Since the overall correlation coefficient between
the prediction and experimental results reached 0.99, the experimental results of plain concrete under
flexural tension, axial tension, and splitting tension could be combined in future analyses. Besides
utilizing the valuable fatigue test data available in the literature, this work provided evidence of
the successful application of BR-BPNN on concrete fatigue prediction. Although a more accurate
and comprehensive method was derived in the current study, caution should still be exercised when
utilizing this method.

Keywords: concrete tensile fatigue; backpropagation neural networks; Bayesian regularization;
quantitative assessment; influencing factors; fatigue life prediction; average relative impact value

1. Introduction

Bridge decks, highway pavements, and railway sleepers are structural components
subjected to numerous repetitions of bending load cycles during their entire service life.
Fatigue failure may occur even when the loads on the structures are lower than their
strength under static loading. Since concrete is primarily utilized with its compressive
strength, much attention has been devoted to compressive fatigue performance. With tensile
strength significantly lower than compressive strength, concrete’s tensile behavior controls
the fatigue cracking of concrete structures and plays a vital role in concrete durability.
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Therefore, the tensile fatigue analysis of concrete is of prime importance. Fatigue life is an
essential indicator of fatigue performance. As a complex multi-phase composite material,
concrete exhibits significant discreteness in fatigue life [1]. Moreover, since a nonlinear
mapping relationship exists between fatigue life and its influencing factors [2], fatigue life
estimation has become the focus of concrete fatigue research.

The conventional method of analyzing fatigue life is based on mathematical statistics
and fits experimental fatigue data to a specific regression equation. Parameters considered
in the fatigue life equations initially contained only the stress level. Later, the stress
ratio R [3], the failure probability P [4], and the loading frequency [5] were gradually
integrated for practical applications. Despite their extensiveness and complexity, the
proposed equations cannot be applied to all fatigue analyses and it is difficult to ensure
accuracy, and a unanimous consensus on quantitative measurement of these factors has not
been achieved [6]. On the other hand, the backpropagation neural network (BPNN) has
emerged as the most widely used soft computing method, automatically approximating
the training data. BPNN does not need to make assumptions about the functional form [7];
it is thus feasible to improve the applicability and prediction accuracy for multi-parameter
fatigue life fitting.

Although BPNN has primarily been used to predict concrete strength [8–11] and
durability properties [12,13], several studies [14–21] on fatigue life prediction of concrete
did demonstrate its rationality and effectiveness. Fatigue life prediction generally fits
closer to the experimental results, and the model performs statistically better than the code
equations [14]. However, these studies primarily focused on concrete fatigue behavior
under a compressive load, and a model suitable for concrete tensile fatigue life predic-
tion is still lacking. Moreover, BPNN prediction is affected by the mapping relationship
between input and output. For example, Mohanty et al. [22] found that a three-input
parameter model’s predicted fatigue crack growth rate correlates better with test results
than a two-input parameter one. A mathematical analysis of selecting and determining
critical input parameters is much needed.

Because the learning process of the BPNN algorithm strongly depends on the training
data, its extrapolation capability is not guaranteed if a significant difference exists between
the training set and the test set [14,23]. As illustrated in Figure 1, data were divided into a
training set, test set, and validation set. It is possible that the trained model approximates
the test set or validation set data well but shows a poor prediction for an unknown data
set B. This phenomenon is called overfitting and is a common drawback of BPNN. Thus,
the standard practice for fatigue life prediction with BPNN, selecting training and validation
data from the same experiments, fails to demonstrate the model’s generalization capability.
For the same reason, previous studies focused on fatigue under a particular loading
condition; the relationship between concrete fatigue lives under different stress states has
not been thoroughly investigated.
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Figure 1. Sketch of poor extrapolation of the predictive model. 
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Among the many optimization methods, the regularization technique using an ad-
ditional weight attenuation term in the error function of BPNN can appropriately fix the
overfitting problem [17]. Bezazi et al. combined BPNN with the Bayesian technique to
predict fatigue probability life, and the results showed that Bayesian training could obtain
better data fitting performance [17]. The so-constructed model is a Bayesian regularized
backpropagation neural network (BR-BPNN).

In order to evaluate the significance of input parameters, researchers investigated
different methods. Garson [24] and Li et al. [25] analyzed the influence weight of each
input variable based on the weight matrix, which could be applied to the single and double
hidden layer neural network, respectively. Lopes et al. [26] took the contribution factor as
a guide to screen input variables, calculated by the sum of the weights connected to an
input variable. In addition to the weight matrix, scholars also use multiple linear regression
(MLR) to explain the significance of input variables, taking the significance output of MLR
as the input of neural networks [27–29]. This method can also identify the direction of
parameter influence (positive or negative correlation), achieving satisfactory results based
on linear and additive correlation.

Therefore, this study aimed to validate whether a successful fatigue life analysis for
concrete flexural fatigue based on existing data could also be obtained with BPNN. For
the common problem of localized optimization with BPNN, the Bayesian regularization
optimization [30] was constructed with MATLAB to improve the accuracy of fatigue life
prediction. One novelty of this study is its use of a separate data set when verifying the
model’s generalization capability. Since there is no currently available mathematical assess-
ment of the importance of various factors related to concrete fatigue life [31], the average
relative impact value (ARIV) was proposed as a quantitative index. Its use was verified
through the comparison with the weight equation and MLR method. Based on the data
from the literature [32–35], the BR-BPNN with satisfactory generalization capability for
concrete flexural fatigue was obtained and then applied to predict flexural fatigue life
curves under various parameters. Finally, to investigate whether a significant discrepancy
exists between fatigue properties under different loading conditions [36], the fatigue life of
plain concrete in splitting tension, axial tension, and flexure loading was analyzed through
BR-BPNN.

2. Materials and Methods
2.1. Data Collection and Preprocessing

In fatigue experiments, the recordable parameters mainly include R, Smax, P, f, water-
cement ratio (W/C), sand-cement ratio (S/C), and gravel-cement ratio (G/C). It should be
noted that failure probability (P) is estimated by average rank [37]. By organizing fatigue
life data in increasing order, the failure probability of any sample could be calculated as in
the following expression:

P =
i

N + 1
(1)

where i denotes the failure order and N is the total number of data points at a particular
stress level.

Table 1 presented a dataset containing 274 data points obtained from concrete flexural
fatigue experiments in the literature [32–35]. The data in the literature [32–34] were ran-
domly divided in a ratio of 8:2, obtaining 170 training data points and 44 test data points to
guarantee the network accuracy. The remaining 60 data points in the literature [35] were
reserved to verify the generalization capability further.

