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Abstract: Limestone of different particle sizes is often calcined together to improve production
efficiency, but the calcination effect of mixed particle size limestone is difficult to guarantee. To
investigate the effect of different particle size combinations on calcination, this study uses a porous
media model and a shrinking core model to simulate the calcination process for a single particle
size and two mixed particle sizes in a Parallel Flow Regenerative lime kiln (PFR lime kiln). The
results of the study show that an increase in void fraction has a small effect on the gas temperature.
The temperature also does not change with particle sizes. At the same time, the decomposition is
poor near the wall and better the closer to the center of the calcination zone. In addition, when the
particle sizes differ by 2 times, the decomposition of small limestone particles had less influence, and
the decomposition of large particles was also better. When the particle sizes differ by 3 times, the
decomposition of both limestone sizes is more affected, especially for the larger limestone size, where
only the outer surface is involved in the decomposition.

Keywords: PFR lime kiln; calcination zone; mixed particle size; numerical simulation; lime calcination

1. Introduction

The major constituent of quicklime is calcium oxide (CaO), which is produced in
industrial production by calcining limestone, whose main component is calcium carbonate
(CaCO3), at high temperatures to cause a decomposition reaction. Quicklime is widely
used in metallurgy, construction, food, agriculture, and other fields, especially in the iron
and steel smelting process, which has the highest demand for quantity, as well as high
requirements for its chemical activity. The PFR lime kiln is widely used due to its support of
multiple fuels and particle sizes, high thermal energy utilization, high output, and excellent
chemical activity of the product. Generally, natural gas, with methane (CH4) as the main
component, is used as fuel gas in the PFR lime kiln, but due to the increasing restrictions on
greenhouse gas emissions and the rising price of natural gas in recent years, blast furnace
gas (BFG), one of the by-products of steel smelting, is gradually being used as fuel gas in
the PFR lime kiln.

The PFR lime kiln is one of the lime shaft kilns. There are many classical studies on
lime shaft kilns.

Senegačnik presents that the air excess ratio can be reduced to its optimal level by
recirculation of recuperator waste gas [1]. Novel aspects addressed are the simultaneous
effects of inner particle heat-conduction and pore-diffusion of the gaseous product of the
calcination reaction (CO2) modeled by a shrinking core approach [2]. George aims at
improving fuel and limestone utilization and reducing waste production in the plant [3].
A new way to evaluate the energetic performance of lime shaft kilns is proposed [4].
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A shaft kiln (diameter 4 m and height 21 m) for processing lime is investigated [5]. To
present a 1D mathematical model to simulate the lime-burning process in normal shaft
kilns [6], Gutiérrez et al. analyzed the energy consumption of vertical kilns [7], Piringer
classified lime kilns according to their operating principle and process, and Krause used
these classifications to study the calcination process in a PFR lime kiln using CFD-DEM
principles [8,9]. Mohammadpour started to use a porous medium model(PMM) to study the
gas flow in a lime shaft kiln [10]. Hallaka couple a DPM based on the SCM by comprising
differential equations in a single shaft kiln [11], then Duan established a combined porous
medium model and shrinking core model to investigate the gas-solid heat transfer and
limestone decomposition process of an annular shaft lime kiln and a PFR lime kiln [12,13].
Kashyap analyzes the performance of a regenerative evaporative cooler with all the possible
configurations of the air-flow direction by keeping the water flow in a natural (gravity-
driven) downward direction [14]. Garcia-Tenorio presents a methodology to select the
appropriate signals to produce data-driven models of the kiln as a linear interacting
system [15]. Joel Orre developed an OpenModelica model describing the calcination
process of limestone in the lime kiln of the SSAB Raahe lime kilns in order to help in the
formulation of operation strategies and to choose important parameters to measure and
monitor [16].

The latest advances are summarized in the field of modeling packed beds with particle-
resolved CFD, i.e., a geometric resolution of every pellet in the bed [17]. Resolved CFD-DEM
model is proposed to model the seepage-induced fine particle migration within the gap-
graded soils consisting of fine and coarse particles [18]. In the CFD-DEM simulations
of fluid-particle systems on sub-particle scale mesh, a smoothed void fraction method
(SVFM) is developed to compute the void fraction field based on the particle position and
volume [19]. Aimed at optimizing the resin-molding process, a method for numerically
analyzing the aggregation and dispersion behavior of the filler in resin composite was
proposed [20]. Controlling the size of fragrance microcapsules using designed agitator
paddles was investigated and studied with CFD simulation by Hongbin Zhao [21]. Nagata
et.al. show that the DEM-CFD simulation could contribute to an appropriate rotor design
for uniform dispersion [22]. Ghaffari examines a formulation for the laminar burning
velocity that takes into account the effect of particle size using the particle-size-dependent
Damkohler and Thiele dimensionless numbers [23].

