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Abstract: The stiffness of composite laminates is easily affected by wrinkle defects. In this paper,
a new effective analytical model was proposed to predict the three-dimensional equivalent elastic
properties of multidirectional composite laminates with wrinkle defects. Firstly, a geometric model
was established according to the microscopic characteristics of wrinkle defects. Then, based on the
classical laminate theory and homogenization method, the constitutive equation and flexibility matrix
of the wrinkle region were established. Finally, the equivalent stiffness parameters of unidirectional
and multidirectional laminates were derived, and the effects of different wrinkle parameters and
ply-stacking sequences on the stiffness of unidirectional and multidirectional laminates were studied
by using the analytical model. The results show that the mechanical properties of the lamina and
laminates are affected by the out-of-plane angle and in-plane angle of the wrinkle defects. The
accuracy of the analytical model has been verified by the numerical model and other theoretical
models, and it has the characteristics of few parameters and a high efficiency. The analytical model
can be used to predict the stiffness of composite structures with wrinkle defects simply, effectively,
and quantitatively. It can also be used as a tool to provide the mechanical response information of
laminates with wrinkle defects.

Keywords: composite structures; wrinkle defects; stiffness; equivalent elastic properties; homogenization;
laminated-RVE

1. Introduction

Fiber-reinforced composites have been widely used in the aerospace, marine, auto-
mobile, and chemical industries in recent years; this is mainly due to their high specific
strength and stiffness, good functional designability for anisotropy, corrosion resistance,
and fatigue resistance, etc. However, composite structures are prone to be affected by initial
defects in the manufacturing process. A wrinkle is one of the most common initial defects
of fiber-reinforced composite structures [1–3], and it is a primary source of heterogeneity of
geometry and material [4–7]. In addition, the wrinkle defects can change the mechanical
response of composite structures and cause three-dimensional stress problems [8–10]. Wrin-
kles can also significantly influence the mechanical properties, such as the stiffness and
strength of composite structures [11,12]. In the process of constructing the composite struc-
tures of submarine ships, such as composite propellers, enclosures, shrouds, and stabilizer
wings, wrinkle defects are often found. The stiffness, strength, and acoustic properties of
those composite structures are affected by the wrinkle defects locally or globally. However,
the evaluation standards of the effect of wrinkle defects on the mechanical properties of
those composite structures have not yet been proposed. The existing theoretical models
are complex and inconvenient in engineering applications. Some characteristic param-
eters of wrinkle defects can be obtained by nondestructive testing, but there are some
confusions in evaluating the importance, sensitivity, and effectiveness of wrinkle defects
in the practices of engineering. Therefore, it is necessary to develop an analytical model

Materials 2022, 15, 5264. https://doi.org/10.3390/ma15155264 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15155264
https://doi.org/10.3390/ma15155264
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-4867-7697
https://doi.org/10.3390/ma15155264
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15155264?type=check_update&version=2


Materials 2022, 15, 5264 2 of 16

to quantitatively analyze the influence of wrinkle defects on the mechanical properties of
composite structures.

Wrinkle defects are usually divided into the in-plane and out-of-plane wrinkle types.
An in-plane wrinkle mainly refers to fiber fluctuations in the plane, which describes the fiber
deviation from the specified direction in the thin plate plane [13–15]. Fiber deviation from
the spindle position can also be regarded as an in-plane wrinkle. An out-of-plane wrinkle
refers to the synergistic fluctuation of the fiber layer in the thickness direction [16–18],
which is commonly found in thick-section structural components, variable curvature
laminates, and structural components with corners. The above studies mainly focus on
the formation mechanism of wrinkle defects [13–18]. However, there are few studies on
the influence of in-plane and out-of-plane wrinkle defects on the structural properties of
composite structures. Furthermore, there are few models that can analyze the influence of
in-plane and out-of-plane wrinkle defects on the stiffness of laminates simultaneously.