For mutual prediction between flexural, splitting, and axial tensile fatigue in Section 3.5
with an artificial neural network, 158 additional sets of experimental data were collected
from the concrete tensile fatigue literature [38–43], as shown in Table 2. Due to the ap-
proximation of stress states from actual structures and the difficulties associated with
concentric loading, splitting/axial tensile fatigue test data were less abundant than their
bending counterpart.
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Table 1. Flexural fatigue experimental data.

Purpose Reference Smax R f (MPa) W/C S/C G/C Equations of S-N Curves

Network
accuracy

Shi et al. [32] 0.65~0.9
0.08,
0.2,
0.5

6.08 0.45 1.18 2.74 (1) lgS = 0.01069− 0.04093(1− R)lgN
(2) S = 0.9860− 0.06919 (1− R) lgN

Zheng [33] 0.65~0.9 0.1 7.65 0.35 1.47 2.40 (3) S = 1.04808− 0.06731lgN

Wu et al. [34] 0.625~0.9 0.1~0.5 5.1 0.45 1.40 3.27 (4) lgS = 0.002− 0.0408(1− R)lgN

Generalization capability Li et al. [35] 0.6~0.9 0.1 7.68 0.40 1.16 2.47
(5) lgS = 0.0483− 0.0426lgN

(6) lgS = 0.0089− 0.0299lgN S ≥ 0.78
lgS = 0.0888− 0.0504lgN S ≤ 0.78

Table 2. Tensile fatigue experimental data.

Loading Type Reference Smin Smax f (MPa) W/C S/C G/C

Splitting tension

Lu et al. [38] 0.15 0.7~0.85 2.63 0.504 1.731 3.013

Yun K.K. [39]
0.07
0.08
0.09

0.7
0.8
0.9

4.1 0.423 2.005 3.506

Axial tension

Song et al. [40] 0, 0.15, 0.3 0.65~0.85 2.45 0.504 1.731 3.013

Meng [41] 0.22, 0.27 0.75~0.85 2.69 0.504 1.731 3.013

Wang [42] 0.1 0.7~0.9 3.06 0.360 1.403 2.494

Huang, L.X. [43] 0 0.3~0.6 2.01 0.410 2.005 3.506

In order to improve the convergence rate of the network and avoid the deviation
adjustment of weight caused by dimensional differences [44], normalization was used for
data preprocessing. The scale transformation of original data was conducted according to
Equation (2), which is realized by [y, ps] = mapminmax (x, ymin, ymax) in MATLAB, where
ps represents the mapping relationship; x and y are the data before and after normalization;
ymax, ymin is the maximum and minimum of normalized boundary, respectively; and xmax,
xmin is the maximum and minimum of input before normalization, respectively.

y =
(ymax − ymin)× (x− xmin)

(xmax − xmin)
+ ymin (2)

The output needs to be returned to the original order of magnitude for the practical
application of the predicted results. Therefore, anti-normalization was performed according
to Equation (3), which is realized by x = mapminmax (‘reverse’, y, ps) in MATLAB.

x =
(y− ymin)× (xmax − xmin)

(ymax − ymin)
+ xmin (3)

2.2. Basic Principle of Backpropagation Neural Network

BPNN, a multi-layer feedforward network trained by the error backpropagation
algorithm, can classify arbitrarily complex patterns and map nonlinear multi-dimensional
functions [45]. Its essence is to calculate the error through the forward transmission of
function signals among neurons and then backpropagate the error signal to correct the
weight and bias of the network, repeatedly iterating until the loss function is minimized.

The topological structure of the L-layer BPNN is shown in Figure 2. The network
includes the input layer (layer 1), the hidden layers (layer 2~L − 1), and the output layer

(layer L), with each layer consisting of several neurons [46].
→
X = [x1, x2, . . . xi] repre-

sents input vector and
→
O = [o1, o2, . . . ok] represents output vector. w(l)

ij is the connection

weight between the ith neuron in layer l − 1 and the jth neuron in layer l; b(l)j is the bias

of the jth neuron in layer l, and ϕ(l)(·) represents the activation function of layer l neu-
rons. The input and output of neurons in hidden layer l are V(l) = [v(l)1 , v(l)2 , . . . v(l)j ] and
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H(l) = [h(l)1 , h(l)2 , . . . h(l)j ], respectively. v(l)j =
I

∑
i=1

w(l)
ij h(l−1)

i + b(l)j , where I is the number of

neurons in layer l-1 and hl
j = ϕl(v(l)j ).
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Suppose that the target output of the n-th training sample is
→
T = [t1n, t2n, . . . tkn],

the loss function is measured by mean square error (MSE): ED = 1
2N

N
∑

n=1

K
∑

k=1
(tkn − okn)

2.

The weight and bias are revised through the backpropagation of errors until the loss
function is minimized using w(l)

ij = w(l)
ij − η ∂ED

∂w(l)
ij

and b(l)i = b(l)i − η ∂ED

∂b(l)i

, where η is the

learning rate of backpropagation [47].
The classical BPNN with a solid learning ability can achieve arbitrary fitting accuracy

within the training samples [48]. However, the generalization capability of the network
depends considerably on the number of neurons in the hidden layers. When the number
of training samples is limited, and the number of hidden layer neurons is vast, the model
could produce a poor mapping effect on non-training samples. This phenomenon is called
“overfitting”; the model exhibits high training accuracy but low prediction accuracy [49].
Therefore, achieving a good generalization capability of the BPNN is an essential research
issue. A theoretical formula to determine the optimal number of hidden layer neurons has
not yet been proposed. By trial and error, this paper found the optimal neuron number from
the range of values suggested by an empirical equation, as represented in Equation (4):

m =
√

i + k + λ (4)

where i is the number of neurons in the input layer; k is the number of neurons in the
output layer; and λ is an integer between 1 and 10.

2.3. Bayesian Regularization

A network with a smaller weight or bias can obtain a smoother response, which
is utilized by regularization to improve the generalization capability of the BPNN effec-
tively [50], adding a penalty term to the target problem to limit its complexity. The L2
penalty term related to the weight is generally added to the loss function in the form of
ridge regression [17].

The improved loss function is shown in Equation (5):

E(w) = βED + αEw =
β

2N

N

∑
n=1

K

∑
k=1

(tkn − okn)
2 +

α

2M

M

∑
m=1

w2 (5)
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where α and β are the regularization parameters; Ew is the penalty term of the loss function;
and M is the number of connection weights.

