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Abstract: To investigate the shear performance and failure mechanism of stud shear connectors in
steel fiber-reinforced cementitious composite (SFRCC) beams, six steel-SFRCC and six steel-normal
strength concrete (NC) push-out specimens with two heights (80 mm, 120 mm) and three diameters
(14 mm, 18 mm, 22 mm) of stud connectors were prepared. The experimental results revealed that
the stud shearing failure was the main failure mode of all push-out specimens. In comparison to
the steel-NC specimens, the development of cracks in the SFRCC beams was efficiently restrained
due to the existence of high-strength steel fibers added to the normal concrete. The shear resistance
and stiffness of studs in the steel-SFRCC beams were, respectively, 22.3% and 15.1% greater than
those in the steel-NC specimens; however, their ductility was reduced, and the stud shear connectors
failed in advance. The finite element (FE) model was developed and verified by push-out test results.
FE analysis results indicated that the shear resistance of stud shear connectors was significantly
improved with the increase in the concrete compressive strength, the stud diameter and tensile
strength, whereas the aspect ratio of studs had a small impact on the ultimate resistance of stud
shear connectors. Based on the as-obtained push-out experiment and FE analysis results, empirical
formulas were presented to predict the load-slip curves and ultimate shear resistance of stud shear
connectors in the steel-SFRCC specimens, and higher accuracy and a wider application range were
obtained than with previous formulas.

Keywords: steel fiber-reinforced cementitious composite (SFRCC); stud connector; shear performance;
push-out test; FE analysis; load-slip curve; shear resistance

1. Introduction

Steel-concrete composite structures combine the excellent material performance of steel
and concrete and have the superiorities of high bearing capacities and a short construction
period [1–3]. Connectors are used to resist the sliding and lifting effect between steel
girders and concrete decks [4,5]. Stud connectors are the most common shear connectors in
bridge engineering because of their same shear performance in all directions [6,7]. Cracks
often appear in ordinary concrete decks of traditional composite structures, especially in
the hogging moment area of continuous composite structures; thus, studs get corroded
and seriously affect the bearing capacity and durability of composite structures [8,9].
Steel fiber-reinforced cementitious composite (SFRCC) has high strength, excellent tensile
hardening ability, and good ductility [10–13]. Replacing ordinary concrete bridge decks
with SFRCC bridge decks can easily solve the problem of cracking in traditional composite
beam bridge decks, decrease the dead weight of composite beams, and increase the span
of bridge structures.

Static tests and numerical simulations have been extensively adopted to probe the
mechanical performance of studs embedded in normal strength concrete (NC). Buttry [14]
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performed a static experiment on steel-NC composite structures and demonstrated that the
shear bearing resistance of studs in NC was mainly dominated by the material property
of the concrete. Ding [15] studied the static behavior of studs through static tests and FE
simulations and noted that the shear bearing capacity of each stud in the bidirectional
specimens improved when the size and tensile strength of the studs increased, whereas the
stud’s aspect ratio had no significant impact on the ultimate shear capacities of the studs. In
addition, push-out tests have been widely performed [16]. It is suggested that the influence
of steel beam type on the ultimate shear capacities of stud connectors cannot be ignored,
and the quality of stud welding should be strictly controlled. Research on the mechanical
behavior of stud connectors embedded in steel-NC composite beam is relatively mature,
and some practical formulas for the ultimate shear resistance and load-slip curves of studs
have been developed by considering stud geometry and concrete properties [17,18].

In recent years, steel fiber-reinforced cement-based composite materials have come
to be used extensively in construction engineering. Researchers have proposed replacing
NC with engineering cementitious composite (ECC) and ultra-high-performance concrete
(UHPC) to enhance the longevity and traffic-carrying capacities of steel-concrete composite
structure bridges [19–21]. Zhu [22] carried out two static tests on composite beams for
different strengths of concrete and connectors and reported that ECC significantly limited
the extension of cracks in the negative moment area of the composite structure and also
enhanced the static performance of the composite structures. Guan [23] employed an FE
model, which was verified by experimental results, to explore the mechanical behavior
of studs in ECC and indicated that the interfacial bonding force between concrete decks
and steel girders was conducive to improving the original shearing stiffness of ECC, and
the diameter and tensile strength of studs effectively improved the stud shear capacity;
however, opposite trends were noticed for the stud length and the ECC strength. Wang [24]
experimentally investigated the mechanical properties of large-diameter studs embedded
in UHPC and posited that UHPC was fitted properly with the large-diameter studs. An
accurate formula was put forward by taking the stud diameter into account to calculate
the load-slip relationships of studs in UHPC. In addition, the breaking of the composite
structure mainly occurred at the boundary of studs and welds, and a simplified expression
for the ultimate shearing resistance of studs in UHPC was proposed by taking the influence
of the weld ring into account [25].

