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Abstract: Saline soil in Western China contains high concentrations of chloride ions, sulfate ions, and
other corrosive ions, and the performance of concrete will substantially deteriorate from exposure to
this environment. Therefore, it is of great significance to study and predict the concrete compressive
strength in saline soil environments. In this paper, the effects of corrosion on concrete were analyzed
from the aspects of surface damage, damage depth, and X-ray diffraction (XRD) of the corrosion
products. The effects of corrosion were quantified by damage depth and corrosion depth. Then,
considering the corrosion effects combined with Fick’s diffusion law, a time-dependent model of
concrete compressive strength and a time-dependent model of damage depth were established. The
results show that the deterioration of concrete gradually developed from the surface to the interior,
and that the interface of the concrete specimen was equivalent to three parts: a failure zone, a filling
zone, and an undisturbed zone. The results also showed that the time-varying model of concrete
compressive strength proposed by the author was fully applicable, with an error of less than five
percent. The service life of concrete predicted by the damage depth was found to be about 253 months
(21.1 years), and the service life predicted by the time-varying compressive strength model was about
187 months (15.6 years). Both prediction results were far less than the normal concrete service life of
50 years. In addition, the long-term compressive strength of the corroded concrete was about 90% of
that of the noncorroded concrete, which did not deteriorate with the corrosion time.

Keywords: saline soil; corroded concrete; time-dependent; compressive strength; corrosion effects

1. Introduction

The compressive strength of concrete is substantially deteriorated by exposure to a
corrosive environment and this deterioration greatly reduces the service life of a concrete
structure [1,2]. Therefore, accurately evaluating concrete compressive strength is highly
important both for research and for engineering applications [3]. There are many types
of corrosive media that can affect the compressive strength of concrete, among which
chloride [4,5] and sulfate [6,7] are the most notable. When chloride salt enters concrete, it
mainly reacts with the Tricalcium aluminate (C3A) [8] in concrete and produces Friedel’s salt
(C3A·CaCl2·10H2O) [9,10], which does not have cementitious properties; this phenomenon
causes the concrete to deteriorate and the compressive strength to reduce. Sulfate physically
and chemically attacks concrete [11]. The physical attack from sulfate mainly causes the
expansion and destruction of the internal structure of concrete through the crystal expansion
of Na2SO4·10H2O [12,13]. The chemical attack from sulfate is due to the chemical reaction.
Normally, alumina-bearing phases and calcium hydroxide are more vulnerable to sulfate
attacks than other compounds present in hydrated Portland cement paste. The secondary
ettringite may be formed from components of the monosulfate phase, Ca4Al2O26H38,
Ca3Al2O6, and Ca4Al2Fe2O10, among other alumina-bearing phases present in hydrated
cement-based materials [14]. The gypsum crystal (CaSO4·2H2O) [15] and ettringite crystal
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(3CaO·A12O3·3CaSO4·31H2O) [16] are two type of expansion crystals, which grow in the
original pores of concrete to increase compactness and compressive strength [17]. However,
these crystals can also cause large expansion stresses on the inner walls of the pores in
concrete [18,19], causing damage and microcracks which deteriorate the concrete and
reduce the compressive strength.

In view of the mechanism of concrete degradation in the abovementioned chloride
and sulfate environments, many scholars have studied the compressive strength of concrete
which has been exposed to corrosive environments. Some scholars have found that the
compressive strength tends to gradually decrease after exposure to corrosive environments
for different durations [20,21], and some scholars believe that the compressive strength first
increases and then decreases [22–24]. In recent years, many predictive models have been
established for the corroded concrete compressive strength, among which the corrosion
coefficient [25,26] has been used to analyze the relationship between the compressive
strengths of corroded and noncorroded concrete. However, these models do not distinguish
the different properties between the corroded zone and the noncorroded zone of concrete
specimens, i.e., these models were established by using the corroded concrete specimens as
a whole. Furthermore, the corroded concrete specimens are divided into two stages—the
strengthening stage and the deterioration stage—according to the exposure time [27,28].
This model divides the effect of sulfate on concrete according to the exposure time into
an early strengthening effect and a later deteriorating effect. In fact, the two effects are
simultaneous inside the concrete and will not be different because of different exposure
times. Therefore, in this paper, two kinds of corrosion effects of sulfate on concrete are
defined by damage depth and corrosion depth. The corroded concrete specimens with
arbitrary exposure times are divided into three parts: a failure zone, a filling zone, and
an undisturbed zone. Different exposure times create variations in the damage depth and
corrosion depth, which lead to continuous changes in the areas of these three zones and in
the compressive strength of the concrete.