Weight is modified as indicated in Equation (6). When updating the gradient to realize
weight decay, the weight is multiplied by a constant coefficient of less than 1.

w(l)
ij = w(l)

ij − η
∂E(w)

∂w(l)
ij

= (1− ηα)w(l)
ij − ηβ

∂ED

∂w(l)
ij

(6)

α, β dramatically affects the distribution of weight and bias. When β >> α, the de-
crease in the training error cannot guarantee the generalization capability, as in the classical
BPNN. Conversely, when β << α, the attenuation of the network scale and the smoother
output is prone to “underfitting”. This paper used the Bayesian computing framework to
adaptively modify α and β, which reduced the training error and optimized the network
structure. The Bayesian technique can be expressed as in Equation (7):

Posterior Probability =
Likelihood Function× Prior Probability

Normalization Factor
(7)

It assumes that the likelihood function and priori probability satisfy the Gaussian
distribution. Based on maximizing posterior probability, the L-M algorithm was used to
solve the minimum of loss function E(wopt). Then, the regularization parameters were
further adjusted with the same idea using the Hessian matrix H at the minimum point wopt
to re-verify the accuracy of the loss function [17].

The following equations were obtained with the Bayesian technique [50], where γ is
the number of valid parameters that reduce loss function in the network.

αopt =
γ

2Ew(wopt)
, βopt =

N − γ

2ED(wopt)
(8)

γ = M− 2αtr(H−1(wopt)) (9)

H = β∇2ED(wopt) + α∇2Ew(wopt) (10)

The learning steps of BR-BPNN are shown in Figure 3, which are realized by the
training function trainbr in MATLAB.
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2.4. Average Relative Impact Value (ARIV)

The correlation between output and input significantly affects the training quality
of the network [26], while a coupling effect might exist among the parameters shown
in Table 1. In order to determine the variables with significant effects and avoid model
complexity induced by noise parameters, ARIV was used to determine the influence of
input on output, whose symbol represents the relevant direction and the absolute value
represents the relative importance.

Firstly, an original input variable, including i samples, is increased or reduced by
10% to derive two new datasets X1 = {X11, X12, . . . X1i} and X2 = {X21, X22, . . . X2i},
where X1i and X2i represent the dataset formed by a 10% increase or decrease in the ith

sample in this variable, respectively. Then, the BR-BPNN trained by the original training
sample predicts the other two datasets, and the corresponding prediction results are
O1 = {O11, O12, . . . O1i} and O2 = {O21, O22, . . . O2i}. The ratio of the difference between
O1 and O2 to the original output O is defined as the relative impact value matrix (RIVM).
RIVM is finally averaged according to the number of samples to obtain the ARIV of each
input parameter, as shown in Equations (11) and (12).

RIVM =
O1 −O2

O
(11)

ARIV = avg(RIVM) (12)

2.5. Weight Equation

The weight matrix of a neural network can evaluate the relative importance of each
input variable to the output variable [51]. For a three-layer BPNN which can complete the
infinite approximation to any continuous function (in the closed interval) [52] and realize
the function mapping from any input to output, Garson proposed an equation to calculate
the influence weight of each input variable based on the weight matrix [24]. This paper also
utilized the Garson’s connection weight division equation [24] to evaluate the influence
weight of input variables, as shown in Equation (13):

Ijn =

Nh
∑

m=1
((
∣∣∣wih

jm

∣∣∣/ Ni
∑

k=1

∣∣∣wih
km

∣∣∣)× ∣∣∣who
mn

∣∣∣)
Ni
∑

k=1

{
Nh
∑

m=1
((
∣∣∣wih

jm

∣∣∣/ Ni
∑

k=1

∣∣wih
km

∣∣)× ∣∣who
mn
∣∣)} (13)

where Ijn is the influence weight of the jth input parameter on the nth output neuron. Ni,
Nh is the number of input and hidden layer neurons, respectively; wih, who is the connection
weights from the input layer to the hidden layer and from the hidden layer to the output
layer, respectively.

2.6. Multiple Linear Regression (MLR)

Multiple linear regression studies the explanatory relationship between independent
and dependent variables reflected with regression equations [52]. Suppose that the ran-
dom variable (y) changes with independent variables (xk), and that the linear regression
relationship is represented by Equation (14).

y = β0 + β1x1 + β2x2 + . . . + βkxk + ε (14)

where β0 represents regression constant; β1 − βk are the partial regression coefficients,
representing the influence degree of independent variable on dependent variable; and ε is
the standard estimation error.

After constructing the regression equation, its goodness of fit and statistical signifi-
cance must be verified. Some good-fit indicators of the linear relationship of regression
equation are as follows: the adjusted coefficient of determination (Adjusted R2) which
evaluates how much the independent variables can explain the variation of the dependent
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variable; the standard error of the estimates (SEE) which indicates the degree of relative
deviation between the actual value and the estimated value; F change, which is the con-
structed statistic to test the significance of the whole regression model; and Sig. F change,
which is the probability corresponding to the F statistic.

The overall significance of the regression model does not guarantee the same signifi-
cance for each independent variable. In order to extract significant variables to optimize
the model structure, further significance testing of the regression coefficient is required.
The partial regression coefficient (B) and its standard errors (Std.error) indicate the effect of
independent variables on dependent variables. The magnitude of B represents the degree
of influence, and the sign of B represents the direction of correlation. In addition, to judge
the contribution of independent variables to the variation of dependent variables, the test
T was used to test whether the probability corresponding to the t-statistic was equal to
0, where the t-statistic was constructed as t = B

Std.error . The tolerance (Tol) and variance
inflation factor (VIF) are indexes of multicollinearity diagnosis, and it is generally believed
that linear correlations probably exist between independent variables when Tol < 0.1 or
VIF > 10.

3. Results and Discussion
3.1. Selection of Hyperparameter and Function

The learning rate affects the step adjustment of the loss function [53]. A smaller
value will lead to a slower convergence rate and a more extended network response time.
However, if it is too large, the neural network will converge too quickly, and it could
easily miss the globally optimal solution [53]. In this study, the learning rate was set to
0.01. Since the error tolerance parameter limits the neural network’s weights to avoid
falling into a local optimum during the training process, the allowable error was set to
1 × 10−6. The maximum number of iterations was set to 10,000, considering the network’s
excellent computing power. We used the default values in the MATLAB toolkit for the rest
of the parameters.