With the increasing emphasis on structural integrity, studies on the influence of wrin-
kle defects on structural mechanical properties have been gradually carried out. Hsiao [19]
proposed a theoretical model to predict the relationship between the elastic modulus
of laminate and the wrinkle characteristic parameters, but the model was limited to a
two-dimensional theoretical analysis. Zhu [9] extended Hsiao’s theoretical model and
proposed a three-dimensional stiffness analysis method to quantitatively analyze the three-
dimensional equivalent elastic properties of laminates with wrinkle defects. Zhu [10] also
systematically studied the relationship between the multiple characteristic parameters of
wrinkle defects and the stiffness performance of laminates through a specific program.
However, the model was only applicable to out-of-plane wrinkles, without considering
the influence of the off-axis of in-plane fibers, and it was found to have a large devia-
tion in Takeda’s study [20]. Takeda [20] homogenized the wrinkle region in both length
and thickness directions by using the micromechanical method and deduced the three-
dimensional stiffness matrix of the wrinkle region, and the model had high prediction
accuracy. However, due to the use of an integral involving high-order sine functions, the
prediction process was a bit cumbersome.

The finite element method is used to quantitatively study the mechanical response
behavior of composite structures with wrinkle defects. Garnich [21] established a microme-
chanical model of sinusoidal wrinkles and studied the equivalent elastic modulus and
failure behavior of composite structure with wrinkles. Based on Takeda’s model, Shen [22]
numerically transformed and applied the two-step homogenization of representative vol-
ume element theory on the MATLAB platform and proposed a three-dimensional stiffness
finite element analysis method to study the macroscopic mechanical response of the wrinkle
defects on the composite structures.

As mentioned above, these studies mainly focused on the wrinkle defects with the
two-dimensional analysis method. However, due to the spatial geometric characteristics
of wrinkle defects and the anisotropy of composite materials, the mechanical response
generated by wrinkles often shows three-dimension elastic characteristics. In addition,
although some examples in the literature [9,10,21] used sine or cosine functions to describe
the wrinkle shape, the integral calculation process of high-order sine or cosine functions
in the model is complex and inefficient. Finally, more parameters are needed to describe
those functions in the models, which is not convenient for non-destructive testing and
mechanical performance evaluation of composite structures with wrinkle defects.

The aim of this work is to establish an effective analytical model to estimate the three-
dimensional equivalent stiffness of multidirectional composite laminates with wrinkle
defects. The triangle wrinkle model is used to improve the cosine wrinkle model which
is already widely used. Based on the classic laminate theory and micromechanics, the
equivalent elastic stiffness was proposed through the homogenization method. The ac-
curacy of the analytical model was examined by RVE (Representative Volume Element)
simulation and other published approaches from the literature. In addition, the effect of
wrinkle defects on the equivalent properties of unidirectional and cross-ply laminates was
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evaluated by the analytical model, and it was found that there were some differences in the
effect of wrinkle defects on the Young’s modulus and shear modulus under different ply
stacking sequences.

2. Analytical Model
2.1. Geometry Model

The microphotographs of wrinkle defects are shown in Figure 1. In order to determine
the mechanical response of laminates with wrinkle defects, it is necessary to describe the
wrinkle mathematically. Sine or cosine waveforms are commonly used to describe the
geometric shape of wrinkles [9,10,20]. In this paper, the isosceles triangle function is used
to substitute and improve the cosine wrinkle model; the two models have the same wrinkle
height and length, as shown in Figure 2.
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Before the homogenization of laminates with wrinkle regions, some assumptions were
made. Firstly, the wrinkles only fluctuate in the XOZ plane and extend along the X, Y, and
Z principal axes, respectively, where X is the length direction, Y is the width direction,
and Z is the thickness direction. Secondly, due to a small proportion in the whole wrinkle
length, the arc length of the ply at the deflection corner of the wrinkle could be replaced
by linear segments, as shown in Figure 2. Finally, every wrinkle has the same height and
length, both in cosine wrinkle geometry and isosceles triangle wrinkle geometry.

A uniform wrinkle, as shown in Figures 1 and 2, is assumed that its adjacent layers
are parallel to each other and the spacing between them is equal. Thus, the shape of the
wrinkle ply is expressed as:

zU(x) =


4H
L

x + c,− L
2
≤ x ≤ 0

−4H
L

x + c, 0 ≤ x ≤ L
2

(1)

The subscript “U” represents a uniform wrinkle, H is the amplitude of the wrinkle
ply, L is the span of a single period of wrinkle ply, and c is the constant.
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2.2. Constitutive Relation

Based on the classical laminate theory, the constitutive equation under the plane stress
state condition is expressed as: [