Saline soils, which contain high concentrations of Cl−, SO4
2−, CO3

2−, Na+, K+, and
Mg2+, are widely distributed in Northwest China [29,30]; these corrosive ions have played
a significant role in the deterioration of concrete [31–33]. Moreover, the diffusion rate of
ions in the local dry and wet environments is accelerated [34]. In this paper, first, the test
solution was allocated according to the composition of saline soil, and then six groups of
concrete specimens were tested for dry and wet cyclic corrosion and compression strength
at different exposure times. Second, the effects of corrosion on concrete were analyzed
from the aspects of surface damage and damage depth, and from the X-ray diffraction
(XRD) results of the corrosion products. Third, the effects of corrosion were quantified
by damage depth and corrosion depth, wherein the interface of the concrete specimen
was equivalent to three parts: a failure zone, a filling zone, and an undisturbed zone.
Fourth, combined with Fick’s diffusion law, a mechanical model of concrete compressive
strength was established, which considers the abovementioned corrosion effect. Finally, the
predicted model of concrete service life was obtained by fitting the chloride surface content
and the diffusion coefficient.

2. Materials and Methods
2.1. Materials

The test piece was a cubic specimen with side lengths of 100 mm. The total number of
test pieces was 36. The chemical composition and the working performance index of the
cement P. O. 42.5 R, according to Chinese Portland cement Standard [35], similar to ASTM
Type I ordinary Portland cement, are shown in Tables 1 and 2, respectively. The fineness
modulus of the natural river sand used was 2.8, and its apparent density was 2600 kg/m3.
The size of the crushed stone was 5~25 mm, and its apparent density was 2660 kg/m3. The
mix of concrete is shown in Table 3.



Materials 2022, 15, 4663 3 of 19

Table 1. Chemical composition of cement P. O. 42.5 R (%).

Chemical Composition CaO SiO2 Al2O3 Fe2O3 MgO SO3 Loss on Ignition

Content 65.01 23.44 7.19 2.96 2.24 2.87 2.86

Table 2. Performance index of cement P. O. 42.5 R.

Density
(kg/m3)

Specific Surface
Area (m2/kg)

Setting Time (min)
Soundness

Compressive Strength
(MPa)

Bending Strength
(MPa)

Initial Final 3 d 28 d 3 d 28 d

315.8 384 240 390 Fine 24.8 48.9 5.0 8.1

Table 3. Mix of the concrete (kg/m3).

Water Cement Fine Aggregate Coarse Aggregate Water/Cement Ratio

166 395 596 1263 0.42

The manufacturing process of the test piece is as follows: (1). Weigh the cement, stone,
sand, and water used in the test according to mass mix of concrete in Table 3. (2). Add
the stones, sands, and cement into the cement mixer in turn and start it, mixing the dry
materials evenly. Then, add a small amount of water several times until the concrete
is mixed evenly. (3). Put the mixed concrete into the plastic mold coated with release
agent (the internal dimension of the mold was 100 × 100 × 100), then place the mold on
the cement vibrating table for vibration and smooth the concrete surface. (4). Cover the
concrete surface with plastic film and place it at room temperature for 24 h, then demold
the concrete surface and put the prepared concrete specimen into the concrete standard
curing box (temperature 23 ◦C, relative humidity 95%) to cure for 28 days.

2.2. Test Methods
2.2.1. Dry and Wet Cycle Corrosion Test

There were 6 dry and wet cycle inspection periods in total: 0 months (not corroded, as
a comparative test), 5 months, 8 months, 10 months, 15 months, and 20 months. Six cubic
specimens were soaked in each inspection period, with a total number of 36 specimens.
The test solution was composed of the same composition and mixture ratio as saline
soil in Western China [36]. The mix of the test solution is shown in Table 4, and the ion
concentration in saline soil and test solution is shown in Table 5. A complete dry and wet
cycle inspection period included soaking in solution for 15 days and natural air drying for
15 days.

Table 4. Mix of the test solution.

Salt Type (wt %) NaCl Na2SO4 MgCl2 MgSO4 NaHCO3 KCl Total

Mass ratio 15 3 2 2 0.5 0.5 24

Table 5. Ion concentration in saline soil and the test solution.

Ion Concentration (g/L) Na+ K+ Mg2+ Ca2+ Cl− SO42− CO32− HCO3− Total

Test solution 70.06 2.62 9.05 0 108.36 36.28 0.00 3.63 230
Saline soil 97.17 2.64 3.96 0.13 108.64 36.44 25.38 4.60 278.96

2.2.2. Determination of Ion Content and Diffusion Depth Test

After the dry and wet cyclic corrosion test of each group of concrete specimens
was completed, compressive tests were carried out on three of the concrete specimens.
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Subsequent analyses of the free chloride content and the free sulfate content and the XRD
analysis of the corrosion products were carried out on the other three specimens.