In studies related to limestone calcination, numerical simulations and experiments
are often carried out using homogeneous particle sizes, often increasing or decreasing the
overall particle size for the influence of particle size on the calcination process in lime kilns,
without considering the degree of influence on the decomposition of limestone when mixed
particle sizes are calcined simultaneously. In production, it is more realistic to mix different
sizes of lump limestone to participate in calcination. Therefore, this study allows for the
use of a reasonable range of mixed-size lump limestone for calcination in future production
to achieve better production efficiency while meeting quality requirements.

2. Physical Model

The PFR lime kiln is 20 m high and is divided into two chambers of the same structure
with a cross channel. Each chamber contains a preheating zone, a calcination zone, and a
cooling zone.

The PFR lime kiln has a cross channel in the middle and the left and right chambers are
identical and symmetrical in structure. The chamber consists of a cooling zone, a calcination
zone, and a preheating zone. The preheating zone is 6 m, above the limestone inlet or the
exhaust gas outlet, below which there are 8 fuel gas jets, and the lowermost fuel gas inlet is
also the boundary between the preheating zone and the calcination zone. The calcination
and cooling zones are 9 m and 5 m respectively. The thermal decomposition of limestone
mainly takes place in the calcination zone, this paper only focuses on the calcination zone
enclosed by the bottom of the fuel nozzle, the interface between the calcination zone and
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the preheating zone, the interface between the calcination zone and the cooling zone, and
the side wall of the kiln chamber (Figure 1).
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Figure 1. Features of PFR lime kiln composition and the calcination zone.

3. Mathematical Models and Boundary Conditions

The production process of lime includes wind resistance and sidewall effect phenom-
ena in flow; convection, radiation, and conduction between solid particles, heat conduction
between CaO and CaCO3 inside the particles and heat of decomposition of calcium carbon-
ate in heat transfer; and mass transfer process includes decomposition behavior of calcium
carbonate and diffusion phenomena of carbon dioxide. Therefore, the interior of the lime
kiln is a very complex physicochemical process, and therefore, this study is based on the
following hypotheses.

1. Excluding the effect of the external insulation of chambers.
2. Disregard the impurities contained in the limestone particles and treat the particles as

pure calcium carbonate.
3. Treating limestone particles as spherical particles.
4. Uniform distribution of limestone particles of different particle sizes within the cal-

cination zone and shift without considering the deflection occurring in the moving
process.

5. Gases do not affect the movement of solids.

The simulation uses a quasi-steady state approach to simulate the continuous production.

3.1. Mathematical Models

Ergun equation [24]

|∇p|
L

=
150µ(1− γ)2

D2
pγ3 v∞ +

1.75ρ(1− γ)

Dpγ3 v2
∞ (1)

1
α
=

150(1− γ)2

D2
pγ3 (2)
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C2 =
3.5(1− γ)

Dpγ3 (3)

For the decomposition process of individual limestone particles, the shrinking core
model can be used for the calculation of the degree of reaction. The shrinking core model
(SCM) can be understood as a situation where the outermost layer of calcium carbonate
decomposes first when the limestone first starts to react, and as the reaction proceeds, the
reaction interface gradually transitions from the outermost layer to the spherical core of the
particle. Additionally, the reaction process gradually formed the core of the solid unreacted
calcium carbonate, the outer core of the decomposition product’s fluffy calcium oxide
situation. The reaction to the end of the unreacted core completely disappears, leaving
only the calcium oxide layer, however, the whole limestone particles in the decomposition
process, the total volume does not change. As the limestone passes through the calcination
zone, it is continuously calcined, and the outer core calcium oxide keeps increasing and
the inner core calcium carbonate keeps decreasing. The temperature decreases with height.
The schematic diagram of the reaction process in the calcination zone is shown in Figure 2.
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Figure 2. Schematic diagram of gas-solid movement and limestone decomposition process in the
calcination zone.

The equations of the shrinkage core model are as follows.