Although ECC and UHPC can improve the bearing resistance and service life of
steel-concrete composite structures, they still have some deficiencies. ECC has good strain
hardening capacity and ultra-high ductility; however, its compressive strength is almost
similar to that of NC; thus, the ultimate shear capacities of steel-concrete composite beams
cannot be significantly improved [26]. UHPC faces the problems of relatively high material
preparation cost and complex structural design, and its low water-to-binder ratio causes
large self-shrinkage [27]. Therefore, SFRCC could be a better choice for steel-concrete
composite beams. As SFRCC has better crack resistance and toughness, the dominant crack
may not be apparent until it is very close to the final fracture, and it can greatly improve
the shear resistance of different components [28,29]. The steel matrix mainly transmits
the load through the tensile strain hardening effect and the fibers bridging effect. The
shear stress on the interface between the steel fibers and the surrounding matrix (bond
strength between steel fibers and matrix) is a key parameter in the bridging effect, and
concrete fails once the steel fibers either break or are completely pulled out from the
concrete [30,31]. The presence of steel fibers supports the redistribution of tensile stress,
prevents the propagation and opening of diagonal cracks, and the total yield bearing
capacity of a steel fiber-reinforced composite beam can exceed the applied load when the
steel bar starts to yield; thus, the composite beam exists in a multi-crack development
mode and experiences an improvement in ductility [32,33]. SFRCC is mainly used for
crack control and reinforcement works. However, the stress mechanism of steel-SFRCC
composite beams is still unclear. Therefore, it is necessary to deeply explore the working
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performance and different influencing factors of studs embedded in steel-SFRCC composite
beams to improve the promotion and application of steel-SFRCC composite structures.

Overall, the current research on the shear performance of stud connectors mainly
focused on the studs in traditional steel-concrete composite structures, and it seems that
there are few reports on the stud shear connectors in SFRCC composite beams. In order
to investigate the shear performance and failure mechanism of stud shear connectors
embedded in steel-SFRCC composite beams, the shear performances of six steel-NC and
six steel-SFRCC specimens were investigated by push-out test for different stud diameters
and lengths. The failure mode, load-slip relationship, shear capacities and stiffness of
the push-out specimens and stud strains were examined. In addition, the FE models of
different specimens were developed and verified by push-out test results, and the effects of
concrete properties, stud diameter, stud yield strength, and stud aspect ratio on the shearing
behavior of stud shear connectors were explored. Finally, according to the as-obtained
push-out experiment and FE analysis results, empirical formulas were presented to forecast
the load-slip curves and ultimate shear resistance of stud shear connectors embedded in
the steel-SFRCC beams. This study presented a new idea for improving the mechanical
performance of steel-concrete composite beams. In addition, the shear mechanism of studs
in steel SFRCC composite beams was studied in detail. The research results could provide
a reference for the popularization of SFRCC in composite beams.

2. Experimental Program
2.1. Specimens Design

Six steel-NC and six steel-SFRCC push-out specimens were designed to explore the
shear performance of stud shear connectors (Figure 1). The sizes of the concrete slabs were
600 mm × 600 mm × 150 mm, and an HRB400 reinforcement with a diameter of 8 mm
was introduced into the concrete slabs as a stirrup. The dimension of the H-shaped steel
beam made of Q345D bridge steel was 300 mm × 300 mm × 10 mm × 15 mm. Studs with
different lengths (80 mm, 120 mm) and diameters (14 mm, 18 mm, 22 mm) were welded
(vertical and horizontal spacings were 200 mm × 120 mm) to flange plates on each side of
the H-shape steel beams. The specimen numbering format was “N/S-80/120-14/18/22”,
where N represents NC, S represents SFRCC, 80/120 represents the stud length, and
14/18/22 represents the stud diameter. The bonding effect of concrete was not considered,
and all specimens were coated with lubricating oil for the debonding treatment.
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Figure 1. Geometry of push‐out specimens: (a) front view; (b) side view; (c) plan view (unit: mm). 
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Figure 1. Geometry of push-out specimens: (a) front view; (b) side view; (c) plan view (unit: mm).