When testing the distribution of ions in concrete, the corresponding test specimens
were ground and sampled. The sampling depth was within 20 mm from the concrete
surface, and samples were taken every 2 mm. After exceeding 20 mm, samples were taken
every 5 mm—that is, the sampling depths were 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 22.5, 27.5, and
32.5 mm, respectively. After the sample was taken, it was then passed through a 0.63 mm
sieve to remove large particles. According to the relevant Chinese standard [37], the free
chloride content was determined by the Mohr method, and the free sulfate content was
determined by ultraviolet spectrophotometer method.

Determination of Free Chloride

1. Prepare K2CrO4 indicator with a concentration of about 5%, phenolphthalein solution
with a concentration of about 0.5%, dilute sulfuric acid, and standard NaCl solution
with a concentration of 0.02 mol/L. Prepare a V2 mL standard silver nitrate solution
with a concentration of about 0.02 mol/L with a V1 mL standard NaCl solution. The
calculation formula of its concentration CAgNO3 is shown in (1),

CAgNO3
= CNaCl ×

V1

V2
(1)

2. Place the concrete sample in the drying box oven for 2 h with a drying temperature
of 105 ± 1 °C to ensure that the water in the sample is fully volatilized. Accurately
weigh 2 g (recorded as G) of the dried sample and pour it into a triangular beaker.
Add 200 mL (V3) of distilled water, tighten the cork, and shake it violently for 1–2 min.
Soak it for 24 h. Shake it again after soaking for 12 h to ensure that the chloride ions
in the sample are fully dissolved in the distilled water.

3. Use neutral medium-speed filter paper to filter out the sediment in the soaking
solution; measure two 20 mL (V4) portions of filtrate, respectively, and put them
into two triangular flasks; add two drops of phenolphthalein to the two triangular
flasks, respectively, and then neutralize them with dilute sulfuric acid until they are
colorless to ensure that the filtrate is neutral. Add 10 drops of potassium chromate
indicator into the triangular flasks, and then titrate them with silver nitrate solution
immediately until brick red sediment appears. Record the volume of silver nitrate
solution (V5) consumed (the triangular flask needs to be shaken violently during
titration). The calculation formula of free chloride ions is:

c f =
CAgNO3

×V5 × 0.03545

G× V4
V3

× 100 (2)

where cf is the content of free chloride ions in the sample (%, indicating the percentage
of chloride ions in the concrete mass); CAgNO3 is the concentration of silver nitrate
solution (mol/L); G is sample mass (g); V3 is the volume of distilled water added to
the sample (mL); V4 is the volume of filtrate used for each titration (mL); and V5 is the
volume of silver nitrate solution consumed after titration (mL). The final measured
value of cf is the average value of the two measured results.

Determination of Free Sulfate

Ultraviolet spectrophotometer method was used to measure the content of free sulfate
ions, as shown in Figure 1. BaCl2-PVA (polyvinyl alcohol) mixture was prepared in advance,
and then 2.0 g of concrete powder sample was weighed, soaked in 50 mL distilled water,
shaken for 2 h, and then soaked for more than 24 h. The sample was filtered with slow-
speed filter paper. An amount of 25 mL filtrate was taken into a 50 mL volumetric flask.
First, 2.5 mL hydrochloric acid was added to the volumetric flask, followed by 10 mL of
uniformly mixed BaCl2-PVA mixture. The volume of distilled water was fixed to 50 mL,
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and the turbidity of the solution was shaken 2–3 times by hand. After the turbidity of the
solution was obviously stable, the solution was left to stand for 5 min and then tested by
ultraviolet spectrophotometer. The relationship between the SO4

2- content measured in the
test and the absorbance value is as follows:

cfs = 0.13281 + 1.42524 × abs + 11.7745 × abs2 R2 = 0.99209 (3)

where cfs is the mass of sulfate ions in the 50 mL solution (mg) and abs is the absorbance
value displayed on the spectrophotometer display.
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Figure 1. Ultraviolet spectrophotometer.

According to the absorbance value abs measured by the spectrophotometer, the free
sulfate ion concentration can be calculated.

Determination of the Chloride Diffusion Depth

Assuming that all ions had the same damage depth in concrete during the same
dry and wet cyclic corrosion duration, the damage depth was expressed by the chloride
diffusion depth in this paper, and the chloride diffusion depth was determined by the
AgNO3 coloration method [38].