The prediction effect of BR-BPNN depends on the selection of various functions.
The activation function that must be continuously differentiable plays a nonlinear trans-
formation role in the input and output [54], transforming the input of an infinite field into
an output within a specified range. The learning function returns the correction value of
weight and bias in each layer, considering the minimization of local errors. The training
function realizes the output of the training records and calls on the learning function
during the training process to correct the connection weight and bias [55]. The training
is terminated when the number of iterations or the calculation error of the loss function
satisfies the preset value, considering the minimization of the global error.

This paper exhaustively conducted a combined trial of various functions in the algo-
rithm. The optimal combination of activation function and learning function was selected
based on the minimum MSE of the training result. The influence of function combinations
on the results is shown in Figure 4.

Notes: 1~10 represents the combination number. The legend describes the combination
mode according to the activation function (the first for hidden layer, the second for output
layer) + learning function. TANSIG is the hyperbolic tangent function; LOGSIG is the
Sigmoid function; POSLIN is the positive linear function; and PURELIN is the linear
transfer function. LEARNGDM is the gradient descent momentum learning function; and
LEARNGD is the gradient descent learning function.

As seen from Figure 4, the No. 5 network structure (LOGSIG + TANSIG + LEARNGDM)
had the lowest error performance with an MSE of 0.00024 and a maximum relative error of
7.89%. The final function combination is shown in Table 3.
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Figure 4. Influence of function combinations on training results.

Table 3. Selection of BR-BPNN functions.

Activation Function Learning
Function

Training
Function

Performance
FunctionHidden Layer Output Layer

LOGSIG TANSIG LEARNGDM TRAINBR MSE

3.2. Determination of the Neurons

The fatigue life N was used in the output layer to reflect the fatigue performance
of concrete.

In order to obtain the influence effect of each variable, this paper analyzed the changes
of the ARIV after ten rounds of random network training, as shown in Figure 5.
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It can be seen from Figure 5 that the correlations reflected by ARIV of the R, Smax, P,
and f were relatively consistent. While R, P, and f were proportional to fatigue life, Smax
was inversely proportional to fatigue life. The most considerable absolute value of ARIV
indicated that Smax had the most significant effect. The randomness of the initial weight
and bias resulted in different prediction effects after multiple network training [25], so the
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ARIV was not constant. The ARIV of W/C, S/C, and G/C failed to show a consistent corre-
lation, thus regarded as noise parameters. Therefore, the input layer neurons comprised
the following four parameters: Smax, R, P, and f.

Ten network structures were constructed for the range of hidden layer neurons deter-
mined by Equation (4). The correlation coefficients of network training and generalization
under these ten network structures are shown in Figure 6. The final BR-BPNN then pre-
dicted the fatigue life for tests conducted in the literature [35], and the generalization effect
is shown in Figure 7.

Materials 2022, 15, 4491 11 of 24 
 

 

 

Figure 6. Correlation coefficients under different network structures. 

 

Figure 7. Generalization effect of BR-BPNN. 

It was found, as shown in Figure 6, that the correlation coefficient of the dataset for 

network training was 0.9959 (left axis) and that for generalization it was 0.9931 (right axis) 

when the number of hidden layer neurons was nine, both of which showed a strong cor-

relation. This paper thus constructed the final BR-BPNN with nine hidden neurons, which 

demonstrated high correlation coefficients in both the training and generalization stages. 

Figure 7 shows that the prediction coincided with the target curve, the MSE between 

the target value and the predicted value was 0.0482, and the correlation coefficient R was 

0.9931. Therefore, the BR-BPNN model provided a reliable generalization capability for 

the following direct applications to S-N curves prediction. 

3.3. Feasibility Analysis of ARIV 

The correlation between the input parameters and fatigue life was analyzed in Sec-

tion 3.2 for random training networks. To reflect the influence degree of input parameters 

in more depth, the final BR-BPNN was used to re-analyze the ARIV of Smax, R, P, and f, 

and the results are shown in Table 4. 

  

 Correlation Coefficient of Training Result

 Correlation Coefficient of Prediction Result

3 4 5 6 7 8 9 10 11 12

0.984

0.986

0.988

0.990

0.992

0.994

0.996

0.998

Number of Nodes in Hidden Layer

C
o

rr
el

a
ti

o
n

 C
o

ef
fi

ci
en

t 
o

f 
T

ra
in

in
g

 R
es

u
lt

0.9900

0.9905

0.9910

0.9915

0.9920

0.9925

0.9930

0.9935

0.9940

0.9945

C
o

rr
el

a
ti

o
n

 C
o

ef
fi

ci
en

t 
o

f 
P

re
d

ic
ti

o
n

 R
es

u
lt

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0
 Predictive Value

 Target Curve

lo
gN

_P
re

d
ic

ti
on

logN_Target

Figure 6. Correlation coefficients under different network structures.
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Figure 7. Generalization effect of BR-BPNN.

It was found, as shown in Figure 6, that the correlation coefficient of the dataset for
network training was 0.9959 (left axis) and that for generalization it was 0.9931 (right axis)
when the number of hidden layer neurons was nine, both of which showed a strong corre-
lation. This paper thus constructed the final BR-BPNN with nine hidden neurons, which
demonstrated high correlation coefficients in both the training and generalization stages.

Figure 7 shows that the prediction coincided with the target curve, the MSE between
the target value and the predicted value was 0.0482, and the correlation coefficient R was
0.9931. Therefore, the BR-BPNN model provided a reliable generalization capability for the
following direct applications to S-N curves prediction.
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3.3. Feasibility Analysis of ARIV

The correlation between the input parameters and fatigue life was analyzed in Section 3.2
for random training networks. To reflect the influence degree of input parameters in more
depth, the final BR-BPNN was used to re-analyze the ARIV of Smax, R, P, and f, and the
results are shown in Table 4.

Table 4. ARIV analysis of input parameters for the final BR-BPNN.

Input Parameter Analysis Result of ARIV

R 0.143
Smax −0.871

P 0.122
f 0.116

It can be seen from Table 4 that the correlation between various input parameters and
fatigue life was consistent with previous conclusions. The maximum stress level affected
the fatigue life negatively; and the stress ratio, failure probability, and static strength were
positively correlated with fatigue life. The absolute value of ARIV shows that Smax had
the most significant effect on fatigue life, followed by R, P, and f. In this section, the
ARIV results are further verified by the SPSS regression analysis and weight equation to
accurately reveal the importance rank of input variables.

3.3.1. Verification by Weight Equation

Table 5 lists the value of 45 connection weights of the final BR-BPNN. wih comprises
thirty six connection weights from four input parameters to nine neurons in the hidden
layer, and who comprises nine weights from the nine hidden layer neurons to the one output
parameter of fatigue life.

Table 5. Connection weights of the BR-BPNN.