2.2. Specimen Fabrication

The H-shaped steel beam was first cut into 600 mm segments to prepare test specimens,
and the studs were welded by penetration welding at design locations on both sides
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of the steel plates. The stirrup cage was bounded to make the template according to
the recommended design, the H-shaped steel beam and the stirrup cage were vertically
assembled, and engine oil with a kinematic viscosity of 105 cSt was coated on the surfaces of
the mold and the steel beams. Moreover, while pouring concrete, an immersion vibrator was
used to ensure the homogeneous distribution of steel fibers within the concrete slabs. After
the fabrication process, the specimens were covered with curing blankets and sprayed with
water for 28 days under natural conditions. The preparation procedure of the experimental
specimens is displayed in Figure 2.
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(d) specimen maintenance.

2.3. Measurement of Material Properties

In the push-out test, the concrete was provided by Zhongde Xinya, a company in China.
Table 1 presents the mixture proportions of NC and SFRCC. The main difference between
NC and SFRCC was that there was silica fume and steel fiber in SFRCC, but not in NC. The
hooked end steel fibers with a length of 30 mm and a diameter of 0.5 mm were mixed in the
SFRCC. The steel fiber parameters are shown in Table 2. According to CECS 13:2009 [34], three
groups of 100× 100× 100 mm3 cubic specimens and 150× 150× 550 mm3 prism specimens
were fabricated to test the compressive and tensile strengths of concretes, and the elastic
modulus of concretes was obtained by DT-20 Dynamic elastic modulus tester by resonance
method (Figure 3). The material performance of NC and SFRCC are presented in Table 3.
The mechanical properties of studs and steel beams were offered by the manufacturer, and
the physical performance of each steel is listed in Table 4.
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Table 1. The mixture proportions of concretes.

Component
Mix Quantity (kg/m3)

NC SFRCC

Cement P.O 52.5 453 669
Water 174 182

Broken stone 5~20 mm 1109 987
Sand 0~5 mm 597 524

Superplasticizer 4.23 6.98
Silica fume - 80

Steel fiber (%) - 148 (2%)

Table 2. Steel fiber parameters.

Fiber Type L (mm) D (mm) L/D Tensile Strength
(MPa)

Elastic Modulus
(GPa)

Density
(kg/m3)

Hooked end steel fiber 16 0.2 80 2840 200 7800

Note: L = length of steel fiber; D = diameter of steel fiber.
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Table 3. Material performance of concrete.

Concrete Compressive Strength (MPa) Tensile Strength (MPa) Elastic Modulus (GPa) Poisson’s Ratio

NC 51.2 1.83 36.5 0.2
SFRCC 115.4 17.6 45.3 0.2

Table 4. Mechanical performance of steel.

Material Elastic Modulus (GPa) Yield Strength (MPa) Tensile Strength (MPa) Poisson’s Ratio

Q345 206 349 468 0.3
HRB400 200 400 570 0.3

Studs of 16 mm 206 380 530 0.3
Studs of 19 mm 206 380 540 0.3
Studs of 22 mm 206 380 550 0.3

2.4. Test Setup

The push-out test was carried out on a 500-ton press, and left-right symmetrical
displacement gauges LVDTs were arranged at pre-selected positions of the concrete slabs
and the H-shape steel beams to monitor the slippage between their interfaces. In order
to ensure uniform stud stress during the test, the loading table was evenly paved with
fine sand, and the stress dispersion plate was fixed on the undersurface of the hydraulic
jack. The layout of the loading device and LVDTs are displayed in Figure 4. Preloading
was carried out prior to the test. During formal loading, as the displacement increment
was not detected until the relative slip reached 1 mm, loading was controlled by the
applied load first, and the loading increment for each stage was 10 kN. The relative slip
value corresponding to each loading stage was recorded. Plastic deformation expanded
rapidly when the displacement was greater than 1 mm, and the data for every displacement
increment of 0.1 mm were recorded until the specimen was destroyed.
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3. Experimental Results
3.1. Failure Mode