First, the corresponding specimen was cut from the middle part, and two planed
sections were selected as the test surface. Then, 0.1 mol/L silver nitrate solution was
sprayed evenly on the concrete section. In the area where the chloride ion concentration
was greater than a certain critical value, the chloride ions reacted with the silver ions to
form a white AgCl precipitation. When the chloride ion concentration was lower than
a certain value, the hydroxyl ions reacted with the silver ions to form AgOH, and then
oxidized to a brown Ag2O precipitation. An obvious color boundary, namely a color trace,
formed at the junction of the two different color regions. Finally, vernier calipers were used
to measure the depth of the color-developing area of the specimen section. Usually, the
average width from the penetration surface to the color-changing boundary was measured
as the average erosion depth of chloride ions.

2.2.3. SEM-EDS Test

After the dry–wet cycle erosion test was completed and the corresponding specimens
were taken for microscopic observation and corrosion product analysis. First, the specimens
were cut and sampled at the depth of 10~15 mm from the concrete surface. After the
test sampling was completed, the coarse aggregate in the samples was removed with a
200 mesh sieve, and then the carbon spraying treatment was carried out. Then, the SEM-
EDS test was carried out on a SIGMA 500 field emission scanning electron microscope
manufactured by Zeiss AG of Jena, Germany. The magnification of the concrete SEM image
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was 2000 times. Finally, the change of the internal microstructure of the concrete specimen
was analyzed through the test results. EDS analysis was carried out by X pert3 powder
X-ray diffractometer to detect the types of elements contained in the sample and to study
the corrosion products generated in the concrete after erosion. XRD test conditions: Target
was Cu Target, acceleration voltage was 40 kV, current was 40 mA, and scanning angle was
5–80◦.

2.2.4. Compression Strength Test

The electro-hydraulic servo universal testing machine, with a maximum range of 1000 kN,
was used as the basic mechanical property test instrument of concrete. According to the
relevant requirements in the national standards of China [39], the cube compressive strength
was tested by a load-controlled loading system, at a loading speed of 0.5 MPa/s. The
compressive strength value was taken as the average value measured by 3 test specimens.

3. Test Results and Analysis
3.1. Failure Patterns and Compressive Strength

The failure patterns and variations in the compressive strength after different dry
and wet cycle inspection periods is shown in Figure 2. The failure characteristics of the
corroded concrete cube specimens under uniaxial compression were essentially the same as
those of uncorroded concrete. There were no visible cracks on the surface of the specimens
before the load reached the peak values. However, when the load reached the peak values,
a number of discontinuous longitudinal cracks formed on the surface of the specimen,
parallel to the direction of the applied load. Keeping the load unchanged, the longitudinal
cracks developed rapidly and penetrated the entire specimen, as shown in Figure 2a. When
the concrete specimens were substantially corroded, the concrete peeling was severe during
the failure of the test specimen, and there was a local crushing phenomenon, as shown in
Figure 2b.
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According to the relevant Chinese code [39], the compressive strength of a cube is
calculated with the following formula:

fcu = 0.95 · F
A

(4)

where fcu is the compression strength (MPa), 0.95 is the size conversion factor, F is the
failure load (N), and A is the area of the cross section (mm2).

As can be seen from Figure 2c, the compressive strength increased rapidly from 0 to
5 months. At 5 months, it reached a maximum value, which was approximately 10~12%
higher than that of the noncorroded concrete specimens. The compressive strength de-
creased rapidly from 5 to 10 months. After 10 months, the compressive strength decreased
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gradually. At 20 months, the compressive strength was slightly less than that of the noncor-
roded specimens. This finding shows that, as a result of the increase in the wet–dry cyclic
corrosion duration, the compressive strength of concrete in the saline soil environment first
increased and then decreased. Hence, the composition and microstructure of concrete un-
derwent a change from compactness to looseness after being corroded by saline soil, which
caused a change in the mechanical properties of the concrete materials at different depths.