Weight Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6 Neuron 7 Neuron 8 Neuron 9

wih

R −2.466 0.241 −2.254 3.662 −2.485 −1.207 2.636 0.331 0.533
Smax −2.447 2.019 −3.015 −5.607 1.485 1.878 0.187 2.564 −3.537

P 0.459 1.055 −0.278 0.973 −0.903 0.818 2.046 −0.280 0.818
f 0.288 −1.000 −0.041 −1.023 0.272 0.263 −1.974 0.537 0.817

who −2.866 −1.634 −2.143 3.628 2.243 1.968 −0.822 −3.570 3.853

The influence weights of R, Smax, P, and f calculated from Equation (13) are 0.265,
0.501, 0.128 and 0.106, respectively. Therefore, it was concluded that the maximum stress
level has the greatest influence on fatigue life, followed by stress ratio, failure probability,
and static strength, which is consistent with the results from the ARIV analysis.

3.3.2. Verification by SPSS Regression Analysis

Based on the correlation conclusions from Section 3.3.1 and the MLR equation in
Section 2.6, three regression models were built, and the analysis results are shown in Table 6
and Figure 8. The difference between these models was primarily about whether to include
the mixed design parameters as independent variables.

Table 6. Summary of analysis results from MLR models.

Model Dependent Variables Independent Variables Removed Variables Adjusted R2 SEE F Change Sig. F Change

1 lgN Smax, R, P, f
S/C, G/C W/C 0.937 0.05371 673.596 0.000

2 Smax, R, P, f / 0.931 0.05599 923.723 0.000

3 Smax, R,
W/C, S/C, G/C / 0.875 0.442 383.921 0.000

4 W/C, S/C, G/C / 0.047 0.20832 5.453 0.001



Materials 2022, 15, 4491 12 of 23Materials 2022, 15, 4491 13 of 24 
 

 

−60

−50

−40

−30

−20

−10

0

10

20

Input Parameters

fPR

 t

 Sig.t

t

Smax

0.00

0.02

0.04

S
ig

.t

 
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
 B

 Std.Error

B

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

P f

Input Parameters

Smax S
td

.E
rr

o
r

R

 
(a) (b) 

Figure 8. Analysis results from T test: (a) T statistic and its significance; (b) Partial regression coef-

ficient and its Std.error. 

Notes: Multicollinearity may exist between various input variables. In case of serious 

multicollinearity, SPSS automatically excludes a variable with a tolerance of much lower 

than 0.1 to avoid affecting the significance analysis. This variable is indicated as the “Re-

moved Variable”. 

It can be seen from Table 6 that Models 1–3 show a significance of less than 0.05, 

indicating that at least one factor of the regression model has a significant impact on fa-

tigue life, which is statistically significant. Model 1, considering all seven parameters, has 

a desirable fitting effect with an adjusted coefficient of determination of 0.937, showing 

that Smax, R, P, f, S/C, and G/C can explain 93.7% of the variation in fatigue life. Notably, 

W/C was removed automatically in the regression analysis due to a low tolerance value (
. .Tol = 0 000 0 1 ), which indicated that W/C is not suitable as an explanatory variable for 

fatigue life due to severe multicollinearity between W/C and other variables. Ignoring 

mixture ratio variables in Model 2, the coefficient of determination only reduced by 0.6%, 

compared with Model 1, and SSE only increased by 4%, further demonstrating that the 

mixture ratio has little effect on fatigue life. Model 3 incorporated mixture ratio parame-

ters but ignored P and f, presenting a more considerable variation. The adjusted R2 re-

duced by 6.6% compared to Model 1, verifying that P and f can better explain fatigue life 

than the mixture ratio. The goodness of fit for Model 4 was poor, and W/C, S/C, and G/C 

could only account for a 4.7% variation in fatigue life. It can be concluded that the mixture 

ratio was not suggested as an independent variable in the fatigue life analysis model. 

Figure 8 shows the T-test results of partial regression coefficients. As shown in Figure 

8a, the significance value for all input parameters was less than 0.05, indicating that each 

of the four parameters (Smax, R, P, f) significantly affect fatigue life. In Figure 8b, B’s pos-

itive and negative display indicates that Smax has a negative impact, while R, P, and f 

have a positive impact. Since BSmax = −0.873, BR = 0.262, BP = 0.102, Bf = 0.067, the degree of 

influence of each parameter is: Smax > R > P > f. These results are also consistent with those 

from the ARIV and weight equation analyses. 

3.3.3. Comparison between Various Methods 

The ARIV analysis, weight equation analysis, and SPSS regression analysis show a 

consistent observation, which verifies the correctness of the final BR-BPNN. It also con-

firms the feasibility of ARIV in determining the correlation between inputs and outputs 

and the relative importance of various input parameters affecting fatigue life. However, 

whether ARIV is more practical than the other two methods requires a further exploration 

of the advantages and disadvantages of the three methods in a multi-parameter signifi-

cance analysis. 

Figure 8. Analysis results from T test: (a) T statistic and its significance; (b) Partial regression
coefficient and its Std.error.

Notes: Multicollinearity may exist between various input variables. In case of serious
multicollinearity, SPSS automatically excludes a variable with a tolerance of much lower
than 0.1 to avoid affecting the significance analysis. This variable is indicated as the
“Removed Variable”.

It can be seen from Table 6 that Models 1–3 show a significance of less than 0.05,
indicating that at least one factor of the regression model has a significant impact on fatigue
life, which is statistically significant. Model 1, considering all seven parameters, has a
desirable fitting effect with an adjusted coefficient of determination of 0.937, showing that
Smax, R, P, f, S/C, and G/C can explain 93.7% of the variation in fatigue life. Notably,
W/C was removed automatically in the regression analysis due to a low tolerance value
(Tol = 0.000 << 0.1), which indicated that W/C is not suitable as an explanatory variable
for fatigue life due to severe multicollinearity between W/C and other variables. Ignoring
mixture ratio variables in Model 2, the coefficient of determination only reduced by 0.6%,
compared with Model 1, and SSE only increased by 4%, further demonstrating that the
mixture ratio has little effect on fatigue life. Model 3 incorporated mixture ratio parameters
but ignored P and f, presenting a more considerable variation. The adjusted R2 reduced by
6.6% compared to Model 1, verifying that P and f can better explain fatigue life than the
mixture ratio. The goodness of fit for Model 4 was poor, and W/C, S/C, and G/C could
only account for a 4.7% variation in fatigue life. It can be concluded that the mixture ratio
was not suggested as an independent variable in the fatigue life analysis model.