The failure mode of the steel-concrete composite structures was mainly manifested as
stud shearing failure and cracking of the concrete. When studs with smaller diameters and
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concrete with relatively higher compressive strength were used, the specimens ruptured
due to the shearing failure of studs accompanied by a partial breaking of concrete slabs
at the stud root. When studs with larger diameters and concrete with relatively lower
compressive strength were used, the specimens were destroyed due to the cracking and
breaking of concrete [35]. The failure modes of all steel-concrete composite beams are
displayed in Figure 5. All 12 specimens experienced stud shearing failure with a smooth
cross-section, and the concrete at the studs root also ruptured at the same time. The failure
modes of the steel-NC and steel-SFRCC specimens were similar; however, oblique cracks
in the NC slabs propagated further. There were no visible cracks in the SFRCC slab, and
the local crushed area on the failure surface of the SFRCC slabs was smaller than that of the
NC specimens, proving that the existence of steel fibers greatly limited the crack evolution
in the SFRCC plates and the steel-SFRCC specimens took full advantage of the shearing
performance of studs.
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The shear carrying capacities of the steel-concrete composite structures were composed
of two parts: (i) shear bearing capacity of studs and (ii) bearing capacity of concrete
surrounding the stud root. During the static test, all specimens experienced a brittle
failure. A long plateau period existed before the load reached the peak, and the studs
were suddenly sheared with a loud noise. Subsequently, the load was greatly reduced, the
concrete slabs were completely detached from the H-shape steel beams, and the push-out
test was terminated.

3.2. Load-Slip Relationship

Figure 6a,b display the load-slip curves of different studs with heights of 80 mm and
120 mm, respectively. The curve consisted of an elastic phase, a plastic phase, and a failure
phase. When the load did not exceed 46% of the shear bearing resistance, the load-slip
curves showed a linear elastic relationship. As the load increased, the stud shear connectors
entered the plastic phase, and the slip increased faster than the load. When the loading
force was greater than the maximum bearing resistance, the specimen was damaged, and
the load decreased sharply; however, the relative displacement continued to increase, and
the load-slip curve in the failure stage became steeper and shorter.
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As can be seen from Figure 6, the shear bearing resistance of studs embedded in the
steel-concrete composite beams was significantly affected by the concrete compressive
strength and the stud diameter. In the steel-NC specimens, the average shear bearing capac-
ities of the studs with 14 mm, 18 mm, and 22 mm diameters were 822.54 kN, 1168.06 kN,
and 1272.66 kN, respectively, and in the steel-SFRCC specimens, the corresponding values
were 1021.15 kN, 1294.19 kN, and 1507.31 kN, respectively. The shear bearing capacities of
studs embedded in the steel-SFRCC specimens increased by about 17.14% as compared to
that in the steel-NC specimens; however, the average value of the maximum slip decreased
by about 24.37%, indicating that the ductility of the steel-SFRCC specimens decreased and
the stud connectors failed in advance. In the steel-SFRCC composite beams, the shear
bearing capacities of the studs with 22 mm diameter was 47.62% and 16.47% higher than
those of the studs with 14 mm and 18 mm diameters, respectively. Under the same concrete
type and stud diameter, the ultimate shear capacities of the specimens with 80 mm and
120 mm stud lengths were the same. The studs transmitted the shearing force between
steel beams and concrete decks through the root of stud connectors; thus, stud length had
a small impact on the shear capacities of the steel-SFRCC composite beams. The shear
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resistance of each stud and the ultimate slippage of all specimens can be obtained from
Figure 6, and the corresponding statistical data are presented in Table 5.

Table 5. Push-out test results.