3.2. Surface Damage

The surface changes in concrete after different dry and wet cycle inspection periods
are shown in Figure 3. There was no obvious change in the surface of the specimens after
5 months of corrosion; white crystalline substances appeared in some areas, as shown
in Figure 3a, which is referred to as the “salting out” phenomenon. When the specimen
was in the natural air-drying state, the water in the concrete evaporated, and when the
concentration of salt reached the supersaturated state, it precipitated on the surface of the
concrete in crystalline form; thus, the “salting out” phenomenon appeared, and this is
a physical change process. As the dry and wet cyclic corrosion duration increased, the
concentration of the salt solution in the concrete became higher, and the “salting out”
phenomenon became more substantial. Finally, the white crystalline materials covered
approximately the whole surface of the specimen, as shown in Figure 3b. The surface
morphology of the concrete specimens after removing the white crystalline material is
shown in Figure 3c. The surface of the concrete became obviously rough, the number of
holes increased, and some edges and corners of the concrete specimens were missing, the
red circle part refers to the holes and peeled cementitious materials on the concrete surface.
The reason for these changes is because the corrosion made the surface of the concrete
exhibit a “sanding” phenomenon, which shows that the cement was dissolved, thereby
exposing exposed sand and gravel.
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The XRD analysis was carried out on samples of the white crystalline substances from
the “salting out” phenomenon on the concrete surface, and the results are shown in Figure 4.
The main components of the white crystalline material were NaCl, Na2SO4, and CaCO3.
The test solution contained NaCl and Na2SO4, but did not contain Ca2+, indicating that
the Ca2+ came from the concrete. The test solution reacted with Ca(OH)2 and C-S-H in the
concrete to form soluble calcium-containing substances, which precipitated from concrete
in the form of CaCO3. The contents of Ca(OH)2 and C-S-H gel in the concrete decreased
due to the precipitation of calcium ions, resulting in decreased concrete strength.
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3.3. Internal Damage
3.3.1. Damage Depth

The damage depths of the specimens after different dry and wet cycle inspection
periods are shown in Figure 5. In Figure 5a, the white area is AgCl precipitation, the
red area is coarse aggregate, and the red–white color boundary is the damage depth. As
the corrosion duration increased, the white area became larger and larger, and the color
boundary became deeper. This is because the C3A only fixes chloride ions after an initial
period, which is longer than the one corresponding to the absorption process. In contrast,
the effect of the C4AF fixing chlorides by forming chloroaluminates is significant [40]. This
finding shows that, as the corrosion duration increased, chloride gradually entered the
interior of the concrete, and deterioration gradually developed from the surface to the
interior of the concrete; Ma [29] reached the same conclusion. Moreover, this finding is
consistent with Figure 5b. The damage depth of chloride increased linearly with increasing
corrosion duration.
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3.3.2. Corrosion Products

The corrosion products of the concrete specimens after corrosion for 10 months
were analyzed by XRD at the distance of 10~15 mm from the surface of the concrete,
as shown in Figure 6. The results show that the main corrosion products included et-
tringite crystal (3CaO·Al2O3·3CaSO4·32H2O), gypsum crystal (CaSO4·2H2O), Friedel’s
salt (3CaO·AI2O3·CaCl2·10H2O), CaCO3 crystal, and other substances. The frontal angles
of ettringite crystal are mainly 27◦, 50◦, and 60◦. The frontal angles of gypsum crystal
are mainly 32◦ and 36◦. The frontal angles of Friedel’s salt are mainly 18◦, 21◦, 26◦, 34◦,
and 39◦. The frontal angles of CaCO3 crystal are mainly 29◦ and 47◦. Both gypsum [15]
and ettringite [16] have typical volume expansion, which have two effects on the internal
structure of concrete. On one hand, these two crystals will grow in the original pores of the
concrete to increase the compactness and compressive strength [17]. On the other hand,
when the original pores of the concrete are fully filled by those two crystals, the continuous
formation of crystals will produce internal pressure on the inner walls of the pores. When
the internal pressure is greater than the tensile limit of the concrete, microcracks will form,
thereby deteriorating the concrete and reducing the strength of the concrete. Moreover,
Friedel’s salt, which is produced by the reaction of Cl- and the cement hydration product
(C–S–H gel), has no cementitious properties; therefore, the formation of Friedel’s salt results
in a decrease in the cementing ability of the concrete. The above analysis shows that the
corrosion effect is the main reason that the compressive strength of concrete first increases
and then decreases.
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4. Compressive Strength Mechanical Model Considering the Corrosion Effects
4.1. Mechanical Model of Compressive Strength

As mentioned above, whether the corrosion effects fill or expand the internal pores
of concrete depends mainly on the relationship between the content of the corrosion
products and the internal porosity of the concrete [41]. The distribution of the corrosive
ion content in concrete conforms to Fick’s diffusion law [42]; thus, the content of corrosive
products decreases gradually with increasing concrete depth. The cross section of the
concrete specimens was equivalent to three parts: a failure zone, a filling zone and an
undisturbed zone, from outside to inside, by damage depth xd(t) and corrosion depth
xc(t), as shown in Figure 7a. In the failure zone, the content of corrosive products was
high, which mainly destroyed the internal structure of the concrete. In the filling zone, the
content of corrosive products was low, which mainly filled the internal structure of the
concrete. In the undisturbed zone, ions failed to reach this area.
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Figure 7. Mechanical model of compressive strength considering the corrosion effects. (a) Corrosion
effects, (b) Parallel bar system.