Figure 8 shows the T-test results of partial regression coefficients. As shown in
Figure 8a, the significance value for all input parameters was less than 0.05, indicating that
each of the four parameters (Smax, R, P, f ) significantly affect fatigue life. In Figure 8b, B’s
positive and negative display indicates that Smax has a negative impact, while R, P, and f
have a positive impact. Since BSmax = −0.873, BR = 0.262, BP = 0.102, Bf = 0.067, the degree
of influence of each parameter is: Smax > R > P > f. These results are also consistent with
those from the ARIV and weight equation analyses.

3.3.3. Comparison between Various Methods

The ARIV analysis, weight equation analysis, and SPSS regression analysis show a
consistent observation, which verifies the correctness of the final BR-BPNN. It also con-
firms the feasibility of ARIV in determining the correlation between inputs and outputs
and the relative importance of various input parameters affecting fatigue life. However,
whether ARIV is more practical than the other two methods requires a further explo-
ration of the advantages and disadvantages of the three methods in a multi-parameter
significance analysis.
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The weight equation analysis evaluates the relative importance of the input parameters,
which thoroughly explains the structural significance of the weight matrix in the neural
network. As intuitive and concise as the method is, Equation (13) is only valid for the
three-layer neural network, and the equation’s operation with absolute values cannot show
a positive or negative correlation between input parameters and fatigue life.

The mathematical meaning of the SPSS MLR analysis is clear, and the influence of input
parameters on fatigue life can be evaluated from the aspects of correlation and importance.
However, this method assumes a linear fit of the regression equation without considering
other types of relationships. It cannot reflect the actual mapping relationship well when
the noise factor is included, which can be considered a limitation [56], as shown in Table 7.
The collinearity statistics of f and G/C in Model 1 show that the model demonstrated
multicollinearity. As a result, the significance test of the independent variables and the
model prediction function become meaningless.

Table 7. Regression coefficient analysis of Model 1.

Model Independent Variables Std.error t Sig.t
Collinear Analysis

Tol VIF

2

R 0.015 19.235 0.000 0.485 2.062
Smax 0.015 −57.089 0.000 0.634 1.577

P 0.011 16.150 0.000 1.000 1.000
f 0.030 −0.419 0.676 0.063 15.910

S/C 0.009 3.018 0.003 0.769 1.301
G/C 0.032 −4.876 0.000 0.062 16.108

Although the ARIV analysis of a neural network is strongly model-dependent, it can
deal with nonlinear relationships and could preliminarily screen out the noise variables
with insignificant effects through trial calculation. It also helps to construct the optimal
network, a feedback mechanism to evaluate the correlation between the input and output
parameters and the relative importance of various input parameters. Therefore, compared
with the weight equation analysis and SPSS regression analysis, the ARIV analysis has a
broader scope of application, and it is recommended for future variable effects analysis.

3.4. S-N Curves Predicted by BR-BPNN

Based on experimental results, the conventional research on flexural fatigue of con-
crete aims to fit maximum stress level versus fatigue life equation according to a failure
probability of about 50%. The experimental data and S-N curves from various studies are
shown in Figure 9.
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Because fatigue tests are generally time-consuming and expensive, the number of
specimens in individual studies is limited, as shown in Figure 9. Therefore, it is desirable
to combine them to obtain a more accurate concrete fatigue life prediction under various
stress states and guarantee rates.

This paper utilized the generalization capability of BR-BPNN to predict concrete fa-
tigue life in different states by providing different values of Smax, R, P, and f. In theory,
the possible combinations of parameters are infinite. For practical demonstration, consider-
ing the input data characteristics for network training, the following text only shows the
generalization effect when R = 0.1, 0.2, 0.5; f = 5, 6, 7 MPa; P = 5%, 50%, 95% for concrete
flexural fatigue.

3.4.1. S-N Curve under 50% Guarantee Rate

Figure 10 shows the S-N curves predicted using the BR-BPNN under the 50% guarantee
rate for various combinations of f and R. Besides the generalization curves, experimental
data points from the literature are also shown in the figure, and different elements in the
literature are distinguished by shape. At a specified f, to facilitate a comparison between
the generalization curve and the experimental data, both the data points and curve under
the same R were assigned a unified color, black for R = 0.1, blue for R = 0.2, and red for
R = 0.5.
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Figure 10. S-N curve under 50% guarantee rate predicted by BR-BPNN.

In accordance with the conclusions of Section 3.3, Figure 10 details the relationship
between fatigue life and its affecting factors. It can be seen that the S-N curves generally
agree well with the corresponding reference data. As S decreases, the fatigue life increases,
although the relationship is not linear. This pattern is consistent with experimental observa-
tions [32–35]. Moreover, the fatigue life increased with an increase in R and f. Because few
data points were available for R = 0.5 in the network training dataset, the generalization
effect of the S-N curve with R = 0.5 was less satisfactory than that of R = 0.1.

3.4.2. Probability Distribution of Fatigue Life

By changing P in BR-BPNN, a reliability analysis could be conducted to evaluate the
failure probability of concrete specimens under fatigue load. The S-N curve under the P of
5%, 50%, and 95% generalized by BR-BPNN is shown in Figure 11. Similarly, the prediction
curves under the same P were assigned a unified color, black for P = 50%, blue for P = 5%,
and red for P = 95%.
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Figure 11. Probabilistic S-N curves predicted by BR-BPNN: (a) Probability analysis for f = 7 MPa;
(b) Probability analysis for f = 6 MPa; (c) Probability analysis for f = 5 MPa.

This section discusses the probability distribution of concrete flexural fatigue life. It
can be seen from Figure 11 that the P of 5% curve represents a lower limit of fatigue life
and the P of 95% curve is an upper limit of the fatigue life. The generalization capability
of the network for the fatigue life probability analysis is optimal for f = 5 MPa. When
f = 6 MPa, the fatigue life probability analysis at R = 0.1 and 0.5 can be achieved. For
f = 7 MPa, a satisfactory analysis can be obtained only at R = 0.1.
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As seen from the S-N curves, the predicted results are consistent with corresponding
reference data [32–35] when a strong correlation exists, which provides a comprehensive
method with which to establish the probabilistic fatigue life curves from existing data.

3.5. Mutual Prediction of Flexural and Tensile Fatigue

Zhao et al. concluded that there were no significant discrepancies in fatigue properties
for high-strength concrete under splitting tension, axial tension, and flexure [36]. To verify
whether the conclusion also applies to regular grade concrete, BR-BPNN was used to
mutually predict the flexure, splitting tension, and axial tension of fatigue life.