N
M

]
=

[
Aij Bij
Bij Dij

][
ε0

κ

]
(2)

where N and M are the internal force and internal moment on the unit width of the laminate,
respectively; ε0 and κ are the strain and curvature of the middle plane of the laminate; Aij,
Bij, and Dij are, respectively, the tensile stiffness, coupling stiffness, and bending stiffness,
which are obtained by the following equation:{

Aij, Bij, Dij
}
=
∫ (

1, z, z2
)

Cijdz (3)

where the Cij is the stiffness matrix. The tensile compliance matrix, aij(x, y), of the laminate
can be obtained by combining Equations (2) and (3), which is expressed as:

aij(x, y) =
[
Aij(x, y)

]−1
+
[
Aij(x, y)

]−1[Bij(x, y)
]([

Dij(x, y)
]
−
[
Bij(x, y)

][
Aij(x, y)

]−1[
Bij(x, y)

]−1
)−1[

Bij(x, y)
][

Aij(x, y)
]−1

(4)

Specially, when the coupling stiffness matrix Bij is a zero matrix, there is

aij(x, y) =
[
Aij(x, y)

]−1.
For orthotropic composite materials, the stress-strain relationship is expressed as:[

εij
]
=
[
Sij
][

σij
]
(i, j = 1, 2, 3, 4, 5, 6) (5)

where
[
εij
]

is the strain tensor,
[
Sij
]

is compliance matrix, and
[
σij
]

is the stress tensor
matrix. In the material coordinate system, the compliance matrix

[
Sij
]

of the unidirectional
lamina with normal alignment is expressed as:

[
Sij
]
=



S11 S12 S13 0 0 0
S21 S22 S23 0 0 0
S31 S32 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

 (6)

The elements in the matrix
[
Sij
]

are obtained from the three-dimensional engineering
elastic constants of lamina directly: S11 = 1/E11, S22 = 1/E22, S33 = 1/E33, S44 = 1/G23,
S55 = 1/G13, S66 = 1/G12, S12 = −ν12/E11, S13 = −ν31/E11, and S23 = −ν23/E33. Ac-
cording to Maxwell’s equations, there is: νij/Ej = −νji/Ei (i, j = 1, 2, 3, but i 6= j). Where
Ei is the Young’s modulus of the i direction, and νij and νji are the Poisson’s ratios in the
corresponding direction.

Different from the methods to separate the stiffness of out-of-plane and in-plane
wrinkles in other examples of the literature [9,10], a unified stiffness equation in the present
paper is proposed to calculate the stiffness of these two types of wrinkles simultaneously.
It is assumed that there are two steps in the formation process of wrinkle defects. The first
step is the declination between the fiber bundle in the XOY plane and the X-axis of the
global coordinate system. The second step is the deflection between the fiber ply in the
XOZ plane and the X-axis of the global coordinate system. If the declination angle between
the fiber bundle in the plane XOY and the X-axis of the global coordinate system is ϕ, the
first compliance transformance matrix

[
Sij
]

is expressed as [19]:[
Sij
]
= [R]

[
Tϕ

]T
[R]−1[Sij

][
Tϕ

]
(7)
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where the superscript “T” represents the transposition of the matrix, [R] is the Reuter’s
matrix [9,17], and [Tϕ] is the in-plane stiffness transformation matrix representing the fiber
deflection in-plane in the first step, which is expressed as:

[
Tϕ

]
=



(cos ϕ)2 (sin ϕ)2 0 0 0 2 cos ϕ sin ϕ

(sin ϕ)2 (cos ϕ)2 0 0 0 −2 cos ϕ sin ϕ
0 0 1 0 0 0
0 0 0 cos ϕ − sin ϕ 0
0 0 0 sin ϕ cos ϕ 0

− cos ϕ sin ϕ cos ϕ sin ϕ 0 0 0 (cos ϕ)2 − (sin ϕ)2


(8)

In the second step, the deflection angle between the X-axis of the material coordinate
system and the X-axis of the global coordinate system is θ. According to the Equation (1),
θ = arctan(4H/L). The angle θ is one of the most important parameters describing the
wrinkle [19–22]. When the ply deflects in the out-of-plane direction, the new compliance
matrix

[
Ŝij
]

of the wrinkle region is expressed as:[
Ŝij
]
= [R][Tθ ]

−1[R]−1[Sij
]
[Tθ ] (9)

where [Tθ] is the out-of-plane stiffness transformation, which is expressed as:

[Tθ ] =



(sin θ)2 0 (cos θ)2 0 2 cos θ sin θ 0
0 1 0 0 0 0

(cos θ)2 0 (sin θ)2 0 −2 cos θ sin θ 0
0 0 0 sin θ 0 − cos θ

− sin θ cos θ 0 sin θ cos θ 0 (sin θ)2 − (cos θ)2 0
0 0 0 cos θ 0 − sin θ


(10)

Therefore, the influence of in-plane declination and out-of-plane deflection of wrinkle
defects on the stiffness of laminates are considered in Equation (9) simultaneously.