It is assumed that the concrete is a homogeneous material. When the concrete is
compressed, the concrete can be divided into N vertical rods. It was also assumed that
the properties of each rod were the same, that the cross-sectional area was S, and that the
failure stress was σ. Then, we were able to quantify the corrosion effect by the difference in
the property and number of rods, as shown in Figure 7b. The initial cross-sectional area A
and compressive strength of the concrete can be expressed as:

A = N · S (5)

fcu(0) = N · σ (6)

In the failure zone, there were M bars failure. The stress that each rod can bear is σd,
where σd = γd · σ. γd is the corrosion damage coefficient (γd ∈ [0, 1]). The cross-sectional
area Ad of the failure zone can be expressed as:

Ad = M · S (7)
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In the filling zone, there were O bars strengthened. The stress that each rod can bear is
σc, where σc = γc · σ. γc is the corrosion enhancement coefficient. The cross-sectional area
Ac of filling zone can be expressed as:

Ac = O · S (8)

The parallel bar model of compressive strength of corroded concrete considering
corrosion effect can be expressed as:

fcu(t) = (N−M−O) · σ + M · σd + O · σc (9)

In conjunction with the above formulas, Formula (10) can be obtained:

fcu(t) =
(

N−M−O
N + γd · M

N + γc · O
N

)
· fcu(0) =

[
1− (1− γd) · Ad

A − (1− γc) · Ac
A

]
· fcu(0)

=

[
1− (1− γd) ·

a2−(a−2xd(t))
2

a2 − (1− γc) · (a−2xd(t))
2−(a−2xc(t))

2

a2

]
· fcu(0)

(10)

where fcu(t) is the compressive strength of concrete after corrosion for t month; fcu(0) is the
compressive strength of noncorroded concrete; Ad(t) and Ac(t) are the cross-sectional areas
of the failure zone and filling zone, respectively; A is the total cross-sectional area of the
cross section; and a is the length of cross section.

4.2. Determination of Model Parameters
4.2.1. Corrosion Damage Coefficient γd and Corrosion Enhancement Coefficient γc

Various concrete specimens buried at Dun-huang Station in the saline soil area of
Western China in 1959 were excavated and measured in 1995 after being buried in the soil
for 36 years. After the corrosion of saline soil, the compressive strength of the ordinary
Portland cement concrete tested in 1995 was approximately 10% lower than the original
strength [43]. Kwon [44] placed ordinary concrete specimens on the Offshore Platform
Marine Electrochemistry Center in India for a 10 year exposure test, resulting in a reduction
in the concrete compressive strength of approximately 10% in both the immersion zone
and in the splash zone. Therefore, the value of the corrosion damage coefficient γd in this
paper was 0.9.

Kumar and Bhattacharjee [45] established a relationship between the porosity, the
average distribution pore size, and the compressive strength as:

fc(t)= 1749 ·ω ·
(

1− p(t)√
rm

)
(11)

where fc(t) is the compressive strength when the porosity is p(t), ω is the cement content of
the concrete, and rm is the average pore size distribution. The average rm of the concrete
specimens after different dry and wet cyclic corrosion durations measured in this paper
was 20.4 nm.

The porosities of the concrete specimens taken 7–12 mm away from the surface of
the concrete were measured, and the variation in the porosities after different dry and
wet cycle inspection periods is shown in Figure 8. The porosity first decreased and then
increased with increasing dry and wet cyclic corrosion durations, and the porosity was
smallest after corrosion for 10 months. This finding shows that the concrete underwent a
process of compaction before loosening. The relationship between the porosity p(t) of the
concrete specimens and the dry and wet cyclic corrosion duration t is as follows:

p(t) = 0.0038t2 − 0.0657t + 0.7646 (12)
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=
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(
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)
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≈ 1.35 (13)

4.2.2. Damage Depth xd(t) and Corrosion Depth xc(t)

The diffusion of ions in concrete conforms to Fick’s diffusion law, which is essentially
the diffusion of ions under the action of concentration difference [46]. Therefore, the
expression of ion diffusion depth x(t) can be obtained as follows:

x(t) = 2
√

D · t · er f−1

(
1−

c f (x(t), t)− c0

cs − c0

)
(14)

where x(t) is the diffusion depth when the dry and wet cycle inspection period is t months
(mm), cf (x(t),t) is the free ion content at the depth of x(t) when the dry and wet cycle
inspection period is t months (%), cs is the surface ion content (%), c0 is the initial ion
content (%), D is the ion diffusion coefficient (mm2/s), and erf−1(u) is the Gaussian error
inverse function.