It should be noted that the axial/splitting tensile strength of concrete was less than the
flexural strength. Since the model is only valid within the range of the input parameters,
extrapolation beyond these ranges could not be performed [14]. Suppose the static strength
is considered an input parameter while training the network. In that case, it is foreseeable
that the generalization effect of the network cannot be guaranteed due to the significant
difference between the tensile strengths of different stress states, as shown in Figure 12.
The predicted fatigue life from the model trained from flexural fatigue data is generally
lower than the target value of axial tension data when f is considered an input parameter.
The correlation coefficient between prediction and target is only 0.779, which shows a poor
simulation effect.
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This section thus utilizes the three parameters of Smax, R, and P as inputs to construct
a revised BR-BPNN. Due to the reduction in the input parameters, the number of hidden
neurons can be appropriately increased to improve the network complexity and ensure
training accuracy. When 20 neurons in the hidden layer were selected throughout the trial,
the revised BR-BPNN provided a fair prediction effect, as shown in Figure 13.

Figure 13a shows that the model based on flexural fatigue data approximates satisfac-
torily the fatigue life of the splitting state in the range of Smax < 0.9, and the correlation
coefficient can reach 0.915. Similarly, good feedback was obtained only in part in the data
range for fatigue life prediction under axial tension. This range covers data points with
Smin of 0.1 and 0.15, and Smax of 0.6~0.85, with a correlation coefficient of 0.944.

Figure 13b shows that the network trained based on axial/splitting tensile fatigue data
has a good prediction effect on the flexural fatigue life. The overall correlation coefficient
between the prediction and experimental results is 0.917.

It is noted that Smax for the majority of axial/splitting tensile fatigue data lay within
0.65~0.90, while those in Reference [43] had a Smax of 0.3~0.6. For flexural fatigue, Smax
varied from 0.6~0.9. This difference could explain why axial/splitting tensile fatigue data
could account for flexural fatigue life well but not vice versa. An analysis was re-performed
with those data from Reference [43] excluded, and the results are shown in Figure 14.
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Figure 14. Mutual prediction of flexural and tensile fatigue life using BR-BPNN with data from Ref-

erence [43] excluded from analysis: (a) Prediction of tensile fatigue based on flexural fatigue net-

work; (b) Prediction of flexural fatigue based on tensile fatigue network. 

Figure 14 demonstrates that the model based on flexural fatigue data approximated 

the fatigue life of the axial/splitting states, and the network trained based on axial/splitting 

tensile fatigue data led to a good prediction effect on the flexural fatigue life. The overall 

correlation coefficient between the prediction and experimental results are 0.996 and 0.985 

for Figure 14a,b, respectively. 

In this section, flexural fatigue data are presented under certain circumstances. It ver-

ifies that a similar trend exists for fatigue lives between different tensile stress states; thus, 

to some extent, the experimental results of splitting tension, axial tension, and flexure 

Figure 13. Mutual prediction of flexural and tensile fatigue life using BR-BPNN: (a) Prediction of
tensile fatigue based on flexural fatigue network; (b) Prediction of flexural fatigue based on tensile
fatigue network.
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Figure 14. Mutual prediction of flexural and tensile fatigue life using BR-BPNN with data from
Reference [43] excluded from analysis: (a) Prediction of tensile fatigue based on flexural fatigue
network; (b) Prediction of flexural fatigue based on tensile fatigue network.

Figure 14 demonstrates that the model based on flexural fatigue data approximated
the fatigue life of the axial/splitting states, and the network trained based on axial/splitting
tensile fatigue data led to a good prediction effect on the flexural fatigue life. The over-
all correlation coefficient between the prediction and experimental results are 0.996 and
0.985 for Figure 14a,b, respectively.

In this section, flexural fatigue data are presented under certain circumstances. It
verifies that a similar trend exists for fatigue lives between different tensile stress states;
thus, to some extent, the experimental results of splitting tension, axial tension, and flexure
could be combined in a future analysis. This observation is meaningful for the prospect of
expanding the test dataset and promoting an understanding of a unified failure mechanism
of concrete tensile fatigue.

3.6. Limitations and Future Work

As discussed in Section 3.5, it was observed that satisfactory prediction results cannot
be guaranteed unless the data to be predicted are within the scope of the training data.
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This finding is consistent with the caution recommended in previous research [14,23],
reflecting that the artificial neural network dramatically depends on the quantity and
quality of training data. Therefore, it is crucial to collect data with broad coverage, and the
application of BPNN models should be exercised with caution, being limited to only the
range of input parameters that have been trained.

This study provided a comprehensive method with which to establish the proba-
bilistic fatigue life curves from existing data. The work conducted only involved BPNN
with Bayesian regularization. In addition to BR-BPNN, other methods such as particle
swarm optimization and genetic algorithm are available to facilitate neuron networks to
reach global optimization [57]. Furthermore, abundant soft computing methods have been
successfully applied to various materials. These advanced techniques include regression
tree, random forest, support vector machine, extreme learning machine, genetic program-
ming, and Gaussian process regression [2,45,46,58]. With the help of deep learning, more
work is foreseeable in the future to broaden the application under different experimental
conditions, to concrete with different material compositions, and eventually to structural
components [20,54,59].

Research on the combination of ANN and traditional statistical analysis is also war-
ranted. An artificial neural network can effectively extract the information contained in the
data and describe the nonlinear relationship between characteristic parameters and fatigue
life. However, a “black box” does not reveal much about the underlying mechanism for
most practical applications [18]. Traditional statistical methods can derive the analytical
probability distribution of fatigue life with physical meaning, representing fatigue life
with normal distribution or Weibull distribution. Therefore, in the follow-up study, it is
necessary to integrate the advantages of these two methods.

4. Summary and Conclusions

The tensile fatigue characteristics of concrete materials represent fundamental data for
designing, assessing, and retrofitting concrete structures such as bridge decks vulnerable to
fatigue cracking under repetitive loading. As fatigue life is affected by loading and material
properties that are nonlinearly interwoven, the conventional statistical method shows a
limited capacity to consider all these factors accurately. BPNN, which does not require
assumptions about the mathematical functions, on the other hand, has become a promising
alternative for fatigue life prediction in recent years. However, successful applications of
BPNN on concrete flexural fatigue are still preliminary, and a comprehensive method of
selecting and evaluating various input parameters is desirable. One of the most common
shortcomings of BPNN is termed “overfitting”, where the model shows excellent accuracy
in training but predicts poorly for an unknown data set. With an additional weight
attenuation term in the error function, the Bayesian regularization technique has been
shown to solve the overfitting problem. Garson and other researchers proposed various
methods, including MLR, to assess the significance of input parameters quantitatively.