Specimens Pmax (kN) Pu (kN) Su (mm) Load0.2 (kN) k0.2 (kN/mm) Load2 (kN) k2 (kN/mm)

N-80-14 820.24 102.53 6.16 22.93 114.64 85.07 42.54
N-80-18 1152.48 144.06 6.45 56.67 283.36 122.39 61.20
N-80-22 1272.46 159.06 9.24 47.40 236.98 127.91 63.96
N-120-14 824.85 103.11 5.87 47.64 238.18 89.50 44.75
N-120-18 1183.63 147.95 5.26 65.52 327.59 127.67 63.84
N-120-22 1272.86 159.11 6.79 65.13 325.65 141.75 70.88
S-80-14 1018.66 127.33 3.67 53.55 267.74 118.68 59.34
S-80-18 1239.01 154.88 4.24 75.13 375.66 141.75 70.88
S-80-22 1520.93 190.12 6.66 72.45 362.26 160.41 80.21
S-120-14 1023.54 127.94 4.69 62.01 310.04 117.29 58.65
S-120-18 1349.36 168.67 3.75 75.42 377.09 156.31 78.16
S-120-22 1493.69 186.71 7.07 86.67 433.34 175.64 87.82

Note: Pmax is the maximum load, Pu is the ultimate shear resistance of each stud, Su is the maximum relative
slippage, Load0.2 and Load2 are the loads for the slips at 0.2 mm and 2 mm, respectively, k0.2 and k2 are the shear
stiffness values of studs for the slips at 0.2 mm and 2 mm, respectively.

3.3. Shear Stiffness

Shear stiffness reflects the ability of studs to resist interfacial slip under stress, and
it refers to the ratio of shear to relative slip. According to previous research, the secant
slopes corresponding to the interfacial slippages of 0.2 mm and 2 mm were, respectively,
used as the shear stiffness values of studs in the elastic and plastic phases [35–37]. The
shear stiffness of all push-out specimens in the elastic and plastic are listed in Table 5. It is
noticeable that the concrete type and the stud diameter have significant impacts on the stud
shear stiffness. Taking the elastic shear stiffness as an example, the average shear stiffness
of stud connectors embedded in the steel-SFRCC beams was 34.87% higher than that in the
steel-NC composite beams. In the steel-SFRCC beams, the average shear stiffness of the
stud connectors with 22 mm diameter was, respectively, 37.6% and 13.2% higher than those
of the stud connectors with 14 mm and 18 mm diameters, and the average shear stiffness of
the studs with 120 mm length was 17.2% higher than that of the studs with 80 mm length,
indicating that stud length had a certain influence on the shear stiffness of studs.

3.4. Stud Strain

The stud connectors experienced shear deformation and bending deformation si-
multaneously during the experimental process. As the flexural rigidity of the stud shear
connectors was lower than their shear stiffness, the studs first produced bending defor-
mation under a certain load; hence, the stud connectors were also subjected to the axial
force [16,38]. Three strain gauges were uniformly arranged along the length of the stud
to measure the stud strain, and the test data were automatically collected and recorded
by the TDS-530 data collecting instrument during the test process. Figure 7 exhibits the
load-strain curves along the lengths of the stud connectors, and the plotted load-strain
curves had certain irregularities due to the complex state of the specimens. The studs had
larger strains at the root and smaller strains at the end, indicating that the stud root was
under a high-stress state and prone to fracture.
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4. FE Analysis
4.1. FE Model

The FE models of the push-out specimens were built by ABAQUS, and the standard
solver was used to solve them. The half structures of the specimens were established
considering the symmetry of their geometric dimensions and loading conditions. Concrete
slabs, steel beams, and studs were simulated by the three-dimensional eight-node element
(C3D8R), whereas the three-dimensional two-node truss element (T3D2) was applied to
simulate stirrup cages, there were a total of 27,929 elements in the FE model. In order
to ensure certain calculation accuracy and minimize the calculation cost, the structured
meshing technique was adopted, and 2–5 mm meshes were used for the stud root and
the concrete surrounding the studs, whereas 20 mm meshes were used for the remaining
structure (Figure 8). The stress-strain curves suggested by Liao [30] was adopted for
concrete, and the parameters of the concrete plastic damage model are presented in Table 6.
The viscosity coefficient affected the simulation results to a certain extent. After trial
calculations, the viscosity coefficient was selected as 0.0005. Steel has obvious elasticity
and yield stage. When the stress reaches the yield point, the stress will not increase, but
the strain can continue to increase. The ideal elastic-plastic model (double-line model) was
employed for steel plates, studs, and steel bars (isotropic deformation occurred in a small
range, and the Mises yield criterion was obeyed).
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Table 6. Plastic damage model parameters.