In Fick’s diffusion law [47], it is usually set that the free ion content on the concrete
surface at the beginning is the initial free ion content in concrete c0, i.e., c f (x(0), 0) = c0.
The boundary condition is set as: at any time of t, the free ion content on the concrete
surface is cs, i.e., c f (0, t) = cs; at any time of t, at an infinite depth, the content of free ions
in concrete is c0, i.e., c f (∞, t) = c0, where c0 = 0 in this study. Hence, Equation (14) can be
changed to:

x(t) = 2
√

D · t · er f−1

(
1−

c f (x(t), t)
cs

)
(15)

The distribution of free chloride and free sulfate content versus the diffusion depth is
shown in Figure 9. The content distribution law of free chloride and sulfate had the same
regularity, and both conformed to Fick’s diffusion law. The free chloride and free sulfate
content decreased gradually with increasing diffusion depths under the same dry and wet
cycle inspection period, and the extent of decrease was smaller. At the same diffusion depth,
with an increasing dry and wet cyclic corrosion duration, the contents of free chloride
and sulfate gradually increased, and the increase range also increased. In this paper, it
was assumed that all ions had the same diffusion depth after the same dry and wet cyclic
corrosion duration, so chloride was selected for calculation. Fick’s second diffusion law
was used to fit the distribution of chloride content in Figure 9a, and the regression values
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of surface chloride content cs and the diffusion coefficient D of chloride were obtained, as
shown in Table 6.
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Table 6. Regression values of D and cs.

Inspection Periods t (Months) 5 8 10 15 20

D (10−6 mm/s) 8.0547 7.1679 5.4394 4.7668 4.6088
cs (%) 0.2084 0.2237 0.2686 0.3824 0.4577

Some scholars [48,49] studied the free chloride content at the discoloration interface
through the AgNO3 color coloration method. The free chloride content here was defined as
the damage depth. It was found that the free chloride content here accounts for 0.15~0.28%
of the concrete quality. Therefore, c f (x(t), t) = 0.15% was also taken to define the damage
depth xd(t).

Carlos [50] investigated actual concrete structures that had been corroded in different
marine environments for longer than 50 years and found that the lowest concentration
of chloride in all structures was 0.05%. Costa [51] obtained the corrosion depth of con-
crete when the concentration of chloride was 0.05%. Figure 9a shows that the horizontal
dotted line, representing a 0.05% chloride concentration, intersected with the distribution
curves of chloride contents in different dry and wet cyclic corrosion times at different
points. The distribution curves of the chloride contents decreased very slowly and essen-
tially did not change under the horizontal dotted line. Therefore, it is reasonable to take
c f (x(t), t) = 0.05% as the corrosion depth xc(t).

When c f (x(t), t) = 0.15% (for damage depth) and 0.05% (for corrosion depth), and the
surface chloride content cs and diffusion coefficient D of chloride in Table 6 were brought
into formula (15), the damage depth xd(t) and corrosion depth xc(t) of concrete specimens
at different dry and wet cyclic corrosion times could be obtained.

4.3. Results Verification and Analysis

The compressive strength of concrete after different dry–wet cyclic corrosion durations
can be calculated by introducing parameters of the damage depth xd(t), the corrosion depth
xc(t), the corrosion damage coefficient γd, and the corrosion enhancement coefficient γc
into Formula (10), and a comparison between the calculated and test values is shown in
Figure 10. The calculated values were in good agreement with the test values, and both
showed a trend of first increasing and then decreasing as the dry and wet cyclic corrosion
duration increased. The maximum error was only approximately 5%.



Materials 2022, 15, 4663 14 of 19
Materials 2022, 15, 4663 16 of 22 
 

 

 
Figure 10. Comparison between the test values and calculated values of compressive strength after 
different dry and wet cycle inspection periods. 

5. Prediction and Analysis 
5.1. Prediction of Damage Depth 
5.1.1. Time-Dependent Surface Chloride Content cs 

When concrete is exposed to an actual chloride environment, the surface chloride 
content cs is not constant, but is instead a time-dependent process from low to high and 
gradually to saturation. Costa [51] found that the relationship between the surface chlo-
ride concentration and corrosion exposure time was a power function, so a power function 
was used to fit the cs test data in this paper. The fitting curve is shown in Figure 11. The 
correlation coefficient is R2 = 0.958. The fitting function is given by Formula (16): 

( ) 0.6780.059sc t t=  (16)

 

  

Figure 10. Comparison between the test values and calculated values of compressive strength after
different dry and wet cycle inspection periods.