This study utilized BR-BPNN to build a viable model, provided three methods to
evaluate parameters affecting flexural fatigue life, and predicted fatigue life under different
experimental conditions. Our analysis was based on an input dataset with 432 datapoints
obtained from experiments reported in the literature. Background knowledge on backprop-
agation neural networks, Bayesian regularization, average relative impact value, weight
equations, and multiple linear regression was briefly introduced. After properly selecting
hyperparameters such as activation, learning, and performance functions, we constructed
the optimal model. The optimal BR-BPNN comprises one input layer of four parameters,
one hidden layer with nine neurons, and fatigue life as the only output. The correlation
coefficient in the stage of network training can reach 0.9959. When verifying the generaliza-
tion capability of the network, it demonstrated a strong correlation of 0.9931, indicating
that the network has high accuracy in both the training and generalization stages.

We used ARIV to evaluate the relative importance of parameters. In analyzing multiple
variables directly affecting fatigue life, Smax was found to have the most significant impact
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on concrete fatigue life among the seven parameters considered, followed by R, P, and
f. The mix ratio is regarded as the noise parameter. These findings are also verified by
Garson’s weight equation analysis and SPSS MLR analysis.

The constructed BR-BPNN model is capable of predicting the concrete flexural fatigue
life for any acceptable level of failure probability. Generally, the predicted S-N curves
corresponding to 50% failure probability agree well with the reference data and empirical
equations. The S-N curves under the 5% and 95% failure probability could be practically
taken as the lower and upper bound limits of concrete flexural fatigue life, which provides
a reference range of expectations when evaluating the fatigue performance of concrete
subjected to fatigue loading.

This study also verifies the compatibility of tensile fatigue tests on plain concrete
under different stress states. The prediction of axial/splitting tensile fatigue life from a
neural network based on a flexural tensile fatigue dataset shows applicability for splitting
tensile fatigue data with Smax < 0.9 and axial tensile fatigue data with Smin of 0.1 and
0.15 and Smax between 0.6 and 0.85. On the contrary, the overall correlation coefficient
between predicted results and experimental values reached 0.917 when predicting flexural
fatigue life from the other two modes of the tensile fatigue dataset. When those data falling
out of the input range are excluded from analysis, flexural fatigue data and axial/splitting
tensile fatigue data agree very well, with an overall correlation coefficient of up to 0.99.

It was noticed that the most suitable BR-BPNN for different research problems might
not be identical. When predicting concrete flexural tensile fatigue, the model with four
input parameters (Smax, R, P, and f ), one output parameter (N), and one hidden layer
with nine neurons had the best performance. However, in the mutual prediction between
flexural tensile fatigue data and axial/splitting tensile fatigue data, the optimal BR-BPNN
consisted of three input parameters (Smax, R, and P) and one hidden layer with 20 neurons.

By utilizing the valuable fatigue test data available in the literature, this paper demon-
strated that BR-BPNN could successfully predict the tensile fatigue life of concrete under
various conditions. For practical applications of fatigue test program design and fatigue
life assessment, BR-BPNN could replace part of the expensive and time-consuming fatigue
experiment and play the role of a supplementary test. In addition to the inherent defects of
the artificial neural network as a “black box”, BR-BPNN has high requirements in terms of
the number of samples required and the quality of training data. When sufficient sample
data becomes available, more material parameters, more complex experimental condi-
tions, more types of concrete materials, more sophisticated soft computing techniques, and
perhaps mechanics-based models could be incorporated for future research.
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Notations

b(l)j bias of the jth neuron in layer l
f static strength of concrete

h(l)j output of jth neurons in hidden layer l
i suggested number of neurons in the input layer; failure order
k number of neurons in the output layer
m number of neurons in the hidden layer
ps mapping relationship
t conducted statistic

w(l)
ij

connection weight between the ith neuron in layer l − 1 and the jth
neuron in layer l

wopt minimum point of loss function
x data before normalization
xmax maximum value of input data before normalization
xmin minimum value of input data before normalization
y data after normalization
ymax maximum boundary of data after normalization
ymin minimum boundary of data after normalization
ARIV average relative impact value
B partial regression coefficient
Bf partial regression coefficient of static strength
BP partial regression coefficient of failure probability
BR partial regression coefficient of stress ratio
BSmax partial regression coefficient of maximum stress level
BPNN backpropagation neural network
BR-BPNN Bayesian regularized backpropagation neural network
ED loss function
E(w) improved loss function
E
(
wopt

)
minimum of loss function

Ew penalty term of the loss function
F change constructed statistic
G/C gravel-cement ratio
H Hessian matrix

H(l) = [h(l)1 , h(l)2 , . . . h(l)j ] output of neurons in hidden layer l
I number of neurons in layer l−1
M number of all connection weights
MLR multiple linear regression
MSE mean square error

N
number of stress cycles; number of training samples; number of test
samples at a given stress level

O1 = {O11, O12, . . . O1i} prediction results for data set X1
O2 = {O21, O22, . . . O2i} prediction results for data set X2
→
O = [o1, o2, . . . ok] output vector
P probability of fatigue failure
R stress ratio, defined as minimum stress divided by maximum stress
R2 coefficient of determination
RIVM relative impact value matrix
S stress level, defined as fatigue stress divided by f
S/C sand-cement ratio
SEE standard error of the estimates
Sig. F change probability corresponding to the F statistic
Sig,t probability corresponding to the t statistic
Smax maximum stress level, defined as maximum fatigue stress divided by f
Smin minimum stress level, defined as minimum fatigue stress divided by f
Std.error standard errors
Tol tolerance
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→
T = [t1n, t2n, . . . tkn] target output of the n-th training sample

V(l) = [v(l)1 , v(l)2 , . . . v(l)j ] input of neurons in hidden layer l
VIF variance inflation factor
W/C water-cement ratio
X1 = {X11, X12, . . . X1i} data set derived by increasing the original inputs by 10%
X2 = {X21, X22, . . . X2i} data set derived by decreasing the original inputs by 10%
→
X = [x1, x2, . . . xi] input vector
α regularization parameter
αopt improved regularization parameter
β regularization parameter
βopt improved regularization parameter
β0 regression constant
β1 − βk partial regression coefficients
γ number of valid parameters reducing MSE
ϕ(l)(·) activation function of layer l neurons
η learning rate of backpropagation
λ constant between 1 and 10 for estimating m
ε standard estimation error
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