∂rCaCO3

∂t
= −k ·

MCaCO3

ρCaCO3

· RD (4)

RD = kD
(

peq − pco2

)
(5)

kD = 0.0001Tp exp
(
−4026/Tp

)
·YT.C (6)

peq = 101325 exp[17.74− 0.00108Ti + 0.332 log(Ti)− 22020/Ti] (7)

YT.C =

{
480

TP−958 TP > 1150K
2.5 TP ≤ 1150K

(8)

λ =
4πλ1λ2

λ1

(
1

rc1
− 1

rc2.m

)
+ λ2

(
1

rc1.m
− 1

rc1

) (9)
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Limestone decomposition rate.

XS = 1−
r3

c2

r3
c1

(10)

The temperature equations are as follows.

∂

∂t
[
ϕCaCO3 ρicpiTi

]
+∇

(→
v down ϕCaCO3 ρicpiTi

)
= λ(1− γ)(To − Ti)/Vs − k ·QD∆HR (11)

QD= (1 − γ)
4πr2

c1
Vp
× RD (12)

Energy equation of the external CaO.

∂
∂t (ϕCaOρocpoTo) +∇ · (

→
v down ϕCaOρocpoTo) =

∇ · ((kCaO + eb)∇To) + avhv
(
Tg − To

)
− λ(1− γ)(To − Ti)/Vs

(13)

The main reference for thermal conductivity between solids in porous media models
is the following Equation [25]

eb = 16σT3
o /(3β) (14)

The convective heat transfer coefficient is the following Equation [26]

hv =
Nu · λg

lz
(15)

Nu = Pr1/3 · 1.6274Re−0.575

γ
(16)

lz = 0.0178ρ0.596 (17)

Re =
ρg · Dp · u

µ
(18)

Pr = ν/a (19)

a =
λg

ρgcpg
(20)

av = (1− γ)×
Sp

Vp
(21)

The gas energy equation.

∂

∂t
(
γρgcpgTg

)
+∇

(
γ
→
v ρgcpgTg

)
= ∇ ·

(
kg∇Tg

)
+ avhv

(
To − Tg

)
(22)

ε =

(
1− MCaO/ρCaO

MCaCO3 /ρCaCO3

)
× XS (23)

ϕg= (1− γ
)
· ε + γ (24)

ϕCaCO3 = (1− γ)× (1− XS) (25)

ϕCaO = 1− ϕg − ϕCaCO3 (26)

In order to facilitate the calculation and analysis, 40 mm limestone particle size was
taken as the minimum scale, and the distance from the chamber side wall y = 0.04 m, 0.08 m,
0.12 m, and midline were selected to analyze the variation of gas and solids temperature
fields along the longitudinal direction, and the lowermost part of the calcination zone was
used as the solids outlet after calcination to analyze the limestone decomposition, as shown
in Figure 3.
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3.2. Boundary Conditions

The inner wall of the chamber is considered as the adiabatic wall and the whole
interior of the chamber is considered as a porous media area with CaCO3. The fuel gas
temperature is taken directly as the boundary condition. The limestone particles in the
calcination zone are uniformly distributed and there is no segregation. Other calculation
conditions are shown in Table 1.

Table 1. Calculation conditions.

Calculation Conditions Value Unit

Fuel gas inlet velocity 20 m/s
Fuel gas inlet temperature 1673 K

Fuel gas nozzle diameter (8) 70 mm
Cooling air inlet velocity 10 m/s

Cooling air inlet temperature 300 K
Cooling air inlet diameter 1000 mm
Material movement speed 1.54 m/h

Initial temperature of material (limestone) 300 K
Average diameter of material 40, 80, 120 mm

Calcium carbonate density 3310 kg/m3

Calcium oxide density 2810 kg/m3

Calcium carbonate thermal conductivity 2.26 W/m·k
Calcium oxide thermal conductivity 0.07 W/m·k
Calcium carbonate decomposition

temperature 1073 K

Void fraction 0.36, 0.41, 0.46 -

The equations above are solved using the User Defined Functions (UDF) in ANSYS
Fluent. The semi-implicit method (SIMPLE algorithm) was used to solve the pressure
and the velocity coupled problem; the turbulence equations were solved in the first-order
windward difference format, and the other equations were treated by the second-order
windward difference; the convergence factor are set to 10−6.
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4. Results and Analysis
4.1. Gas-Solid Temperature Field and Decomposition of 40 mm Uniform Particle Size Limestone