2.3. Effective Stiffness Properties

According to references [9,19], the average compliance matrix of the wrinkle region at
a single period length can be obtained from Equation (11) by integrating in the directions of
the length, thickness, and width of the wrinkle region. The equivalent compliance matrix
[S̃ij] in the global coordinate system is expressed as:

[
S̃ij

]
=

1
LWT

∫ W

0

∫ L/2

−L/2

(∫ T/2

−T/2

[
Ŝij
]
dz
)

dxdy (11)

where L, W, and T are, respectively, the span, width, and thickness of the wrinkle region of
the laminate at a period.

Generally, the wrinkle defects are embedded in the composite laminate, which can be
divided into a wrinkle layer and a non-wrinkle layer, as shown in Figure 3. The effective
tensile stiffness of the laminate is the superposition of the stiffness of the wrinkle layer and
the non-wrinkle layer. The tensile stiffness without the wrinkle layer is directly obtained by
the inverse matrix of [Sij] according to Equation (6); while the tensile stiffness of wrinkle
layer is solved separately. Here, the effective tensile stiffness [Aij] of the laminate is
expressed as:

[
Aij
]
=

1
L

∫ L/2

−L/2

(∫ h1−t/2

−t/2

[
S
]−1dz +

∫ h2−t/2

h1−t/2

[
S̃
]−1

dz +
∫ t/2

h2−t/2

[
S
]−1dz

)
dx (12)

where h1 and h2 are the distances from the lowest and highest layer of the wrinkle-region
to the bottom of the laminate, respectively; and t is the thickness of laminate.
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Under a uniaxial loading condition, combined with the above equations, the three-
dimensional equivalent elastic properties of the wrinkle region of the laminate are derived as
follows: Ex = 1/

(
tA11

)
, Ey = 1/

(
tA22

)
, Ez = 1/

(
tA33

)
, Gyz = 1/

(
tA44

)
, Gzx = 1/

(
tA55

)
,

Gxy = 1/
(
tA66

)
, νxy = −A12/A11, νyz = −A23/A22, and νzx = −A13/A33. Where Aij is

the element in matrix [Aij], and t is the thickness of the laminate.

3. Numerical Method

The RVE model is a finite element method that constructs a micro-scale periodic cell
to characterize the mechanical response behavior of a macroscopic object. Considering the
structural characteristics of the local region of wrinkle defects, a laminated RVE method
was used to study the macroscopic equivalent mechanical properties of the local region
of a wrinkle. The laminated RVE method is a meso-scale RVE simulation method. Com-
bined with the wrinkle geometric model of the single period and ply-thickness, using the
periodic boundary conditions, the homogenization of the wrinkle region of the wrinkle
ply can be achieved. If the wrinkles exist in the whole thickness of the laminate, the plies’
stacking sequence can be used. The input parameters of the laminated RVE method can be
directly obtained from mechanical experiments, so as to ensure that fresh, real-time input
information is obtained.

3.1. Material Properties

For consistency, the same carbon fiber/epoxy resin material was used from reference [20].
Carbon fiber is transversely isotropic, and resin is isotropic; the elastic properties are shown
in Table 1. In order to evaluate the influence of wrinkle defects on laminates with different
stacking sequences, the stacking sequence schemes were designed, as shown in Table 2.
The uniform wrinkle type was chosen, which means that the spacing between adjacent
plies in the wrinkle region is evenly distributed. The thickness of the lamina is 0.15 mm, the
total number of plies is 12, and the thickness of the laminate is 1.8 mm. The subscript “wp”
in the laminate stacking sequence is the abbreviation of “wrinkle ply”. The subscript “S”
represents the symmetrical stacking method. The number of the subscript is the number of
plies or groups.