Expansion Angle Eccentricity fb0/fc0 K Viscosity Coefficient

38 0.1 1.16 0.6667 0.0005

During the test, the bonding performance between the flange plates and the concrete
slabs was not considered (the sides of the flange plate were smeared with lubricating oil);
thus, the tangential and normal directions between the steel beams and the concrete slabs
were set as a frictionless contact and a hard contact, respectively. The force between studs
and concrete was divided into normal force and tangential bonding force. The normal
direction was set as a hard contact to ensure the transmission of force, and a “penalty”
friction formula with a factor of 0.5 was considered in the tangential direction to simulate
the bonding force between studs and concrete. The reinforcement was embedded inside
the concrete using the “embedded region” function of the ABAQUS interaction module.
Symmetrical boundary conditions were created on corresponding symmetry planes to
constrain the displacements perpendicular to the symmetry planes and the rotations of
the symmetry planes. A “fully fixed” boundary condition (all degrees of freedom were
restrained) was used at the bottom of the model. In order to facilitate load application
and result extraction, a reference point RP1 was established at the top of the specimen,
a coupling constraint was adopted between RP1 and the top surface of the model, and
displacement loads were applied at RP1 according to a smoothed magnitude function.

4.2. Validation of FE Model

The comparisons of the load-slip curves acquired from the static test and FE simula-
tions are displayed in Figure 9. The maximum error of the stud shear capacity obtained
from the FE and the push-out test was 2.8%. The curves calculated by the FE models were
consistent with the trend of the test curves, especially in the initial loading stages. When
the material entered the plastic stage, a certain deviation was noticed between FE and
experimental values, and it might happen because the stress condition of the specimens
was complex, and there were many influencing factors in this stage. However, in actual
projects, the elastic proportional limit is generally taken as the design value of shear bearing
resistance; thus, the deviation was within the acceptable range.
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Taking the S-80-22 specimen as an example, the stress nephogram of each component
under ultimate load was shown in Figure 10. It can be seen from Figure 10 that under
the ultimate load, the overall stress of the SFRCC slab was small, and the stress was
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concentrated near the root of the stud and gradually decreased radially towards the edge
of the concrete slab. The stress on the upper part of the section steel flange plate was large,
and there was large deformation in the horizontal direction, indicating that the upper part
of the flange plate played a role in the horizontal restriction on the SFRCC slab. During the
loading process, the concrete at the stud root was first locally crushed. With the increase
in load, the stud got sheared and damaged; subsequently, the steel plate became warped
and deformed. FE simulations could properly simulate the performance of the push-out
test; thus, the obtained numerical results can be used for further research on the force
transmission mechanism and parametric analysis of SFRCC stud connectors.
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4.3. Influences of Different Parameters

For the purpose of revealing the shearing mechanism of stud connectors embedded in
SFRCC, the above-discussed refined FE model was used for parametric analysis.

(a) Concrete compressive strength: The shear bearing capacities of stud connectors for
four different concrete strengths and four different stud diameters (10 mm, 14 mm, 18 mm,
22 mm) are presented in Figure 11a. It is noticeable that the ultimate shear capacities of
studs were improved with the increasement of concrete compressive strength. The shear
bearing capacities of stud connectors for the concrete strength of 80 MPa increased by
14.8%, 10.07%, and 5.71%, respectively, as compared to those for the concrete strength of
50 MPa, 60 MPa, and 70 MPa; however, the growth rate was not noticeably large.

(b) Stud diameter: The shear bearing capacities of studs for four different stud di-
ameters and three different concrete strengths (50 MPa, 80 MPa, 100 MPa) are presented
in Figure 11b. It is evident that the shear capacities of studs were enhanced significantly
with the increase in stud diameter. The shear resistance of the stud connectors with 22 mm
diameter was 126.19%, 61.71%, and 20.53% higher than those of the stud connectors with
10 mm, 14 mm, and 18 mm diameters, respectively, demonstrating that stud diameter
played a crucial role in the shear capacities of studs.
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Figure 11. Parameter analysis: (a) concrete compressive strength; (b) stud diameter; (c) stud tensile
strength; (d) stud aspect ratio. Note: d represents stud diameter; Lstud represents stud length;
fck represents concrete compressive strength; fuk represents stud tensile strength.