5. Prediction and Analysis
5.1. Prediction of Damage Depth
5.1.1. Time-Dependent Surface Chloride Content cs

When concrete is exposed to an actual chloride environment, the surface chloride
content cs is not constant, but is instead a time-dependent process from low to high and
gradually to saturation. Costa [51] found that the relationship between the surface chloride
concentration and corrosion exposure time was a power function, so a power function
was used to fit the cs test data in this paper. The fitting curve is shown in Figure 11. The
correlation coefficient is R2 = 0.958. The fitting function is given by Formula (16):

cs(t) = 0.059t0.678 (16)
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5.1.2. Time-Dependent Diffusion Coefficient D of Chloride

The variation in the diffusion coefficient D of chloride after different dry and wet cyclic
corrosion durations is shown in Figure 12. The results show that the diffusion coefficient D
of chloride decreased gradually with increasing dry and wet cyclic corrosion durations and
had obvious time dependence, i.e., the diffusion coefficient of chloride was not constant. In
this paper, the diffusion coefficient D of chloride was modified by the attenuation coefficient
n [52]. The fitting formulas are as follows:

Dt = D0

(
t0

t

)n
= 16.807 ·

(
1
t

)0.45
(17)
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where Dt is the actual diffusion coefficient of chloride, t0 is the reference time (t0 = 1 in
this paper), and D0 is the chloride diffusion coefficient with a dry and wet cycle inspection
period of 1 month.
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5.1.3. Prediction of Damage Depth

The free chloride content for calculating the damage depth was given above, wherein
c f (x(t), t) = 0.15%. Then, the time-dependent formula of damage depth can be obtained
by introducing Formulas (16) and (17) into Formula (15):
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The prediction of the time-dependent damage depth xd is shown in Figure 13. The
results show that, as the dry and wet cyclic corrosion duration increased, the damage
depth increased gradually, with a slower rate, and gradually tended to stabilize. When
x(t) = a/2, the corrosion damage zone extends to the whole specimen, and the specimen
will crack completely. At this time, the dry and wet cyclic corrosion duration is approxi-
mately 253 months (21.1 years), which is much shorter than the 50 years of service life of
normal concrete.
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5.2. Prediction of Compressive Strength

The free chloride content for calculating the corrosion depth was given above, wherein
c f (x(t), t) = 0.05%. The time-dependent formula of corrosion depth can be obtained by
referencing Formula (19):

xc(t) = 2
√

16.807t0.55 · er f−1
(

1− 0.05
0.059t0.678

)
(19)

The time-dependent formula of the compressive strength of corroded concrete in a
saline soil area can be obtained by introducing Formulas (18) and (19) into Formula (10):

fcu(t) =
[

1− 0.1 · a2−(a−2xd(t))
2

a2 + 0.35 · (a−2xd(t))
2−(a−2xc(t))

2

a2

]
· fcu(0)

xd(t) = 2
√

16.807t0.55 · er f−1
(

1− 0.15
0.059t0.678

)
xc(t) = 2

√
16.807t0.55 · er f−1

(
1− 0.05

0.059t0.678

) (20)

The prediction of the time-dependent compressive strength of corroded concrete in a
saline soil environment is shown in Figure 14. The results show that, as the dry and wet
cycle inspection period increases, the compressive strength increases rapidly at first, then
decreases rapidly, and then decreases slowly. The rate of decline also becomes slower and
tends to gradually stabilize. At approximately 187 months (15.6 years), the compressive
strength essentially does not change, and the strength decreases to approximately 90%
of the noncorroded concrete. Compared with the actual concrete compressive strength
of Dun-huang Station [43] in the saline soil area of Western China, which was buried for
36 years, the deterioration time of concrete by the wet–dry cyclic corrosion test in this paper
was obviously shorter, which was approximately 0.43 times the actual corrosion time of
saline soil.
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6. Conclusions

The variations in the concrete compressive strength versus the dry and wet cycle
inspection periods in a saline soil environment was introduced, and a time-dependent
compressive strength model of corroded concrete was established. The main conclusions
are as follows:

1. The compressive strength of corroded concrete in a saline soil environment first
increased and then decreased with increasing dry and wet cycle inspection periods.
The deterioration of concrete in a saline soil environment developed gradually from
the surface to the interior of the concrete. Therefore, the cross section of the concrete
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specimens was equivalent to three parts according to the damage depth and corrosion
depth: a failure zone, a filling zone, and an undisturbed zone. The compressive
strength of concrete was the superposition of these three parts.

2. The compressive strength of corroded concrete in a saline soil environment, as cal-
culated by the mechanical model established in this paper, was in good agreement
with the test results, showing a trend of first increasing and then decreasing as the dry
and wet cyclic corrosion duration increased. The maximum error was less than five
percent.

3. The service life of concrete was predicted to be 253 months (21.1 years) by damage
depth and 187 months (15.6 years) by a time-dependent compressive strength model.
Both predictions were far less than the normal concrete service life of 50 years. In
addition, the long-term compressive strength of corroded concrete was found to
be about 90% of that of noncorroded concrete, which did not deteriorate with the
corrosion time.
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