Table 1. Elastic properties of ply AS4/3501 [20].

Elastic Modulus Poisson’s Ratio Shear Modulus

E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν23 ν13 G12 (GPa) G23 (GPa) G31 (GPa)

105 9.51 9.51 0.285 0.443 0.285 4.78 3.30 4.78



Materials 2022, 15, 5264 7 of 16

Table 2. Details of laminates’ stacking sequences with uniform wrinkles.

Laminate Stacking Sequence Laminate Thickness t (mm) Effective Ply Thickness (mm)[
0wp6

]
S 1.8 0.15[

0wp/90wp
]

3S 1.8 0.15[
45wp/− 45wp/0wp2/90wp2

]
S 1.8 0.15

3.2. Laminated RVE

As shown in Figure 4, the thickness of the single ply was 0.15 mm, and the effective
span, L, of a period’s wrinkle region was 10 mm. Considering the structural characteristics
of the wrinkle region, the macroscopic properties of a single ply were studied by using the
geometry model of 10 mm × 0.15 mm × 0.15 mm, and the geometry model of a laminate
with wrinkle defects could be established by the lay-up of single ply. It is worth noting that
the geometry model of a single ply is divided into two cells, each of which represents half
of the wrinkle in a period. The RVE model represents a horizontal layer in one period span
of the wrinkle, so the two cells are along the length direction. By setting the deflection of
the X-axis of the local material coordinate system of every cell and the X-axis of the global
coordinate system, the out-of-plane deflection angle of wrinkle is set, which corresponds
to the θ in Equation (10). The in-plane deflection angle of the wrinkle defect is realized
by the rotation angle of the normal axis of the local material coordinate system in every
cell, which corresponds to the ϕ in the Equation (9). The simulation was completed in the
ABAQUS commercial finite element analysis software.
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3.3. Periodic Boundary Conditions and Post-Processing

It is necessary to define reasonable boundary conditions for the RVE element to
confirm the deformation compatibility and continuous stress. Some researchers used the
periodic boundary conditions to ensure the accuracy of the mechanical responses of the
RVE model [23,24]. The details of the periodic boundary conditions can be found in [25].
For the post-processing of the RVE results, the Young’s modulus, Poisson’s ratio, and shear
modulus were solved by the EasyPBC plugin in the ABAQUS software. The plugin can
impose uniform strains on the RVE to compute the effective elastic properties and outputs
the effective elastic parameter results automatically. The details of the post-processing
method were shown in [25].

4. Validation

The correctness and accuracy of the present model were verified for application in
the assessment of the stiffness of composite structures with wrinkle defects. The present
analytical model was verified by a numerical method; simultaneously, the present model
was validated by other published analytical and numerical results.
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The same material data as Section 3.1 were used. The angle, ϕ, of the wrinkle fiber
direction deviating from the principal axis X direction was 0◦, and the wrinkle parameter
H/L were 0, 0.025, 0.05, and 0.1, respectively. In addition, the results from the present
model were compared with Garnich’s [21] model and Takeda’s [20] model. The ratio of
height, H, to the span, L, of the triangular wrinkle was equal to A/λ of the sinusoidal
wrinkle type (A is the amplitude, λ is the wrinkle length). And that can be found in Figure 2.

When H/L ranges from 0 to 0.1, the error in Ex from the present model and the
RVE method is zero, the error in Gxz from the present model and the RVE method is 0 to
5.23%, as shown in Figures 5 and 6. Meanwhile, the errors of Ex between the present
model and Takeda’s model, and the present model and Garnichl’s model, are 0~6.16% and
−0.98~2.05%, respectively; while the errors in Gxz are −0.65~−0.39% and −2.25~0.56%.
Besides, the comprehensive comparison between the present model and the other two
models were calculated in Table 3; the maximum and minimum errors are 6.16% and
−5.23%, respectively. Therefore, the present model is consistent with Takeda’s model and
Garnichl’s model.
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Table 3. Effective elastic properties of a unidirectional laminate with wrinkles in different models.