(c) Stud tensile strength: The bearing capacities of stud connectors for the concrete
compressive strength of 50 MPa, the stud diameters of 10 mm, 14 mm, 18 mm, 22 mm,
and the ultimate stud tensile strength of 345 MPa, 420 MPa, and 550 MPa are presented in
Figure 11c. The shear capacities of stud connectors with the tensile strength of 550 MPa
were 12.15% and 9.29% higher than those of the stud connectors with the tensile strength
of 345 MPa and 420 MPa, respectively, indicating that the shear bearing capacities of the
studs enhanced with the improvement of their tensile strength; however, the increment
was small.

(d) Stud aspect ratio: The bearing capacities of stud shear connectors with 12 different
aspect ratios (length = 80 mm, 100 mm, 120 mm and diameter = 10 mm, 14 mm, 18 mm,
22 mm) for the concrete compressive strength of 50 MPa and the stud tensile strength of
550 MPa are presented in Figure 11d. When the stud diameter was constant, stud length
had little impact on the shear bearing capacities of stud connectors, implying that the aspect
ratio had no great influence on the shear bearing resistance of stud connectors within a
certain range.
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5. Theoretical Analysis
5.1. Load-Slip Curve

The load-slip curve of studs is a vital characteristic curve and reflects the studs’
mechanical performance change during the push-out test. The shear stiffness, ultimate
shear resistance, and maximum slippage of studs could be acquired from their load-slip
curves. Empirical curve formulas proposed by previous researchers are mainly applicable to
ordinary concrete and high-graded concrete. There are few studies on the studs embedded
in the SFRCC.

Ollgaard et al. [39]. conducted 48 two-slab push-out experiments to investigate the
static performance of studs embedded in two types of concretes with different aggregates
and expressed the load-slip curve for continuous loading as:

P
Pu

= (1− e−18·S)
0.4

(1)

where P is the load on per stud and S is the relative slippage.
Xue et al. [16]. summarized the results of static tests to analyze the influences of

different factors on the shearing performance of stud connectors and expressed the load-
slip relationship of studs as:

P
Pu

=
S

0.5 + 0.97·S (2)

Wang et al. [24]. performed static tests on two types of concrete to explore the influ-
ences of stud connectors size and concrete strength on the mechanical behavior of studs
and put forward a practical load-slip equation by taking the stud diameter into account:

P
Pu

=
S/dstud

0.006 + 1.02·S/dstud
(3)

Zhang et al. [40]. carried out static tests and numerical simulations to explore the
mechanical properties of stud connectors in steel fiber-reinforced concrete (SFRC) and drew
a practical equation to forecast the load-slip curves of stud connectors:

P
Pu

= (1− e−0.2S)
0.4

(4)

Tong et al. [19]. tested six specimens of high-grade steel and UHPC under static
loading. Considering the impacts of stud diameter and layout, a more accurate formula
was presented to plot the load-slip curves of single-stud beams:

P
Pu

=
S/dstud

0.0092 + 0.93·S/dstud
(5)

It is noticeable that in the aforementioned research, the load-slip relationship of studs
follows an exponential function. In the present work, considering the impact of concrete
compressive strength, an exponential load-slip curve formula was proposed.

P
Pu

= 0.95× (1− e−aS)
b

(6)

The average values of parameters a and b were obtained by fitting 12 groups of
specimens (a = 1.63 for NC, a = 1.88 for SFRCC, and b = 0.75). The load-slip curve of the
steel-NC and steel-SFRCC specimens with the studs diameter of 18 mm obtained from
the push-out test and Equations (1)–(6) are displayed in Figure 12. It is obvious that the
load-slip curve calculated by Equation (6) was closer to the test curve and has a wide range
of applications.
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Figure 12. Comparison of push-out test and calculated load-slip curves: (a) NC; (b) SFRCC. 
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5.2. Shear Resistance

The shear resistance is the most important index to measure the shearing performance
of stud connectors. Some national codes provide relevant calculation formulas for the
ultimate shear capacities of steel-concrete composite beams. In these codes, the shear
resistance of studs is lower than the carrying capacities of concrete and studs, and this
concept is different from the idea present in the current work. According to the push-out test
and FE simulation results, a large gap was noticed between the ultimate shear capacities of
stud connectors in SFRCC and NC under the same conditions, and no formula is currently
available for evaluating the shear bearing resistance of studs embedded in SFRCC.