The fuel gas enters the calcination zone and fills the calcination zone, the lowest
temperature is around 1400 K and is concentrated on the position where the limestone has
just entered the calcination zone. The temperature in the near-wall area is significantly
lower than that in the center of the calcination zone and decreases as it moves down the
calcination zone (Figure 4a). In the top area of the calcination zone, the gas temperature
distribution is not yet uniform at each position, and the temperature at the position near
the fuel gas inlet is more than 150 K higher than in the other positions. And the high-
temperature gas from the inlet into the calcination zone after 2 m distance, the temperature
drops sharply, especially from the chamber wall 0.08 m and 0.12 m gas drop more. While the
calcining area is centered and closer to the chamber wall, the temperature drop is relatively
gentle. After the gas enters the calcination zone at a distance of 2 m, the temperature
difference between the longitudinal positions of the calcination zone is smaller, and until
the CaO outlet, the trend of gas temperature changes is basically the same (as in Figure 4b).
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(a) (b) 

Figure 4. Gas temperature field at 40 mm. (a) Gas temperature; (b) Gas temperature changes in
y = 0.04, 0.08, 0.12 m and mid line.

Compared to the gas temperature distribution in the calcination zone, the position
of the solid surface temperature close to the gas temperature is limited to the upper part
of the calcination zone, and the temperature difference among the positions gradually
increases as the calcination zone is deepened. At the same time, the temperature gradient
on the near-wall side of the calcination zone is also greater than that on the near-wall
side of the gas temperature field (Figure 5a). The solid surface temperature increases and
decomposition reaction occur as the calcination zone is deepened, while the solid surface
temperature of y = 0.04 m and the midline to the height of 8 m in the calcination zone,
the temperature has stabilized at about 1620 K, after which no more significant changes
occur. Additionally, the solid surface temperature at the position of y = 0.08 m and 0.12 m
entered the calcination zone and quickly rise to about 1660 K, which was close to the fuel
gas temperature. After that, it decreases slightly and finally stabilizes at about 1650 K as
the height of the calcination zone decreases (see Figure 5b).
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When the solids reached the outlet of the calcination zone, most of the calcium carbon-
ate shells finished decomposing into CaO, but there are still CaCO3 of different thicknesses
in the core. The thickness of CaCO3 in some near-wall areas reaches 0.03 mm or more,
while the area with the best degree of decomposition has 0.015 mm undecomposed. The
undecomposed thicknesses are all very small relative to the 20 mm limestone feed radius
and can be considered as fully calcined(Figure 6). However, the thickness of CaCO3 at the
outlet plane of the calcination zone is not uniform, which is mainly due to the temperature
and velocity do not reach the lower part uniformly, which makes the solids in the lower
part unevenly heated.
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4.2. Temperature Field and Decomposition of Limestone with 40 mm and 80 mm

After the fuel gas entered the calcination zone filled by 40 mm and 80 mm particles,
it quickly filled the upper part, while the center is less affected by the high temperature
and shows a larger temperature gradient. As the calcination zone extends downward,
the gas temperature gradually decreases, especially the gas temperature near the wall of
the chamber decreases more, and the high-temperature area of the gas is concentrated in
the central part of the calcination zone (Figure 7a). The gas temperature change in the
extension direction of the calcination zone is basically the same as 40 mm, which indicates
that the gas diffusion is less affected by the mixed particle size and uniform particle size
with different void fractions.
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The two particle sizes are uniformly mixed and filled in the calcination zone, the
limestone with 40 mm particle size is heated better and its temperature near the wall
is higher (Figure 8a), while the limestone with 80 mm particle size takes longer to be
heated due to its larger specific surface area, is heated less uniformly, and shows a larger
temperature gradient near the wall (Figure 8b).

When both particle sizes enter the zone, the temperature increase of the small size
limestone at y = 0.04 m and the mid line of the calcination zone is more than 100 K greater
than that of the large size limestone, while the difference between y = 0.08 m and y = 0.12 m,
which is closer to the fuel gas inlet, is only about 30 K. As the calcination zone extends
downward, the surface temperatures of the two particle sizes tend to be the same for each
distance solid temperature region. (As shown in Figure 9a,b).
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Figure 9. Solid temperature at 40 mm and 80 mm. (a) Solid temperature of 40 mm; (b) Solid
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Although the surface temperatures of the two particle sizes are similar, the thickness
of CaCO3 at the outlet of the calcination zone is still different due to the double difference
in particle size. 80 mm particle size CaCO3 thickness reaches 2.8 mm, while the thickness
of small particle size 40 mm CaCO3 is only 0.4 mm. The difference in particle size between
the two particles is double, but in terms of CaCO3 thickness, large particles are 7 times
thickness than small particles (see Figure 10). In contrast, the CaCO3 thickness of 40 mm
uniform particle size is only 0.015 to 0.03 mm, and the decomposition of limestone of the
same size particle in mixed particle size is significantly affected. The main reason is that
the reaction time of limestone of larger size is longer, and the heat required is greater, thus
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reducing the small particle size to be heated and affecting the decomposition of small
particle size limestone.
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at the outlet of the calcination zone.