Property Ex Ey Ez Gxy Gxz Gyz

Present
model H/L

0.025 88.152 9.510 9.517 4.758 4.861 3.310

0.05 60.617 9.510 9.545 4.698 5.101 3.340

0.1 30.002 9.510 9.751 4.502 5.994 3.447

RVE
model H/L

0.025 88.152
(0%)

9.510
(0%)

9.517
(0%)

4.765
(−0.15%)

4.881
(−0.41%)

3.310
(0%)

0.05 60.617
(0%)

9.510
(0%)

9.545
(0%)

4.723
(−0.53%)

5.180
(−1.53%)

3.340
(0%)

0.1 30.002
(0%)

9.510
(0%)

9.751
(0%)

4.576
(−1.62%)

6.325
(−5.23%)

3.447
(0%)

Garnich’s
FE model H/L

0.025 87.3
(0.98%)

9.51
(0.00%)

9.53
(−0.14%)

4.77
(−0.25%)

4.89
(−0.59%)

3.31
(−0.30%)

0.05 59.4
(2.05%)

9.51
(0.00%)

9.58
(−0.37%)

4.74
(−0.89%)

5.21
(−2.09%)

3.36
(−0.60%)

0.1 30.3
(−0.98%)

9.52
(−0.11%)

9.93
(−1.80%)

4.65
(−3.18%)

6.29
(4.71%)

3.356
(2.71%)

Takeda’s
model H/L

0.025 85.9
(2.62%)

9.58
(−0.73%)

9.45
(0.71%)

4.80
(−0.87%)

4.86
(−0.02%)

3.28
(0.61%)

0.05 57.1
(6.16%)

9.55
(−0.42%)

9.53
(0.16%)

4.73
(−0.68%)

5.23
(−2.47%)

3.33
(0.30%)

0.1 29.6
(1.36%)

9.55
(−0.42%)

9.89
(−1.41%)

4.56
(−1.27%)

6.35
(−5.61%)

3.46
(−0.38%)

Remark 1. (a) the unit of mechanical proper is GPa; (b) the error ratio is the comparison between
the present model and all other models.

5. Results and Discussion
5.1. Effective Stiffness of a Single Ply with a Wrinkle

A ply is the basic component of composite laminates, and it is necessary to study the
effect of the wrinkle defect on a single ply. All the results were dimensionless compared
with the elastic properties of the material data in Table 1. The relationship between the
normalized Young’s modulus (Ex, Ey, Ez) and H/L of the ply with a wrinkle at ϕ = 0◦ is
shown in Figure 7. The normalized Young’s modulus, Ex, decreases with the increase of
H/L. When H/L = 0.1, the decrease percentage is 71.4%. The value of the normalized
Young’s modulus, Ey, is always 1.0, and it doesn’t change with H/L. The normalized
Young’s modulus, Ez, increases with the increase of H/L, and when H/L = 0.1, the
increase percentage is 25.3%. Moreover, all the error percentages of the data between the
present model and the RVE model in Figure 7 are zero; this indicates that the present model
is consistent with the RVE model in calculating the effective elastic modulus. Therefore,
the wrinkle defect parameter, H/L, has a significant weakening effect on Young’s modulus
Ex, while an increasing effect on Young’s modulus Ez, and no effect on Young’s modulus
Ey. The reason for the phenomena is that the wrinkle defect makes the ply deflect from
the X-direction to the Z-direction, which reduces the stiffness component of the ply in the
x-direction and increase the stiffness component of the ply in the Z-direction. Furthermore,
the fiber content is not changed by the deflection in the Y-direction, due to the ϕ = 0◦.