The Eurocode 4 [41] provides an expression for the calculation of studs’ shear resistance
(Pu) embedded in steel-NC composite beams:

Pu = 0.29αd2
√

fckEc/γv ≤ 0.8As fuk/γv (7)

where As represents the cross-sectional region of studs; γv represents the security coefficient (1.25);
α represents a parameter that depends on the length-diameter ratio (α= 0.2(hs/d+1) ≤ 1).

The American standard AASHTO LFRD [42] calculated the Pu of single studs as:

Pu = ϕsc0.5As
√

Ec f ′c ≤ ϕsc As fuk (8)

where fc′ represents the cylinder strength of concrete, and ϕsc represents the resistance
reduction factor (0.85).

In China, the code GB50017-2017 [43] stipulates that Pu can be defined as:

Pu = 0.43As
√

Ec fck ≤ 0.7As fuk (9)

Ollgaard et al. [39] determined the shear capacities of studs based on the material
properties of concrete:

Pu = 1.106As f ′c
0.3Ec

0.44 (10)

Zhang et al. [40] conducted experiments and FE simulations to calculate the Pu of
studs embedded in SFRC and proposed a practical calculation formula for:

Pu = min
(

0.76As fu, 0.5As
√

fcEc

)
(11)
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Wang et al. [44] considered the influence of stud length on the shearing behavior of
studs, and obtained the shear resistance calculation formula of studs based on a total of 80
domestic and foreign models:

Pu = 17.31As fu

(
hs

ds

)0.27(Ec

Es

)1.75( fc

fu

)0.14
(12)

In the abovementioned research, larger errors in calculation results could be attributed
to two main factors: (i) The material value was conservative, and studs were calculated
with their yield strength instead of their ultimate tensile strength. (ii) The calculation
concept was conservative, and studs were considered when they got sheared and damaged.
Moreover, the shear resistance of concrete was adjusted as a factor or not considered;
however, in practical situations, concrete acts together with studs. Due to the existence
of steel fibers, SFRCC has high compactness and few internal defects. The fibers bridging
effect in SFRCC can restrict the development of cracks and increase the binding force
and friction between the reinforcement and the matrix, causing an improvement in the
matrix strength. Therefore, based on the push-out experiment and FE simulation results, a
calculation expression of stud connectors’ shear resistance was put forward by considering
the synergistic influence of concrete and studs.

Pu = (0.85As fuk+1.25As fc)/λ (13)

where λ is the partial parameter of resistance (1.24).
Figure 13 displays a comparison of the static test and calculated results of stud shear

resistance. The shear resistance of studs obtained by Wang et al.’s formula was found
to be too large. The formula recommended by the AASHTO LFRD code was relatively
accurate; however, the error fluctuated greatly. The formulas proposed by other researchers
were conservative and underestimated the shear resistance of studs. It was found that
Equation (13) had higher accuracy and wider applicability than the other formulas.

 

Figure 13. Comparison of the push-out test and calculated results of stud shear resistance. 
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6. Conclusions

Push-out tests and FE simulations with different parameters were conducted to re-
search the shear performance and failure mechanism of stud shear connectors embedded
in steel-NC and steel-SFRCC composite beams. This study could promote the application
of steel-SFRCC composite beams in civil engineering. The main findings of this research
are listed below.

(1) All steel-NC and steel-SFRCC push-out specimens ruptured due to stud shearing
failure with a smooth cross-section, and the concrete at the corresponding position of
the stud root was also crushed at the same time. The failure modes of the steel-NC and
steel-SFRCC push-out specimens were similar; however, oblique cracks propagated further
in the NC slabs. Contrary to the steel-NC specimens, there were no obvious cracks in the
SFRCC slabs.

(2) The mechanical performance of the stud shear connectors was mainly dominated
by the concrete compressive strength and the stud diameter and tensile strength. The studs
had larger strains at the root and smaller strains at the end, indicating that the stud root
was under a high-stress state and prone to fracture.

(3) Based on the as-obtained push-out experiment and FE simulation results, empirical
formulas to predict the load-slip curves and shear resistance of stud shear connectors
in steel-SFRCC were presented. The stud connectors load-slip curve calculation formula
considered the effect of the concrete strength factor, and the stud shear resistance calculation
formula was suitable for both NC and SFRCC and had higher precision and a wider
application range than previous formulas.
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