4.3. Temperature Field and Decomposition of Limestone with 40 mm and 120 mm

After the fuel gas enters, the gas temperature field above the calcination zone rises
rapidly, and its temperature distribution is basically the same as 40 mm and 80 mm mixed
size (as shown in Figure 11a). The high-temperature part of the gas in the calcination zone
is still concentrated in the upper part, and with the extension of the calcination zone, the
gas temperature change of 40 mm + 120 mm is more similar to that of 40 mm + 80 mm
mixed particle size relative to the 40 mm size (as in Figure 11b), which indicates that the
gas temperature will not increase with the continuous increase of void fraction even if the
void fraction continues to increase.

The solid surface temperature between 40 mm and 120 mm is shown in Figure 12.
40 mm surface temperature is more uniform, and the temperature near the wall and the
center is higher (Figure 12a), compared with 120 mm showing a larger temperature gradient,
which is similar to the 80 mm surface temperature under 40 mm + 80 mm in Figure 8.

The 40 mm particle size limestone heats up faster, and the surface temperature of
limestone near the fuel gas inlet at y = 0.08 m and y = 0.12 m quickly reaches more than
1550 K, while the center and near the wall can also reach about 1450 K (Figure 13a). While
at 120 mm, the surface temperature at the center is less than 40 mm by about 100 K, while
the solid surface temperature near the fuel gas inlet is more similar to that at 40 mm
(Figure 13b).
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The difference in particle size between the two mixed particle sizes of limestone
particles is 3 times, while the thickness of CaCO3 under 40 mm is around 1 mm, while
the thickness of CaCO3 under 120 mm particle size reaches more than 10 mm, which is
4 times of the small particle size (Figure 14). The decomposition degree of small particle
size is much better than that of large particle size. However, the CaCO3 thickness at 40 mm
particle size still exceeds that at 40 mm + 80 mm mixed particle size and is much larger
than the remaining CaCO3 thickness at 40 mm homogeneous particle size calcination. This
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indicates that in mixed size calcination, the CaCO3 thickness increases with the increase of
particle size difference after calcination of small particle size.
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Figure 14. Thickness and distribution of CaCO3 of 120 mm particles (up) and 40 mm particles (down)
at the outlet of the calcination zone.

When mixed size calcination, not only the decomposition of large size limestone is
incomplete, but also the heat of fuel gas consumed by it affects the decomposition of small
size limestone. The decomposition rate of 40 mm uniform particle size calcination reached
98.8% when the quotient of undecomposed thickness and limestone particle radius is used
as the decomposition rate, and the decomposition rate of 40 mm particle size decreases
slightly to 98.5% when 80 mm limestone is added to the mixture. When mixing with
120 mm, the decomposition rate of 40 mm is only 94.75%. This indicates that the mixed
particle size has a negative effect on the decomposition of small size limestone. It also
intensifies with the increase in particle size difference (Figure 15).



Materials 2022, 15, 4609 14 of 16
Materials 2022, 15, x FOR PEER REVIEW 15 of 17 
 

 

 

Figure 15. Comparison of decomposition rate under 40 mm uniform particle size, 40 + 80 mm mixed 

particle size, and 40 + 120 mm mixed particle size. 

5. Conclusions 

In this study, comparative simulations of the calcination effect of uniform particle 

and mixed particle are carried out for the calcination zone part in the PFR lime kiln, and 

the conclusions are as follows: 

(1) With the increasing void fraction, the resistance of the porous media region for the 

gas remains high, and the high-temperature fuel gas has less influence on the gas 

temperature field in the calcination zone. 

(2) Despite the large difference in specific surface area of limestone with different sizes, 

the difference in surface temperature under each size is smaller, the temperature is 

also regionally the same as the calcination zone extends downward. 

(3) The gas temperature and solid surface temperature gradually increased at y = 0.04 m, 

y = 0.08 m, and y = 0.12 m along the extension of the calcination zone and reached 

stability at about 7m height. However, the temperature at y = 0.04 m, which is closest 

to the chamber wall, is always lower than that at y = 0.08 m and y = 0.12 m. The reason 

for this is, firstly, the distance from the fuel gas inlet, which is slightly less heated. 