The relationship between the shear modulus (Gyz, Gxz, Gxy) and H/L of the ply with
a wrinkle at ϕ = 0◦ is shown in Figure 8. The normalized shear modulus Gyz in the
present model and the RVE model increases with the increase of H/L. When H/L = 0.1,
the increase percentage of Gyz in the present model is 4.5%, and that of the RVE model
is 4.5%. The normalized shear modulus, Gxz, in the present model and the RVE model
increases with the increase of H/L. When H/L = 0.1, the increase percentage of Gxz in the
present model is 25.4%, and that in the RVE model is 32.3%. However, the normalized
shear modulus, Gxy, in the present model and the RVE model decreases with the increase
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of H/L. When H/L = 0.1, the decrease percentage of Gxy in the present model is 5.8%,
and that in the RVE model is 4.3%. Thus, the direction of the effect of the wrinkle defect
on the shear modulus is different, and the shear modulus Gxz is the most affected. The
maximum absolute error percentages of Gyz, Gxz, and Gxy between the two models are 0%,
5.2%, and 1.6%, respectively. This indicates that the present model has good accuracy in
calculating the shear modulus. Therefore, the H/L of the wrinkle defect has increasing
effect on the shear modulus Gyz and Gxz, while having a decreasing effect on the shear
modulus Gxy; Gxz is affected the most by the wrinkle defect. The variation of the shear
modulus is mainly due to the fact that the wrinkles change the geometric characteristics of
the laminate, causing the fiber ply to aggregate in the thickness direction of the laminate.
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To validate the applicability of the present model with different in-plane angles, ϕ, the
Young’s modulus of the lamina with different H/L values was studied. The situation of
the normalized Young’s modulus at ϕ = 30◦ and ϕ = 45◦ were taken as an example. The
relationship between the normalized Young’s modulus (Ex, Ey, Ez) and H/L of the ply with
a wrinkle at ϕ = 30◦ is shown in Figure 9. The normalized Young’s modulus Ex decreases
with the increase of H/L. When H/L = 0.1, the percentage decrease is 37.8%. The value
of normalized Young’s modulus Ey is always 1.0, and it doesn’t change with H/L. The
normalized Young’s modulus Ez increases with the increase of H/L. When H/L = 0.1,
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the increase percentage is 2.0%. The maximum errors of the Young’s modulus (Ex, Ey, Ez)
between the present model and the RVE model are 10.9%, 0%, and 2.5%, respectively. The
relationship between the normalized Young’s modulus (Ex, Ey, Ez) and H/L of the ply
with a wrinkle at ϕ = 45◦ is shown in Figure 10. The normalized Young’s modulus Ex
decreases with the increase of H/L. When H/L = 0.1, the percentage decrease is 19.4%.
The value of the normalized Young’s modulus Ey is always 1.0, and it doesn’t change
with H/L. The normalized Young’s modulus Ez increases with the increase of H/L, and
when H/L = 0.1, the percentage increase is 1.4%. The maximum errors of the Young’s
modulus (Ex, Ey, Ez) between the present model and the RVE model are 0.77%, 0%, and
5.49%, respectively. Therefore, the variation of the Young’s modulus of lamina with ϕ = 0◦,
ϕ = 30◦, and ϕ = 45◦ are the same, and results of the present model are in good agreement
with that of RVE model, indicating a good applicability of the present model with different
values for ϕ and H/L.
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5.2. Effective Stiffness of Laminates with Wrinkles

In this section, the laminates with uniform wrinkle defects are the main study object,
and the effective elastic properties of laminates with three different ply stacking sequences
were evaluated and discussed.



Materials 2022, 15, 5264 12 of 16

The relationship between the effective elastic stiffness, Ex, and the wrinkle defect
parameter H/L of the laminates with three different ply stacking sequences is shown in
Figure 11. All the Ex of the laminates with [0wp6]S, [0wp/90wp]3S, and [±45wp,(0,90)wp2]S
ply stacking sequences decrease with the increase of H/L, and the maximum percentage
decreases are 86.0%, 78.4%, and 74.4%, respectively. The Ex of the laminates with three
ply-stacking sequences are significantly weakened by the wrinkle parameter, H/L, but
the effect on the [±45wp,(0,90)wp2]S laminate is the smallest and the effect on [0wp6]S is the
greatest. Therefore, it can be found that the orthogonal plies and ±45◦ plies can reduce the
weakening the effect of a wrinkle defect on the effective elastic stiffness, Ex.
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The relationship between the effective elastic stiffness, Ey, and the wrinkle defect
parameter, H/L, of the laminates with the three different ply stacking sequences is shown
in Figure 12. The Ey of the [0wp/90wp]3S and [±45wp,(0,90)wp2]S laminates decreases with the
increase of H/L, and the maximum decrease percentages are 1.3% and 7.9%, respectively.
However, the Ey of the [0wp6]S laminate doesn’t change with H/L. Therefore, the wrinkle
parameter, H/L, has the greatest effect on the Ey of the [±45wp,(0,90)wp2]S laminate, the
significant least effect on the Ey of the [0wp/90wp]3S laminate, and no effect on the Ey of the
[0wp6]S laminate.
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The relationship between the effective elastic stiffness, Ez, and the wrinkle defect
parameter, H/L, of the laminates with the three different ply stacking sequences is shown
in Figure 13. The Ez of the [0wp/90wp]3S and [±45wp,(0,90)wp2]S laminates decreases with the
increase of H/L, and the maximum percentage decreases are 5.6% and 5.7%, respectively;
while the Ez of the [0wp6]S laminate increases with the increase of H/L, and the maximum
percentage increase is 2.5%. Therefore, the effect of the wrinkle defect parameter, H/L, on
laminates is closely related to the ply stacking sequence, and the direction of the effect may
be opposite with different ply stacking sequences.
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Figure 13. The effective elastic stiffness, Ez, vs. wrinkle parameter, H/L, in laminates.

The relationship between the shear stiffness, Gyz, and the wrinkle defect parameter,
H/L, of the laminates with the three different ply stacking sequences is shown in Figure 14.
All the Gyz values for the [0wp6]S, [0wp/90wp]3S, and [±45wp,(0,90)wp2]S laminates increase
with the increase of H/L, and the maximum percentage increases are 4.5%, 1.8%, and
4.5%, respectively. The Gyz of the three ply-stacking sequences are slightly increased by the
wrinkle parameter, H/L, while the effect of the wrinkle parameter, H/L, on the Gyz of the
laminate with [0wp/90wp]3S is smallest.
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The relationship between the shear stiffness, Gxz, and the wrinkle defect parameter,
H/L, of the laminates with the three different ply stacking sequences is shown in Figure 15.
All the values of Gxz of the [0wp6]S, [0wp/90wp]3S, and [±45wp,(0,90)wp2]S increase with the
increase of H/L, and the maximum percentage increases are 25.4%, 15.0%, and 12.1%,
respectively. The Gxz of the three ply-stacking sequences are obviously increased by the
wrinkle parameter, H/L, while the effect on the laminate with the [0wp6]S ply stacking
sequence is greater than that of laminates with the other two ply-stacking sequences. There-
fore, the wrinkle defect has a greater effect on the shear stiffness, Gxz, of the unidirectional
laminate than the orthogonal laminate.
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The relationship between the shear stiffness, Gxy, and the wrinkle defect parameter,
H/L, of the laminates with the three different ply stacking sequences is shown in Figure 16.
All the values of Gxy for the laminates with the [0wp6]S, [0wp/90wp]3S, and [±45wp,(0,90)wp2]S
ply stacking sequences decrease with the increase of H/L, and the maximum percentage
decreases are 5.8%, 2.9%, and 40.6%, respectively. Therefore, the wrinkle defect has a signifi-
cant weakening effect on the shear stiffness, Gxy, of the laminate with the [±45wp,(0,90)wp2]S
ply stacking sequence and a slight weakening effect on the shear stiffness, Gxy, of the
laminate with the other two ply-stacking sequences.
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6. Conclusions

A new three-dimensional analytical model for multidirectional composite laminates
with wrinkle defects was proposed to study the equivalent stiffness of wrinkle regions of
laminates. The analytical model in this paper was compared with the results of the RVE
model and other studies’ analytical and finite element models, and good accuracy and
consistency were obtained. The results of the present model show that the effect of the
wrinkle on the six effective elastic mechanical parameters of the single ply are different.
When ϕ = 0◦ and H/L; is 0 to 0.1, the maximum decrease percentages of Ex, Ey, and
Gxy are 71.4%, 0%, and 5.8%, respectively; the maximum increase percentages of Ez, Gyz,
and Gxz are 25.3%, 4.5%, and 25.4%, respectively. In addition, the continued applicability
of the present model when using different in-plane angles, ϕ, was verified by the RVE
model. Furthermore, the present model was applied to the effective stiffness parameters of
laminates with different ply stacking sequences. It is found that the effect of wrinkle defects
on the effective elastic parameters of laminates can be weakened by adding the mixing
plies of different orientations, and wrinkles with small values for H/L slightly affect the
elastic parameters.

The analytical model established in present paper can quantitatively evaluate the
effect of wrinkle defects on the stiffness performance of the laminates. It has the advantages
of few parameters, good precision, and high efficiency. In future research, the difference
of the angles between the fiber direction and the primary axis of the material coordinate
system on the two wrinkles’ surface should be studied, which would be helpful to further
improve the accuracy of the present model for predicting the effect of the wrinkle defects
on the stiffness of multidirectional laminates.
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