The second reason is that the three locations (0.04 m, 0.08 m, and 0.12 m) are each 

interspersed with a limestone of 40 mm, and the thermal conductivity of limestone 

directly affects the temperature on the surface. 

The study is limited to the calcination zone and does not consider the possibility that 

cooling air from below may enter the calcination zone after passing through the cooling 

zone and affect the flow and temperature fields. In addition, the lumpy limestone contains 

many impurities and their influence on the calcination effect has not been considered. 

Furthermore, the calcination time for mixed particle size limestone versus single particle 

size limestone is uncertain due to the quasi-steady state calculations used in this study. 

Finally, the double-size mixture is also not entirely realistic, and it would be more relevant 

Figure 15. Comparison of decomposition rate under 40 mm uniform particle size, 40 + 80 mm mixed
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5. Conclusions

In this study, comparative simulations of the calcination effect of uniform particle and
mixed particle are carried out for the calcination zone part in the PFR lime kiln, and the
conclusions are as follows:

(1) With the increasing void fraction, the resistance of the porous media region for the
gas remains high, and the high-temperature fuel gas has less influence on the gas
temperature field in the calcination zone.

(2) Despite the large difference in specific surface area of limestone with different sizes,
the difference in surface temperature under each size is smaller, the temperature is
also regionally the same as the calcination zone extends downward.

(3) The gas temperature and solid surface temperature gradually increased at y = 0.04 m,
y = 0.08 m, and y = 0.12 m along the extension of the calcination zone and reached
stability at about 7 m height. However, the temperature at y = 0.04 m, which is closest
to the chamber wall, is always lower than that at y = 0.08 m and y = 0.12 m. The reason
for this is, firstly, the distance from the fuel gas inlet, which is slightly less heated.
The second reason is that the three locations (0.04 m, 0.08 m, and 0.12 m) are each
interspersed with a limestone of 40 mm, and the thermal conductivity of limestone
directly affects the temperature on the surface.

The study is limited to the calcination zone and does not consider the possibility that
cooling air from below may enter the calcination zone after passing through the cooling
zone and affect the flow and temperature fields. In addition, the lumpy limestone contains
many impurities and their influence on the calcination effect has not been considered.
Furthermore, the calcination time for mixed particle size limestone versus single particle
size limestone is uncertain due to the quasi-steady state calculations used in this study.
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Finally, the double-size mixture is also not entirely realistic, and it would be more relevant to
carry out a mixture of three or even more limestone sizes and to study the calcination effect.

At the same time, process studies on the involvement of mixed particle size or low
calorific value fuel gases in limestone calcination should be combined with equipment
optimization and the parameter comparison to make the results more convincing.
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Nomenclature

ρg Fluid density ρi Density of calcium carbonate
Dp Diameter of the particles ci Specific heat capacity of calcium carbonate
α Permeability in porous media QD Particle reaction rate

C2 Inertial drag coefficient ∆HR
Heat of decomposition of
calcium carbonate(183,000 J/mol)

MCaCO3 Relative molecular mass of calcium carbonate Vp Volume of individual particle
dCaCO3 Diameter of the internal core calcium carbonate ϕCaO Volume fraction of calcium oxide
ρCaCO3 Density of the calcium carbonate ρo Density of calcium oxide
RD Limestone decomposition rate co Specific heat capacity of calcium oxide
kD Reaction constants av Specific surface area of limestone

peq
Equilibrium partial pressure of carbon dioxide

hv heat transfer coefficient of gas solid two phase flow
at the front of the reaction zone

pCO2 CO2 partial pressure in the environment σ
Stephen Boltzmann’s constant;
5.6697 × 10−8 W/(K4·m2)

Tp Average particle temperature β Radiation attenuation coefficient of porous media
Ti Temperature of internal core calcium carbonate Nu Nussel number
YT.C Reaction rate correction factor lZ Stacked bed feature length

λ1
Thermal conductivity of internal core

Pr Prandtl number
calcium carbonate

λ2 Thermal conductivity of external core calcium oxide Re Reynolds number
rc1 Calcium carbonate radius a Thermal diffusion coefficient
rc1.m 1/2 calcium carbonate radius v Kinematic viscosity of gas

rc2.m
Calcium carbonate radius plus 1/2

µ Dynamic viscosity of gas
calcium oxide layer radius

ϕCaCO3 Volume fraction of calcium carbonate u Velocity of gas movement
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